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Abstract: The medicinal herb coriander (Coriandrum sativum L.), with a high linalool (LIN) con-
tent, is widely recognized for its therapeutic benefits. As a novel report, the goals of this study
were to determine how methyl jasmonate (MeJA) affects total phenolic content (TPC), LIN content,
flavonoid content (TFC), and changes in gene expression involved in the linalool biosynthesis path-
way (CsγTRPS and CsLINS). Our findings showed that, in comparison to the control samples, MeJA
treatment substantially enhanced the TPC, LIN, and TFC content in both ecotypes. Additionally, for
both Iranian coriander ecotypes, treatment-induced increases in CsγTRPS and CsLINS expression
were connected to LIN accumulation in all treatments. A 24 h treatment with 150 µM MeJA substan-
tially increased the LIN content in the Mashhad and Zanjan ecotypes, which was between 1.48 and
1.69 times greater than that in untreated plants, according to gas chromatography–mass spectrometry
(GC-MS) analysis. Our findings demonstrated that MeJA significantly affects the accumulation of
LIN, TPC, and TFC in Iranian C. sativum treated with MeJA, which is likely the consequence of
gene activation from the monoterpene biosynthesis pathway. Our discoveries have improved the
understanding of the molecular mechanisms behind LIN synthesis in coriander plants.

Keywords: coriander; total flavonoid content; total phenolic; linalool; methyl jasmonate; gene
expression

1. Introduction

In medications or as byproducts for cosmetics, personal care, incense, and nourish-
ment, aromatic and medicinal plants are used to prevent and cure illnesses and to preserve
health [1]. The popularity of these plants continues to rise, as people’s interest in natural
resources rapidly increases [2,3]. Coriander (C. sativum L.), a hardy annual plant in the
Apiaceae family, is now grown in a number of temperate regions. Although the exact origin
of coriander is unknown, some writers have suggested that it originated in the Middle
East, the Mediterranean, and the Near East [4–6]. Coriander has been used since antiquity
as a spice, an odorant, and in folk medicine [7]. The stem, leaves, and fruits of coriander
contain the primary volatile component, linalool, which accounts for 60–70% of the essential
oil [8,9]. Geraniol, pinene, limonene, geranyl acetate, terpinene, and borneol are other
substances found in coriander [7]. Its essential oil (EO) exhibits biological effects, including
anti-inflammatory, analgesic, antibacterial, antifungal, and insecticidal qualities [10,11].
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The complex combination of mono- and sesquiterpenes that make up essential oils may
also include trace quantities of other metabolites. Many spices and plants present unique
characteristics due to the volatility and amount of these molecules [12]. The time of day,
physiological state of the plant organ, and environmental factors, including temperature
and light intensity, among other factors, all affect the chemical makeup of the essential
oils [12]. The plant tissues, including flowers, leaves, stems, buds, seeds, and roots, contain
plant terpenoids, also known as isoprenoids. These compounds are composed of five
carbon isoprene units. Because many terpenoids (those that make up EOs) are cytotoxic,
plants have evolved specific structures for storing these chemicals [13]. Terpenoids are
divided into seven primary groups based on the amount of isoprene units that make up
their backbone structure [14]. The mono-(C10), sesqui-(C15), di-(C20), sester-(C25), tri-
(C30), tetra-(C40), and polyterpenes are some examples of these (Cn). In different cellular
compartments, these natural compounds are biosynthesized via two different mechanisms.
The plastid contains the 1-deoxyxylulose-5-phosphate (DXP) pathway, which is the source
of mono-, di-, and tetra-terpenes [15,16]. The cytosol is the site of the mevalonate (MVA)
pathway, which generates sesqui-, tri-, and poly-terpenes [16,17].

These substrates are transformed into the wide range of terpenoids that are present in
plants by specialized enzymes called terpene synthases/cyclases. To improve the variety of
plant terpenes, many terpenoids may be further altered by enzymatic and non-enzymatic
methods [16,18]. Nearly half of all identified monoterpene and sesquiterpene synthases
produce several products from a single substrate [19]. The product specificity of this
enzyme class is very complex and cannot be deduced from the amino acid sequences.
Many plant species, including the terpinene synthases of thyme and oregano [20–23],
the linalool/nerolidol synthase from Plectranthus amboinicus [24], the linalool synthase,
and terpinene synthase from C. sativum, have been cloned and reported [25]. The acyclic
monoterpene alcohol linalool (3,7-dimethyl-1,6-octadien-3-ol) is produced by the enzyme
linalool synthase (LIS) [26,27], which is the source of the floral smells found in many
different plants, flowers, and spices. Due to its flavorful and aromatic qualities, it is
widely used in processed foods, drinks, fragrances, cosmetics, waxes, soaps, and household
detergents [28] (Figure 1).

The TPS and LIS genes of numerous plants, including Citrus sinensis [29], Lathyrus
odoratus [30], Dendrobium officinale [31], and Camellia sinensis, have been discovered and
functionally described [32]. Recent years have seen a plethora of research examining the
impact of biological and non-biological inducers of the production of secondary metabolites,
such as ultraviolet (UV) irradiation [33], trans-cinnamic acid [34], salicylic acid (SA), and
methyl jasmonate (MeJA) [35–42]. It was shown that jasmonic acid (JA) and methyl
jasmonate (its methyl ester) participate in signal transmission in plants, and they may
regulate defense genes. Additionally, they are often used exogenously in plants to promote
the production of secondary metabolites [35,39–41].

Despite the availability of various studies exploring the impact of elicitors such as
MeJA on phenolic acid synthesis [43,44], we are not aware of any studies on linalool and the
pattern of gene expression of linalool-related genes in Iranian coriander genotypes. The goal
of this research was to investigate how MeJA affects the expression of key linalool synthase
(CsLINS) and γ-terpinene synthase (CsγTRPS) genes, as well as the phenolic compound
accumulation and linalool content in two Iranian coriander genotypes (Mashhad and
Zanjan). Therefore, when the plant was stimulated with MeJA, we aimed to measure the
resulting quantities of linalool, an essential chemical present in coriander leaves. We also
made an effort to determine a link between the expression pattern of certain genes involved
in the linalool production pathway and the altered levels of linalool in MeJA-treated leaves
during the vegetative growth stage.
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Figure 1. Conversion of geranyl diphosphate to (S)-linalool by LINS, and to other monoterpene
products by TRPS.

2. Results and Discussion
2.1. Changes in Linalool under MeJA Concentrations

We evaluated how different MeJA concentrations affected the primary coriander
component linalool (Figure 2). The linalool content of both treated coriander ecotypes
increased considerably after 24 h under MeJA treatment, as shown in Figure 2. Generally,
the accumulation of linalool was greater in the Mashhad ecotype than in the Zanjan ecotype
at all MeJA concentrations.
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Figure 2. Linalool content of Iranian coriander ecotype leaves after various MeJA treatments. Ac-
cording to Duncan’s test, bars with different lettering indicate significance at a 1% level of probability.
Error bar are shown in percent of standard deviation.

When the Mashhad ecotype was exposed to 10, 100, 150, and 200 µM MeJA, the
level of linalool increased and was 1.10, 1.38, 1.48, and 1.21 times greater than that in the
untreated plants. When these MeJA treatments were applied, the Zanjan ecotype produced
1.13, 1.24, 1.69, and 1.44 times more linalool than its control (Figure 2). Therefore, the two
coriander ecotypes’ differing linalool amounts show that the quantity and mechanism of
linalool production are linked to genotype-specific responses to abiotic stresses. In other
words, our results suggest that 150 µM MeJA enhances the quantity of linalool present in
various ecotypes of coriander, and that these elicitors have an impact on the expression
patterns of genes involved in linalool production. Moreover, our results are consistent
with those of other researchers [23,41,42] and imply that linalool levels in coriander plants
vary according to genotype and dosage. Some research showed that the high levels of
linalool seen following treatments with 100–150 µM MeJA represented the ideal dosage
for treating various plant families [38,39,42]. According to these findings, caper plants
exposed to 150 µM MeJA were able to produce flavonoids [40]. Linalool and other bioactive
substances may be increased in a variety of plants as a result of MeJA’s induction of LINS
and TRPS enzyme activities, according to certain studies [23,43]. The present study’s
data suggest that MeJA may have had an impact on the rise in rutin quantity under 100
to 150 M treatment [39,41,42]. Our findings show that the administered MeJA had a
discernible impact on both ecotypes metabolic traits. Last but not least, the increase in
linalool accumulation brought on by MeJA stimuli may be associated with the activation
of related genes and biosynthetic pathways that promote radical scavenging via phenolic
components. Both ecotypes contained more linalool after MeJA treatment, although the
Mashhad ecotype achieved the increase more quickly. This finding highlights the notion
that linalool is known as the dominant component of the essential oil, rather than other
terpenoids in diffident coriander genotypes.

This hypothesis is supported by the evidence that MeJA is the most potent inducer
of the synthesis of terpinene and rosmarinic acid in Thymus migricus and Agastache rugosa
Kuntze [23,45].

2.2. Total Flavonoid Content and Total Phenol Content (TPC) as a Function of MeJA
Concentration (TFC)

There is little doubt that all MeJA concentrations impact the total flavonoid content
(TFC) and total phenol content (TPC) levels of Iranian coriander leaves (Figure 3). The
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patterns of TPC and TFC alterations under the MeJA treatment in Mashhad and Zanjan
coriander ecotypes likely mirrored those of linalool content changes (Figures 2 and 3A,B).
The accumulation of phenol and flavonoids was likewise altered by MeJA, although to a
different degree, as they were greater in the Mashhad ecotype treated with MeJA than in the
Zanjan ecotype. Recent studies have shown that MeJA, in its role as a signaling molecule,
increases the accumulation of secondary metabolites in a variety of plant species [46,47].
Our findings are consistent with these studies and support their findings. It is probable
that the enhanced expression of these genes in response to MeJA is a consequence of this
increase in phenolic compounds.
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The TPC quantity in the Mashhad ecotype was increased by 10, 100, 150, and 200 µM
MeJA concentrations, which were 1.14, 1.32, 1.63, and 1.48 times greater than that in the
untreated plants (Figure 3A). Accordingly, TPC values were determined for the Zanjan eco-
type when exposed to the various concentrations of MeJA, and they were, respectively, 1.31-,
1.74-, 2.57-, and 1.04-fold higher than in the control (Figure 3A). Additionally, Mashhad
coriander ecotypes treated with various MeJA concentrations resulted in TFC up to 7.68,
12, 22.52, and 15.71 mg QUE/g DW, with levels that were 1.61, 2.52, 4.74, and 3.28 times
greater than that of the control plants (Figure 3B). Moreover, MeJA treatments boosted
the TFC levels in the Zanjan ecotype, which were around 1.70, 2.37, 3.73, and 2.66 times
higher than the levels in untreated plants (Figure 3B). These findings support the findings
of other studies [23,41] and demonstrate that TPC and TFC variations in coriander leaves
depend on ecotype. Additionally, in all ecotypes under consideration, TPC values in both
untreated and all treated leaves were greater than the TFC values, which is consistent with
previous results [23,41,42]. Our findings are in line with recent studies [48–50] which found
that MeJA stimuli significantly affected TPC in various plants. MeJA has the capacity to
boost the secondary metabolites accumulation in several plants, according to the same
research [23,42,51].

The increased breakdown of bigger phenolic compounds into smaller ones, according
to the hypothesis of Jaafar et al. [52], might lead to an increase in polyphenolic compounds.
Thus, the gene expression involved in the linalool biosynthetic pathway was consistent
with the increase in linalool and phenolic compound synthesis brought about by MeJA
treatments. Linalool concentration in several plants has been shown to correlate with
the expression of the linalool biosynthesis genes (CsLINS and CsTRPS) [29–32,43]. These
results, which are consistent with other research [53], indicate that the genotype and dosage
affect the amounts of TFC and TPC in thyme plants. Thymus species might be considered
as possible sources of natural antioxidants, in addition to being rich sources of flavonoids
and phenolics, according the aforementioned study.

By topically administering MeJA, some researches have tried to raise the total amount
of phenolics or flavonoids in different plant species in order to boost antioxidant, antiadi-
pogenic, and anti-proliferative activity [54].

Additionally, TPC values for both MeJA treated plants and controls were greater than
TFC values, which is in line with earlier findings [54] for all thyme species.

2.3. MeJA Effects on the Expression of the CsγTRPS and CsLINS Genes

In this research, the real-time quantitative reverse transcription PCR (qRT-PCR)
method was used to examine changes in the transcript levels of genes in the linalool
pathway and the relationship between gene expression and linalool accumulation in Ira-
nian coriander ecotypes exposed to various MeJA treatments (Figure 4). These findings
unequivocally demonstrate that MeJA treatments considerably affected the mRNA tran-
script levels of mRNA in coriander. It is important to note that Mashhad ecotypes had
higher transcription levels in the linalool biosynthesis pathway than did the Zanjan eco-
types, which may help to explain why MeJA produced more linalool, particularly in the
final stages of linalool biosynthesis. To be more specific, as compared to untreated plants,
the expression level of CsγTRPS in the Mashhad coriander ecotype increased from 6.28-fold
at 10 µM MeJA to 9.69-fold at 150 µM MeJA and remained almost the same at 8.53-fold
at 200 µM MeJA (Figure 4A). CsLINS expression increased significantly to 8.74-fold at
100 µM MeJA, quickly peaked at 17.84-fold with 150 µM MeJA, and then fell to the previous
concentration (Figure 4B).
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Figure 4. Linalool biosynthetic pathway genes CsγTRPS (A) and CsLINS (B) are expressed in the
leaves of control (untreated) and MeJA-treated coriander plants, respectively. The Ct values formed
the basis of qRT-PCR. The reference gene actin was used to standardize the Ct value for each sample.
According to Duncan’s test, bars with different letters are substantially (p ≤ 0.01) different. Standard
error values are shown by error bars.

Treatment with MeJA 10 M significantly enhanced the expression level of CsγTRPS in
the plants in the Zanjan ecotype as compared to the control plants (4.23-fold), while MeJA 10
and 100 M treatments showed no appreciable impact. At MeJA 150 M, CsγTRPS expression
increased noticeably and was 6.56 times higher than in the control (Figure 4A). Following a
24 h period, MeJA treatment increased the Zanjan ecotype’s CsLINS gene expression by
4.24-fold at MeJA 10 M, 5.37-fold at MeJA 100 M, 8.73-fold at MeJA 150 M, and 6.59-fold
at MeJA 200 M in comparison to the control plants. At all MeJA doses, transcript levels
for every gene increased, and the linalool biosynthetic pathway’s CsLINS and CsγTRPS of
both ecotypes displayed the same pattern of expression (Figure 4). The MeJA treatment
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increased the expression of CsLINS and CsγTRPS, and their expression patterns matched
the pattern of linalool accumulation perfectly. Moreover, the current research investigated
the spraying of coriander ecotypes with high MeJA concentrations (200 M), resulting in
a reduction in gene expression in comparison with other concentrations. These findings
concur with those of Kianersi et al. [39–41] and Abdollahi et al. [42], who demonstrated
that exogenously administered MeJA at high concentrations inhibited expression. In order
to determine the maximum yield of secondary metabolites and to clarify their biosynthetic
pathway(s), it would be helpful to understand how external stimuli affect secondary
metabolite synthesis [35,36,55].

CsγTRPS expression in the two ecotypes under study was variably upregulated by
MeJA treatments, and it showed the same pattern as linalool accumulation. In different
organs of Lycopersicon esculentum cultivars and Oenothera harringtonii, the expression levels
of genes relevant to linalool production showed similar results [43,44]. Our research showed
that CsLINS is essential for the production of linalool. The rate of transcript levels and gene
induction may change, depending on the stress and the type of plant.

According to earlier studies [43,44], MeJA, a vital enzyme in the linalool pathway,
boosts linalool synthase (LIS) activity. Similarly, MeJA-treated L. esculentum and other
species showed a considerable increase in the amount of gene transcription [43]. Despite
the fact that our results clearly demonstrate the significance of CsγTRPS and CsLINS
expression in linalool production in both ecotypes, the disparity in expression and linalool
accumulation amounts suggests they are most likely related to coriander ecotypes.

A metabolic connection between the two compounds is suggested by the increase in
linalool percentage reported in the studied samples [56]. For more specific information,
Crocoll et al. [57] proposed that p-cymene is a byproduct of the premature release of the
substrate from the active site, and that the synthesis of thymol and carvacrol takes place
directly from the c-terpinene substrate. Additionally, they stated that p-cymene is a byprod-
uct of the premature release of the substrate from the active site. The enhanced expression
of these genes may be induced by an increase in the phenolic monoterpenes that these
genes are known to produce. The absence or presence of ants near Origanum vulgare L. has
been reported to induce an enhancement in the production and accumulation of pheno-
lic monoterpenes, which is related to ants [58]. OvTPS2, CYP71D179/182, CYP71D180,
and CYP71D178, among other genes involved in terpene biosynthesis, were found to be
expressed more frequently when a Myrmica ant parasitized Origanum vulgare [58].

Our research demonstrated the close connection between CsLINS expression and
linalool production. The expression pattern of CsLINS correlated with the increase in
linalool in both Iranian coriander ecotypes after MeJA treatment (Figures 2 and 4). For
instance, in the Mashhad and Zanjan ecotypes, the expression of CsLINS at 150 µM MeJA
after 24 h was 17.84 and 8.73 times greater, respectively, than in the control plants. In
addition, at this concentration, the linalool concentrations were 1.48 times higher in the
Mashhad ecotype and 1.68 times higher in the Zanjan ecotype than in untreated plants.
Decreased production of linalool, flavonoid, and phenol levels at 200 µM MeJA compared
to 150 µM MeJA were correlated with a lower CsLINS in the ecotypes under study. Similar
patterns of CsLINS expression and linalool content may explain the critical role of these
genes in regulating linalool production.

According to several studies [39–42,59], MeJA influences the transcript levels of genes,
which is involved in the secondary metabolite biosynthesis pathways and leads to the accu-
mulation of bioactive chemicals in a variety of plant species. According to Farooq et al. [60],
exogenous treatment of MeJA further changed the activity of phenylalanine ammonia lyase
(PAL), polyphenol oxidases (PPO), and carbamoyl-phosphate synthetase (CAD), as well as
their relative mRNA levels.

Rather than 200 µM MJ, 150 µM showed the greatest effects on the expression of
CsγTRPS and CsLINS in the experimental setup. This suggests that the concentration of
linalool increases along with the concentration of MeJA in a sample. Last but not least,
our research shows that MeJA treatments significantly affected the levels of linalool, total
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flavonoid content (TFC), total phenolic content (TPC), and important genes involved in
linalool production (CsγTRPS and CsLINS) in Iranian coriander leaves.

3. Materials and Methods
3.1. Plant Material and Growth Conditions

The seeds of the two ecotypes (Mashhad and Zanjan) of Iranian coriander (C. sativum L.)
were sown in pots with a perlite–compost combination, and they were subsequently culti-
vated in a greenhouse with regulated lighting (16 h day/8 h night, with a photosynthetic
photon flux density of 320 mol m−2 s−1) and temperature conditions (25/19 ◦C day/night).

3.2. MeJA Treatments

At 90 days old and in the vegetative development stage (i.e., only possessed root, stem,
and leaf components), the potted C. sativum L. plants used in this study were treated with
10, 100, 150, and 200 µM MeJA, or distilled water, in the case of the control. Using a filter
membrane with a 0.22 m MILLIPORE pore size, the MeJA solutions (SIGMA-ALDRICH)
were fully sterilized. The final concentrations of MeJA solutions (10, 100, 150, and 200 µM)
and distilled water (control) were subsequently sprayed onto the aerial parts of three
coriander plants until runoff (1000 mL/treatment). For each treatment, three plants from
each replication were taken into account (MeJA and distilled water). After the first 24 h of
treatment, the treated and untreated uniform young leaves were collected and frozen in
liquid nitrogen, and then stored at −80 ◦C until molecular and phytochemical analysis.

3.3. RNA Extraction, Complementary DNA (cDNA) Synthesis, and q-PCR Evaluation

According the manufacturer’s recommendations (SinaClon Bioscience Co., Karaj, Iran),
the total RNA of coriander ecotypes’ uniform young leaves (100 mg frozen leaves) was
extracted, and complementary DNA (cDNA) was produced using the kit’s two stages, in
accordance with the manufacturer’s procedure [39], using the β-actin gene (a housekeeping
gene) and gene-specific primers, as previously published [61]. The effects of different MeJA
concentrations on the mRNA transcript levels of CsγTRPS and CsLINS were examined us-
ing the fold-change (2−∆∆Ct) technique, as previously reported [62] (Table 1). Additionally,
three biological and technical duplicates were employed to analyze gene expression.

Table 1. Primers used for qRT-PCR analysis.

Real-Time Primers Sequences (5′ to 3′)

CsγTRPS F
CsγTRPS R

CGAAATGGTGGAAGGACACAGA
GTAATAGCAGCGAGCACCTT

CsLINS F
CsLINS R

GAGAAGGACTTGCATGCTACTG
GACATCTGCACGGATACCT

β-Actin
β-Actin

GACGAGGATGAGGCAGAGTT
GGAGCATCAGAAACAGAGG

3.4. Determination of Linalool

The GC analysis was performed using a Hewlett-Packard 6890 gas chromatograph
(Palo Alto, CA, USA) equipped with an FID and an electronic pressure control injector.
Both a polar HP Innowax (polyethylene glycol) column and an apolar HP-5 column (both
from HP; 30 m, 0.25 mm, 0.25 m film thickness) were used. The speed of the N2 carrier
gas was 1.6 mL/min. The split ratio was 60:1. The analysis was conducted with the help
of the following temperature program: the oven temperature was kept isothermally at
35 ◦C for 10 min, elevated from 35 to 205 ◦C at a rate of 3 ◦C/min, and then kept at 205 ◦C
for 10 min. The injector and detector were maintained at temperatures of 250 and 300 ◦C,
respectively. One liter of plain oil was injected into the samples. GC-MS analysis was
carried out on a gas chromatograph HP 5890 (II) connected to a mass spectrometer with
electron impact ionization (70 eV). The capillary column was an HP-5MS from Hewlett-
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Packard (30 m × 0.25 mm, 0.25 m film thickness). The samples were injected with 1 µL
concentrated standard. The temperature of the column was set to increase by 5 ◦C per
min from 50 ◦C to 240 ◦C. Helium served as the carrier gas, flowing at 1.2 mL/min with a
60:1 split ratio. The mass range and scan duration were 40–300 m/z and 1 s, respectively
(Figure S1A–C, Table S1). Three replications were used in each injection.

The parameters mentioned in the literature [63] verified linalool compound. Finally,
of all the essential oils, only the amount of linalool was reported in this work, as it is the
main essential oil compound in coriander.

3.5. Flavonoid Contents and Total Phenolic Assay

Methanolic extracts of their total phenolic content (TPC) were obtained by shaking
1 gr of dried and crushed coriander leaf in 80% methanol for 24 h at room temperature
(150 rpm). The TPC was measured after the extracts were filtered through three Whatman
sheets [41]. First, 2.5 mL of diluted Folin-Ciocalteu reagent, 2 mL of sodium carbonate, and
0.5 mL of each sample’s methanolic extract (7.5 percent) were combined. After 15 min at
45 ◦C, 765 nm absorbance was recorded. The tannic acid equivalent in mg/g dry weight
(DW) was used to determine TPC (Figure S2A).

Total flavonoid content (TFC) was determined using aluminum chloride colorime-
try [64]. First, 0.25 mg of each sample extract was mixed with 1.25 mL of water and 0.75 mL
of sodium nitrate. After 300 s of dark incubation, 0.15 mL of 10% aluminum chloride was
applied. Each sample received 0.275 mL water and 0.5 mL sodium hydroxide solution. The
reaction solution’s 510 nm adsorption and TFC were read (Figure S2B).

3.6. Statistical Evaluation

Utilizing factorial experiments with a totally randomized design, the linalool content
of two Iranian ecotypes of coriander treated with varied MeJA doses was examined for
TFC, TPC, and gene expression (CRD). In every experiment, there were three replications.
The statistical program SPSS 16 was used to run an ANOVA on all of the data. To compare
the means, the Duncan’s multiple range test was used (DMRT).

4. Conclusions

We demonstrated that the application of exogenous MeJA in coriander, particularly
Iranian coriander ecotypes, may increase the levels of linalool, TFC, and TPC, as well as
the transcript levels of crucial genes which are involved in the linalool pathway, such as
CsγTRPS and CsLINS. Further study is required to better understand how the expression
of additional genes connected to this pathway interact with the buildup of phenolic com-
pounds in response to MeJA and other treatments which involve abiotic stressors. Future
research could make it possible to genetically alter this process to increase the synthesis of
beneficial chemicals in coriander.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13101717/s1, Figure S1: Gas chromatogram for (A) linalool
standard and (B,C) CsLIN products; Figure S2: Standard curve of total phenolic content (A) and total
flavonoid content (B); Table S1: Essential oil (EO) terpene composition of coriander control plant.
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