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Abstract

We describe three statistical results that we have found to be useful in case-control genetic association testing. All three
involve combining the discovery of novel genetic variants, usually by sequencing, with genotyping methods that recognize
previously discovered variants. We first consider expanding the list of known variants by concentrating variant-discovery in
cases. Although the naive inclusion of cases-only sequencing data would create a bias, we show that some sequencing data
may be retained, even if controls are not sequenced. Furthermore, for alleles of intermediate frequency, cases-only
sequencing with bias-correction entails little if any loss of power, compared to dividing the same sequencing effort among
cases and controls. Secondly, we investigate more strongly focused variant discovery to obtain a greater enrichment for
disease-related variants. We show how case status, family history, and marker sharing enrich the discovery set by increments
that are multiplicative with penetrance, enabling the preferential discovery of high-penetrance variants. A third result
applies when sequencing is the primary means of counting alleles in both cases and controls, but a supplementary pooled
genotyping sample is used to identify the variants that are very rare. We show that this raises no validity issues, and we
evaluate a less expensive and more adaptive approach to judging rarity, based on group-specific variants. We demonstrate
the important and unusual caveat that this method requires equal sample sizes for validity. These three results can be used
to more efficiently detect the association of rare genetic variants with disease.
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Introduction

We address some statistical issues raised by the discovery of new

genetic variants in the context of case-control association studies.

We focus our attention on individual genes, partly for simplicity,

and partly because the selection of cases for sequencing can be

taken somewhat further in the candidate gene setting. Genome-

wide association (GWA) studies are generally based on established

sets of single-nucleotide polymorphisms (SNPs). Because the

coverage of rare alleles by combinations of known SNPs is limited

[1], an investigator may wish to identify potentially causal

mutations near a GWA hit, or take a closer look at a candiate

gene. There are cost-limitations on how much of the genome can

be covered [2]. Even with genome-wide resequencing of expressed

genes, an investigator may need a locus-focused effort to discover

variation in regulatory regions, or there may me a need to probe

for the newly-discovered variants in a larger set of individuals. Any

of these situations is likely to raise the issues we addess.

Another general development motivating this work is the

increasing interest in rare variants [3]. Pritchard [4] for example,

argues that much of the genetic variance underlying disease may

be due to high mutation rates into the high-risk class. While the

total frequency of susceptibility mutations may be high in this

situation, there will be extensive allelic heterogenity. It is also

reasonable to expect that high penetrance alleles will be

individually rare due to selection pressure. Dickson et al. [5] note

that rare variants can create synthetic associations that may

account for GWA results. It is an even greater problem when

synthetic association is not present. High-penetrance rare alleles

may be invisible to GWA studies if they are spread too evenly

across SNP-tagged haplotypes. In such cases, sequencing, or an

equivalent variant-discovery method, may be the only way to

identify a disease association.

Throughout the paper, we consider rare alleles collectively. This

is partly because their numbers may not otherwise accumulate

enough to be distinguished from random events, but also because

such testing associates the gene with the phenotype. The disease

association of a specific SNP haplotype at a locus, presumably due

to its linkage disequilbrium with undetected genetic lesions, is not

necessarily more informative than the disease association of a set of

rare sequences, and the former situation may resemble the latter

upon sequencing of the haplotype. Collective testing permits alleles

to be grouped according to an hypothesis, rather than by the

accidents of linkage disequilibrium. The hypothesis might involve

additional information, such as change to the protein sequence,

evolutionary conservation, or initial detection in selected cases.

Even when alleles of moderate frequency are involved,

collective testing has a power advantage. Slager et al. [6] note

that allelic heterogeneity reduces the power of association tests.

Longmate [7] notes that tests with multiple degrees of freedom are

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e14318



more powerful than tests of individual alleles, while tests of an a

priori collection can be still more powerful, while retaining

substantial robustness to misclassification. Li and Leal [8] make

similar points, but add a method for combining a test of rare

variants as a collective with an omnidirectional test of more

common alleles. The advantage of such a combined test seems to

apply when it is the common alleles, rather than the rare, that are

most strongly associated with disease. Our interest being primarily

in the reverse situation, we focus here on the collective testing of

rare variants, deliberately excluding common alleles.

Our results address three questions. First, we consider

expanding the catalogue of known sequence variation prior to

genotyping a much larger number of cases and controls. This

assumes that the genotyping will probe for all of the discovered

variants, and not just a standard collection of SNPs. We show that

sequencing can focus initially on cases, to obtain a sample of the

allelic heterogeneity associated with disease, and that sequencing

of controls is not always necessary.

Second, we ask to what extent can we enhance our discovery of

trait-related variants by focusing resequencing efforts more

strongly within cases. Even low-resolution genotyping can guide

sequencing for this purpose by identifying a subset of cases who

share markers with an affected relative. A general pattern we find

is that the enrichment due to selection increases multiplicatively

with increasing penetrance.

Our third question arises when sequencing is used to both

discover and count variants in cases and controls, and we wish to

focus our comparison on rare alleles. We show that genotyping in

supplementary pooled samples, to establish rarity, raises no

validity issues, and that the use of group-specific variant detection,

which avoids the need for additional genotyping, requires equal

sample sizes for validity.

Results

Following Altshuler et al. [9], we distinguish three classes of allele

frequencies. Common alleles, with frequencies above 5 percent,

are well covered by the current HapMap. We will refer to variants

with frequencies between 0.5% and 5% as uncommon. These are

common enough to catalogue, but are not well covered at present.

Rare mutations will be difficult to catalogue comprehensively [10].

Sequencing cases for variant discovery
Resequencing a subset of individuals can be used to expand the

catalogue of variants that less expensive genotyping methods will

recognize in the remaining individuals. The use of diseased as

opposed to neutral discovery panels can enrich the catalogue for

disease-associated variants in the population being investigated

[10,11].

When the detection of variants is concentrated among cases, it is

not valid to compare the resulting counts to those obtained by

probing only for those same alleles among controls. As an extreme

example, imagine a locus prone to mutation, with many unique

variants. Sequencing cases would find many variants not found in

controls, but sequencing controls would likely find as many

variants not found in cases, and neither disparity would have

anything to do with the disease.

An allele that is uncommon but not rare might be encountered

several times among the sequenced cases, particularly if the cases

chosen for sequencing are heavily selected. One would not want to

simply discard all sequenced cases when counting alleles for an

association test. Li and Leal [10] address the size of the bias

introduced when variant discovery is limited to cases. Here we use

a standard result in size-biased sampling to show that an unbiased

test may be obtained by discarding only the first example of each

allele encountered during allele discovery. Subsequent encounters

may be retained.

Consider a test in which individuals are simply scored as to

whether or not they exhibit a specific variant, and that the variant

came to our attention through sequencing of cases, but not

controls. Let p be the probability that a sampled individual

possesses the variant. Let X be the (possibly unobserved) number

of individuals possessing the variant among the n cases in the

sample, and denote the binomial distribution of X as B(n,p). We

draw a sub-sample of m cases to be screened for allelic variants,

and let Y be the number of individuals with the variant in this sub-

sample. If Y~0, the allele is not detected, and we will not observe

X . If Yw0, the allele will be detected and X will be observed. If

the allele is uncommon, and if m is small compared to n, the

probability of X coming to our attention is approximately

proportional to X , and we have a size-biased sample. The size-

biased observation, X � is distributed as 1zB(n{1,p) [12], hence

X �{1 is distributed as B(n{1,p). Removing the first detected

case from both numerator and denominator in the observed

fraction of cases yields an unbiased estimator of p, which may be

compared to the fraction of controls exhibiting the same allele,

even though controls are not subjected to allele discovery.

The size-biased situation is a limiting case, applicable to rare

alleles when the screened fraction is small. As we consider more

common alleles, the bias due to selective screening becomes less

that size-bias, and the practice of leaving out the first detection

becomes conservative. If the allele is so common that we would

very likely detect it in any sample of cases or controls, the fact that

we have not screened controls loses its relevance.

If the number screened for variants, m, is a substantial fraction

of the total number of cases, n, then the probability of observing

the allele approaches the probability that Xw0, rather than being

proportional to X . The simple omission of the first detected allele

can be too conservative in this situation. If one has the ability to

screen all cases for novel alleles, it is probably best to apply a

similar allele detection effort to controls as well.

Example: ATM exon 24. As a very simple example of

sequencing in selected cases we reconsider previously published

data on an uncommon variant in the ATM gene [13]. The cases

consist of 66 pairs of sisters with breast cancer. Controls are 126

cancer-free individuals with similar collective grandparental

ethnicity to that of the cases. Allele detection was concentrated

in a subset of 7 sib-pairs that shared a rare allele at the HRAS

minisatellite locus and also shared 1 or 2 intronic microsatellite

markers (NS22) at the ATM locus. The rationale was that rare

alleles at HRAS, which are associated with a two-fold increase in

the risk of breast cancer [14] as well as with an increased

propensity for double-strand breaks, may interact with high-risk

alleles at ATM, which participates in DNA double-strand break

repair [15]. Exon 24 sequence was obtained for the probands

of the 7 selected pairs, and two exhibited the same missense

variant altering an evolutionarily-conserved ATM residue

(C3161?G,Pro1054?Arg ).

Having seen the same variant twice in a small number of

selected cases, sequence-specific genotyping was used on probands

from the remaining sib pairs, as well as controls. In particular, the

C-to-G polymorphism resulted in the loss of an Alw I restriction

site, so Alw I digestion and gel electrophoresis were used to screen

the remaining samples, identifying the variant in 7 additional cases

and 4 controls, as shown in Table 1. The original report omitted

all of the sequencing data from the primary calculation of

statistical significance. The results above, however, show that we

only need to omit the first observation of the G-to-C variant. The
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resulting Fisher’s exact test (one-sided p~:018) may be regarded

as significant in the context of hypothesis-driven research.

The exon 24 example only involves one variant, which is

uncommon, but still frequent enough to show up repeatedly.

Leaving out the first detection is obviously not an option for

private mutations that may only appear once. To help understand

the kinds of situations where this bias correction may be helpful,

we simulated its performance in comparison to a balanced

sequencing effort. Table 2 gives the simulation results for tests of

the collective association of rare alleles with disease. The naive

strategy means concentrating allele detection in cases only, while

counting all of the alleles from the discovery set together with non-

discovery genotyping. The corrected strategy refers to the omission

of initial detections in the discovery set, while including repeat

encounters. The balanced strategy refers to dividing the same

sequencing effort equally between cases and controls. The

complete strategy refers to applying allele detection, e.g. sequenc-

ing, to all cases and controls — which is an order of magnitude

more expensive. The various scenarios represent different

numbers of rare alleles, with various collective frequencies. A

dominant inheritance model is assumed, and we neglect the

probability of an individual exhibiting two rare variants.

The first four lines of Table 2 represent null hypothesis

scenarios, with a risk ratio of 1. The naive test has a seriously

inflated type I error rate, so it is not evaluated further. The other

tests are close to or below the nominal rate of 0.05. These exact

tests will be somewhat conservative due to discreteness.

In the scenarios with risk ratio of 2.5, assigning the sequencing

effort to cases, or balancing it between cases and controls both lead

to approximately the same power. Much higher power can of

course be had by sequencing all cases and all controls, but at much

greater expense. In the scenarios with higher allelic heterogeneity

but fewer individuals exhibiting any rare alleles, a greater

sequencing effort is necessary to maintain reasonable power.

The last line considers a smaller sample of 100 cases and 100

controls, so sequencing 100 cases exhausts the supply of cases. The

corrected test loses its power in this situation. The strategy of

sequencing only cases depends upon the availability of additional

genotyped cases exhibiting the same alleles that are detected by

sequencing. The balanced sequencing strategy maintains power in

the last scenario listed. Complete sequencing has higher power,

but involves twice as much sequencing effort.

More selective sequencing
We have shown that it is feasible to focus sequencing efforts on

cases, at least at the outset. We now consider how selective

sequencing enhances the detection of disease-related variants, and

how incorporation of family history and marker sharing can

further enrich the detection sample.

For a given number of cases and controls, an association test

based on genotyping will have better power if the cases have

affected siblings [16–18]. The requirement of family history

Table 1. ATM exon 24 allele counts from 66 independent
breast cancer cases and 126 unrelated controls.

Exon 24
Alleles Individuals

Disease
Status

Genotyping
Method C G variant/n Percent

Case Sequencing 12 2 2/7 (1/6) 29 (17)

Case Alw I digestion 111 7 7/59 12

Control Alw I digestion 248 4 4/126 3

The table summarizes data from Larson et al. [13]. The seven cases with
sequencing shared an intronic marker at ATM as well as a rare HRAS allele with
their affected sibling. Omitting the first occurrence of the variant among
sequenced cases (in parentheses) permits comparing a pooled detection rate of
8/65 in cases to 4/126 in controls (p~0:018 by Fisher’s exact test, one-sided).
doi:10.1371/journal.pone.0014318.t001

Table 2. Test size and power using detection in subsets.

Scenario Power (nominal pv0:05) Detected (mid 50%)

RR Rare Freq Seq Naive Corrected Balanced Complete Cases only Balanced

1 20 .2 50 .08 .05 .04 .04 (7, 9) (7, 9)

1 40 .2 50 .15 .04 .03 .04 (7, 10) (7, 10)

1 40 .1 50 .12 .03 .03 .04 (3, 6) (3, 6)

1 40 .05 100 .15 .01 .02 .03 (3, 6) (3, 6)

2.5 40 .2 50 NA .92 .89 1.00 (14, 17) (11, 14)

2.5 40 .1 50 NA .60 .58 1.00 (8, 11) (6, 9)

2.5 40 .1 100 NA .80 .85 1.00 (15, 19) (11, 15)

5 100 .05 100 NA .83 .89 1.00 (16, 21) (10, 14)

5 100 .05 1001 NA .07 .63 .92 (16, 21) (10, 14)

1Number cases and controls reduced to 100, so sequencing exhausts cases.
For each line, except the last, 500 cases and 500 controls are generated in 5,000 simulated samples to estimate test size or power for a nominal 0.05-level test
comparing the collective frequency of rare alleles. In each scenario, the baseline disease rate is 1%, so relative risk (RR) of 2.5 implies a penetrance of 2.5%. Rare is the
number of unknown rare alleles in the population, all assumed to have the same frequency and penetrance. Freq is the total frequency of all rare alleles (e.g. 20 rare
alleles with a combined frequency of 0.2 imply a frequency of 0.01 each). We make the simplifying assumption that rare alleles are mutually exclusive. Seq is the total
number sequenced, either concentrated in cases or equally divided (balanced) among cases and controls. All four p-value columns are from Fisher’s exact text. The first
three count the number of cases and controls with any of the rare alleles detected among the indiduals that are sequenced. In the Naive and Corrected columns, all
sequences are from controls, but the number of detected distinct rare alleles is subtracted from the case count in the ‘Corrected’ column. Balanced indicates that the
individuals sequenced for allele detection were equally divided between cases and controls. Complete denotes the test based on sequencing all cases and all controls
— a much larger sequencing effort. The parenthetic numbers indicate 25th and 75th percentiles of the number of rare alleles detected in the cases-only and balanced
detection strategies.
doi:10.1371/journal.pone.0014318.t002
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enriches the sample of cases for those with genetic risk factors, as

opposed to purely sporadic cases. There is a second benefit, in that

the enrichment makes it easier to discover rare disease-related

alleles in the first place, so that genotyping efforts that depend on

pre-identified variants will capture more of the distinction between

cases and controls. Capitalizing on this aspect of family history

does not require that the entire sample of cases have affected

relatives. Only a subset with a family history need be identified to

permit limited sequencing resources to be focused on the cases

most likely to exhibit disease-related variants. In view of the

difficulty of discovering uncommon alleles, and the large effect of

allele misclassification on power [7], this second benefit may often

be important. So we consider, in this section, the effect of various

kinds of case selection directly on the probability of detecting

uncommon or rare alleles.

Selecting Cases. If we resequence affected individuals, the

probability of finding a rare allele is enhanced by a factor

approximately proportional to its relative risk. More precisely, if A
denotes the event that an individual has one or more copies of a

specific rare allele, with Ac denoting the complementary event,

and if D denotes the event that the individual has the disease, then

the probability of observing the rare allele in a given affected

individual is

P(AjD)~c�P(A) ð1Þ

where

c�~
P DjAð Þ
P Dð Þ

is a measure of relative risk. Another definition of relative risk is

c~P(DjA)=P(DjAc), but c� approximates c for uncommon

alleles with modest attributable risk.

Familial Cases. Requiring the resequenced cases to have a

family history will further enrich the discovery set for high-risk

variants. To be definite, consider families with two siblings, with

equal unconditional risk, denoted by P(D1)~P(D2), and let A1

refer to the presence of a specific high-risk allele in sibling number

one, whom we will arbitrarily call the proband. Then

P A1jD1D2ð Þ~ P D2jD1A1ð Þ
P D2jD1ð Þ

� �
c�P A1ð Þ: ð2Þ

This states that the enrichment for high-risk alleles depends on the

increase in risk to a sibling due to the presence of a high-risk allele in

the proband. Roughly put, the sibling has about a 50 percent

chance of sharing the uncommon risk allele, so the relative

enrichment might approach about half again as much as that due

to case status, with the two enrichment factors being multiplicative.

A little more formally, we show in the methods section that the

approximation P(D1jD2Ac
1)&P(D1jD2), which seems reasonable

if the risk attributable to a given variant is modest, together with

the assumption of conditional independence of A2 and D1 given

A1 (or Ac
1), leads to

P A1jD1D2ð Þ& 1zg

2

� �
c�P A1ð Þ ð3Þ

where

g~
P D1jD2A1ð Þ

P D1jD2ð Þ :

Here g is a measure of relative risk due to the allele in the presence

of an affected sibling. For an allele that confers risk rather than

protection, we have g§1. If the other sources of risk to a relative

are limited, g might approach c�, but if alleles at other loci are

important, g may be closer to 1, and further selection might be

needed to enrich the sample for risk alleles at the locus of interest.

Marker-Guided Case Selection. Selecting familial cases

enriches the sample for cases with a genetic etiology relative to

sporadic cases, but if there is genetic heterogeneity, the enrichment

may be spread across several genes. Further enrichment for high-

risk variants at a specific locus is possible by focusing resequencing

on cases that share one or two copies of a marker tightly linked to

that locus. It is only necessary that the markers identify whether

the relevant genomic region is shared identical by descent (IBD).

The markers do not need to be in linkage disequilibrium with any

risk alleles.

Because multiple selection criteria bring many details into play,

we explore their effect via numerical calculations based on explicit

scenarios. This is an extension of a previously described method

[7] (see methods). As above, we assume each proband has exactly

1 sibling at risk, with the joint probability of disease denoted

P(D1D2). A scenario consists of a model for the probability of

disease as a function of genotype, along with allele frequencies for

each gene in the model. We include a background rate of disease

which may represent sporadic cases, or the effect of genetic

background. We initially focus on a single locus, then briefly

investigate the impact of a second locus.

Table 3 gives the probability that an uncommon risk allele is

present in various strata, representing different levels of selection.

We consider two alleles and suppose there is a one percent disease

rate in individuals homozygous for the major allele, and a higher

rate in individuals with one or two copies of the minor allele, the

ratio given by c. We consider a minor allele frequency of 0.005, so

the minor allele is present in about one percent of the population

under study. The ratios of probabilities with different levels of

selection depend strongly on the relative risk, c. These are,

however, quite insensitive to both the absolute minor allele

frequency and the baseline probability of disease (data not shown).

The baseline probability of 0.01 was chosen to permit easy

interpretation.

From Table 3 we see that an allele present in one percent of a

population will, if it confers a doubled risk, be present in about two

percent of cases, about three percent of cases with affected siblings,

and about four percent of affected sibling pairs sharing two alleles

IBD at the locus. The median number of resequenced samples

needed to detect the minor allele would drop from 69 in

unselected cases, to 38 in cases, to 18 with marker sharing. The

factor by which increasingly selective resequencing enhances the

detection of disease-associated variants increases dramatically with

the relative risk. If rare alleles do tend to have high penetrance,

then selective resequencing seems likely to pay off well.

We examined the robustness of these results by modeling the

effect of a second locus with a somewhat more common high-risk

allele, also with a dominant effect, that adds 1 percent risk (a two-

fold increase over baseline). The second locus can also represent

two classes of genotype, as might occur if there are several

dominant alleles with similar penetrance. The results are shown in

the lower half of Table 3. The ability of case selection to enhance
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the detection of the rare high-risk allele at the locus of interest was

somewhat attenuated under this additive model.

If the variant (or class) at the nuisance locus is known, then

selection for the absence of this alternative etiology would

substantially restore the enrichment. A similar idea seems to have

guided an investigation of the CHEK2 gene in breast cancer that

was carried out using non-carriers of BRCA1 or BRCA2 mutations

[19]. Further calculations (not shown) indicate that exclusion of

cases with a likely alternative etiology can enhance the detection of

rare alleles under an additive model. Under an interaction model,

however, detection of the rare variant can be enhanced by

including, rather than excluding, the cases with the high-risk

variant at the second locus. This behavior is consistent with the

previous discussion of the limits of the parameter g in equation (3).

The correct use of information from a second locus of established

relevance depends on its relationship to the locus under investiga-

tion. If genetic heterogeneity is more likely than strong positive

interaction, then omission of cases with an explainable etiology

would be the preferable strategy. In the ATM exon 24 example,

described above, we selected cases sharing a rare HRAS allele and

one or two ATM alleles with an affected sibling, on the hypothesis

that the functions of HRAS and ATM would imply an interaction.

Focusing on Rare Variants
Cases-only sequencing and selective sequencing are useful for

uncommon variants. The study of rare variants requires resequen-

cing of all cases and controls. We may then wish to focus exclusively

on rare variants, motivated by the hypothesis that rare variants are

the primary source of risk. Focusing exclusively on rare variants

would then avoid diluting the effect size of a collective test, and may

elucidate a class of variants of some predictive value.

One can focus on rare variants by omitting alleles that are

known from a sequence database, but neutral alleles of modest

frequency may not have been catalogued. We consider two

approaches for limiting attention to rare alleles. One approach is

to limit attention to group-specific variants, i.e. sequences that only

appear in cases or only appear in controls, but not in both [20].

This would include both rare mutations and uncommon mutations

of high penetrance. The other approach is to use genotyping in

pooled samples to screen for the putative rare sequences in a very

large number of individuals [21]. This approach can economically

focus attention on what are essentially private mutations, without

regard to penetrance.

Group-specific sequences. An advantage of comparing the

frequency of group-specific variants is that a variant may be

restricted to cases because it is rare, or because its penetrance is

sufficiently high that it does not appear among the controls. The

main disadvantage is that the validity of the comparison depends

on equal numbers of cases and controls, as described below. If

there are variants that confer protection as well as risk, both will

tend to be included, but this is a fundamental problem of testing a

collection of rare variants.

To demonstrate the requirement for equal sample sizes,

consider a population containing a set of rare variants indexed

by i~1, . . . M. Let X1i be the number of detections of variant i
among n1 cases, and let X2i be the number of detections among n2

controls. The group-specific inclusion scheme amounts to

simultaneously replacing X1i by 0 if X2iw0, and replacing X2i

by 0 if X1iw0. We can compare cases to controls by computing

D~
XM
i~1

X1i=n1{
XM
i~1

X2i=n2

and comparing D to its standard error. Under the null hypothesis,

for a given i, X1i and X2i have independent binomial distributions,

with common rate pi and indices n1 and n2. Denote these binomial

probability functions by f1i(x) and f2i(x). Then the weighted joint

probability function, after applying the selection criterion, is

f �i (x,y)!w(x,y)f1i(x)f2i(y) where w(x,y)~0 if both xw0 and

yw0, and w(x,y)~1 otherwise. Substituting the binomial

probability for f2i(0) and summing over y, we obtain the marginal

probability function for cases,

f �1i(x)~ (1{pi)
n2 f1i(x) if xw0

Table 3. Detection Probabilities for High-Risk Variants.

Selection ª~1:5 ª~2:0 ª~3:0 ª~5:0

Single gene model

All Individuals 0.010 0.010 0.010 0.010

Cases 0.015 0.020 0.029 0.048

w/affected sibs 0.019 0.029 0.057 0.130

sharing 1 or 2 IBD 0.020 0.032 0.066 0.155

sharing 2 IBD 0.022 0.039 0.083 0.201

With a second, nuisance locus

All Individuals 0.010 0.010 0.010 0.010

Cases 0.014 0.019 0.028 0.045

w/affected sibs 0.017 0.026 0.049 0.109

sharing 1 or 2 IBD 0.018 0.029 0.056 0.130

sharing 2 IBD 0.020 0.034 0.070 0.169

In each scenario there is a sporadic disease rate of 1% and the high-risk allele of interest elevates the disease risk by a factor of c, which varies across columns. The rows
represent increasingly restrictive sampling rules, and the probability that the high risk allele is present (one or two copies) in a sampled proband is tabulated. In the
upper half of the table, risk depends only on one locus. In the lower half, there is also a nuisance locus, with a 5 percent allele frequency, i.e. 10 times as common as the
allele of interest, and additive with its effect.
doi:10.1371/journal.pone.0014318.t003
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with the remaining term, f �1i(0), determined by subtraction from

1, and a similar expression for f �2i(y) applying to controls. It is

apparent at this point that the condition n1~n2 is sufficient to

ensure that E (D)~0 under the null hypothesis, i.e. our estimate of

the difference in rare variant frequency is unbiased.

If n1=n2, however, there can be a substantial bias. As a

demonstration, we generated allele frequencies for a hypothetical

locus with 100 variants ranging in frequency from approximately

0.6 to 0.00006. Because of the uncertainty about the likely

distribution of rare alleles and our limited purpose, we arbitrarily

took variant frequencies to be k=i2 where i~5,10,15, . . . ,500, and

the normalization constant, k is 15.2. This resulted in approxi-

mately 83% of the total allele frequency in 3 common alleles, 12%

in 8 uncommon alleles, and 5% in 89 rare alleles, including 1.9%

in the 76 with detection probability less than 0.001. If 1000 case

and 1000 control sequences are sampled under the null hypothesis,

many of these 100 alleles would not be detected, and the expected

count of group-specific detections is 16 in cases and 16 controls,

based on a Poisson approximation. If there is a marked difference

in sample size, say 1200 case and 800 control sequences, we

expect 22 group-specific detections among cases, but only 11

among controls, the expected rates being .0185 versus .0141, for

a bias of approximately 27 percent (%L [22], calculated as

100 loge (0:0185=0:0141)). The bias arises because the larger

group will exert a disproportionate suppression of the counts in the

smaller group. With a more modest imbalance of 950 cases and

1050 controls, the bias is about 7%L.

Adding another 100 very rare alleles (with little change in the

total frequency of common, uncommon and rare alleles) increased

the expected number of group-specific dections from 16 to 19 per

group, but had little effect on the bias (23%L with 1200 v. 800; 6%L

with 1050 v. 950). The bias is mainly determined by the uncommon

alleles that may or may not be encountered more than once.

The amount of bias depends on the specific set of allele

frequencies, as well as the degree of imbalance, but this arbitrary

example shows that the bias can be appreciable. The comparison

of group-specific variants, while appealing in concept, seems to

require rather close matching of sample sizes.

An excess of group-specific variants at the ATM gene has been

reported in breast cancer [20]. Comprehensive ATM mutation

screening of all coding exons and splice junctions has been carried

out using the DOVAM-S [23,24] method, which is comparable to

sequencing for mutation detection. Variants affecting protein

structure or expression were found in 23 of 90 women with breast

cancer, and 13 of 90 women without breast cancer (p~:046, one-

sided Fisher’s exact test). The association of group-specific variants

with breast cancer was stronger, finding 14 in 90 cases, but only 4

in 90 control samples (p~:012). We speculate that the stronger

group-specific result reflects higher average penetrance due to

better exclusion of neutral variants from the collection. We also

note that collective testing is predicated on a common direction of

effect, which implies that one-sided tests are appropriate.

Pooled-sample screening. A more laborious but more

direct way to restrict attention to rare alleles is to limit the

events counted among cases and controls based on a third sample.

Highly sensitive detection methods [25] now make it possible to

follow the sequencing of cases and controls by probing for

additional instances of the newly detected variants in a very large

number of individuals through the use of a feasible number of

pooled samples. This approach has been used to demonstrate that

rare missense variants found in schizophrenia patients were not

present in 10,000 control alleles [21].

We can represent this strategy by writing the joint distribution

of detections for sequence i as f �i (x,y)!wif1i(x)f2i(y), where the

ascertainment weight function, wi is 0 if the sequence i is detected

in the third sample, and 1 if it is not. This is not dependent on

either x or y. Under the null hypothesis, f1i and f2i are binomial

distributions with a common rate parameter, pi, so

E(X1i=n1)~E(X2i=n2) for all i, hence E(D)~0 under the null

hypothesis.

The selection of sequences absent from a supplementary sample

eliminates some of the terms in both sums contributing to D, but it

does not distort the distribution of any of the remaining terms, and

so leaves the estimated difference unbiased for the the correct

value of zero under the null hypothesis. The value of the selection

depends on the alternative hypothesis, i.e. on the correctness of the

belief that rare alleles will tend to have a larger average

penetrance, and therefore a larger relative difference in detection

rates. The power benefits of selecting rare alleles may depend on

the details of this assumption. The point here, however, is that

selection of sequences based on a third sample does not raise any

validity issues.

Discussion

In this paper, we provide three results of wide applicability

rather than a prescriptive method. We focus primarily on a simple

case-control setting, and a simple test of the collective effect of

uncommon or rare alleles.

At present, resequencing on a substantial scale needs to be

targeted to a specific locus [26]. Attempting to expand the catalogue

of genetic variation at a locus might be encouraged by a belief that

rare alleles will have larger effects than common alleles. The finding

here lends further encouragement, in that higher penetrance is likely

to translate into easier detection among cases, with the effect of

penetrance being magnified as resequencing becomes more

selective. Focusing sequencing efforts on the subset of cases that

report a positive family history can increase the yield of disease-

associated variants, a phenomenon closely related to the power

advantage that has been noted when cases have affected relatives.

The advantage of focusing limited sequencing resources can be

obtained, however, by the opportunistic enrollment of siblings, or

even by simply collecting family history data. It does not necessarily

require any efforts to enhance the recruitment of familial cases,

although the power advantages of such efforts still apply.

The identification of a subset of cases most likely to harbor

disease-associated variants at a locus may permit the use of a more

powerful test statistic that capitalizes on the hypothesized ordering

of controls, cases, and select cases, with regard to the prevalence of

rare variants. A test for a trend in proportions can be applied to

the data in Table 1, for example, but due to the adjustment for

cases-only sequencing, the result is not much different from that

comparing all cases to controls. If the same results had come from

sequencing, however, without need for adjustment, the p-value

would be reduced to .004 (exact Cochran-Armitage test), reflecting

the enrichment for rare variants in the selected group. While the

use of marker-sharing for case selection is only applicable to locus-

specific sequencing, the sharing of markers among affected siblings

can be used as part of the statistical analysis in genome-wide

sequencing studies. Madsen and Browning [27], for example,

propose assigning scores to individuals, based on the number an

type of mutations present. Including marker-sharing information

in such scores would be a natural extension, although it would

complicate the null distribution, taking the idea beyond the scope

of this paper. The idea does, however, suggest how to extend the

use of marker sharing from the the locus-specific sequencing

setting considered here, to the setting of exome or genome

sequencing.
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The need to discard first encounters when combining cases-only

sequence data with case and control genotyping has different

implications in different situations. When many unique variants

are encountered, extensive resequencing of both cases and controls

is necessary. When most variants have sufficient frequency to be

repeatedly detected, the simple bias correction of omitting the first

encounter is competitive with a balanced resequencing effort.

This, together with the expense of resequencing, makes it natural

to start with cases, perhaps supplemented by family history and

marker data. If multiple uncommon alleles are encountered more

than once, an expansion of the study using genotyping might be

indicated. If mostly rare alleles are discovered, without repeated

detection, a larger resequencing effort that includes controls might

be planned.

Whether the comparison of cases to controls should be

restricted to rare variants, common alleles, or both, may depend

on previous work, and the attitude of the investigator about the

likely effects of rare or common variants. There does not seem to

be much difficulty with the use of external data to select the alleles

of interest, provided that the supplemental data are not used as

frequency data in the comparison. Selecting rare sequence variants

based on group-specific detection provides advantages of economy

and adaptively relaxing the rarity requirement as penetrance

increases. It is important to note, however, that this approach

requires equal sample sizes for validity.

Methods

To derive equation 3, we assume that the variant of interest is

sufficiently uncommon that we may neglect bi-lineal inheritance.

Then we can write

P(D2jD1A1)~P(D2Ac
2jD1A1)zP(D2A2jD1A1)

~P(D2jD1A1Ac
2)P(Ac

2jD1A1)

zP(D2jD1A1A2)P(A2jD1A1)

~P(D2jD1A1Ac
2)P(Ac

2jA1)zP(D2jD1A1A2)P(A2jA1)

~
1

2
P(D2jD1A1Ac

2)z
1

2
P(D2jD1A1A2):

The first equality follows from the law of total probability, the

second from the definition of conditional probability, the third

from assuming conditional independence of A2 and D1 given A1,

and the last from neglecting bilineal inheritance of the rare allele.

The symmetry of the sibling labels means that we are also

assuming that D2 is independent of A1 given A2 (or its

compliment), so

P(D2jD1A1)~
1

2
P(D2jD1Ac

2)z
1

2
P(D2jD1A2)

~
1

2
P(D1jD2Ac

1)z
1

2
P(D1jD2A1)

&
1

2
P(D1jD2)z

1

2
P(D1jD2A1):

The second equality follows again from the symmetry of the siblings,

and the approximate equality follows from our initial assumption that

P(D1jD2Ac
1)&P(D1jD2). Substituting for P(D2jD1A1) in equation

2, and observing that P(D2jD1)~P(D1jD2), yields equation 3.

In order to consider the effects of marker-based selection of

cases, we explicitly compute the joint distribution of genotypes in a

pair of siblings, and their joint disease status, conditional on the

number of genes shared identical by descent (IBD) at a specified

locus. This is an extension of a previously published renormaliza-

tion method for calculating case and control allele frequencies

from prospectively specified models [7]. Briefly, Let yp~1 if the

proband is affected, and zero otherwise. Let ys be similarly defined

for the sibling. Let xp and xs represent the proband and sibling

genotypes, Let i be the number of alleles shared identical by

descent at a given gene, with probabilities p(i). The conditional

distribution of proband genotypes is given by

p(xpjyp,ys,i)!
X

xs

p(ypjxp)p(ysjxs)p(xp,xs,i)

where the penetrance model specifies p(ypjxp), which is the same

function as p(ysjxs), and where p(xp,xs,i)~p(xp,xsji)p(i) is easily

calculated assuming Mendelian segregation and Hardy-Weinberg

genotype proportions. (We are here abusing notation to let

arguments distinguish probability functions.) By working with ibd

status directly, we approximate the effect of selection based on

highly informative markers.
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