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Abstract: Variants of transcription factor binding sites (TFBSs) constitute an important part of the
human genome. Current evidence demonstrates close links between nucleotides within TFBSs and
gene expression. There are multiple pathways through which genomic sequences located in TFBSs
regulate gene expression, and recent genome-wide association studies have shown the biological
significance of TFBS variation in human phenotypes. However, numerous challenges remain in the
study of TFBS polymorphisms. This article aims to cover the current state of understanding as regards
the genomic features of TFBSs and TFBS variants; the mechanisms through which TFBS variants
regulate gene expression; the approaches to studying the effects of nucleotide changes that create
or disrupt TFBSs; the challenges faced in studies of TFBS sequence variations; the effects of natural
selection on collections of TFBSs; in addition to the insights gained from the study of TFBS alleles
related to gout, its associated comorbidities (increased body mass index, chronic kidney disease,
diabetes, dyslipidemia, coronary artery disease, ischemic heart disease, hypertension, hyperuricemia,
osteoporosis, and prostate cancer), and the treatment responses of patients.

Keywords: gout; transcription factor binding sites; natural selection; histone modification; methyla-
tion; chromatin conformation

1. Introduction

For the past decade, genome-wide association studies (GWASs) have advanced the
knowledge of populations and complex trait genetics, understanding of the biology of
diseases, and the clinical translation of new therapeutics. A standard GWAS involves
investigators comparing common genetic variants found in the genomes of affected cases
with the sequences in a control group to determine whether an association exists. The
analysis of genomic variation by GWAS provides unprecedented opportunities for under-
standing the pathophysiology of complex traits, including susceptibility to a particular
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disease. An important insight emerging from GWAS, is that the vast majority of sig-
nificant genetic variants are located in noncoding regions. For example, of 465 unique
trait/disease-associated single nucleotide polymorphisms derived from 151 GWASs, only
12% are located in protein-coding regions, while 45% fall within introns and another 43%
fall within intergenic regions [1]. Although most GWAS-identified polymorphisms are
located in noncoding regions, according to a past review, the majority of well-studied
polymorphisms are within protein-coding regions because there is an absence of functional
annotation for noncoding variants [2,3]. Given that most trait-associated variants are
located in noncoding regions, these causal variants and traits do not appear to be linked
with the eventual amino acid sequences and accompanying protein functions, such as
DNA binding, catalytic activity, and ligand–receptor interaction. A plausible effect of the
trait-associated variants in noncoding regions would be differential gene expression.

Since transcription factors recognize and bind specific DNA sequences in areas called
binding sites and affect the expression of target genes [4], one major explanation for why
causal variants of transcription factor binding sites (TFBSs) alter gene expression could
be that the causal variants perturb transcription factor binding, and therefore, alter gene
expression [5]. TFBSs may be located in close proximity to or even within the genes they
regulate. However, they can also be found at considerable distances from the genes [6].
Transcription factors act as molecular switches to regulate the amount and timing of
gene transcription [6]. Therefore, the sequence-specific binding of transcription factors
to the regulatory regions in the DNA is proposed to be a key regulatory mechanism that
determines gene expression and, hence, heritable phenotypic variation and the onset
and/or severity of disease [6,7]. Based on this concept, it could be anticipated that the
regulatory elements of TFBSs contribute to genetic elements in disease. Previous analyses
provide solid evidence supporting such an argument:

(1) TFBS polymorphisms comprise only 8% of the genome polymorphisms but 31% of
the trait-associated polymorphisms identified by GWAS [8].

(2) Up to 21.6% of variants affecting gene expression overlap annotated TFBSs [9].
(3) Polymorphisms leading to the differential binding of transcription factors are highly

enriched in the set of causal variants reported for traits across several independent
studies [10].

(4) Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq)
has demonstrated the extensive contributions of genetic variations to transcription
factor binding and a significant correlation between nucleotide changes affecting
transcription factor binding and gene expression [11].

Taken together, the findings presented above suggest a strong role for TFBS variation
in downstream gene expression and phenotypic variation.

2. Genomic Features of TFBSs and Genetic Variants of TFBSs

TFBSs make up only a small proportion of human DNA sequences [12]. TFBSs
are associated with various genomic features. Enhancers contain more than 60% of the
identified TFBSs, ~20% of TFBSs are located near transcription start sites, and more than 10%
of TFBSs are found in promoter-proximal regions [13]. The probability of a sequence being
a TFBS differs with respect to the DNA CpG content. Past studies have shown that most
transcription factors bind to promoters with high CpG contents [12]. Generally, different
transcription factors show distinct distributions across the genome, with some transcription
factors concentrated in the transcription start site, while other sets of transcription factors
are enriched in enhancers [12].

There are also some epigenetic signatures associated with TFBSs. A total of 98.5%
of the occupancy sites of transcription factors mapped by ENCODE ChIP-seq lie within
accessible chromatin, defined by DNaseI hotspots [12]. The average H3K27me3, H3K36me3,
and H4K20me1 modification levels are reduced by 21%, 9.6%, and 17%, respectively,
in TFBS regions compared to non-TFBS regions [14]. The average levels of H3K4me2,
H3K27ac, H3K4me3, H3K79me2, and H3K9ac are elevated by 18%, 52%, 19%, 8%, and 31%,
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respectively, in TFBS areas compared to non-TFBS areas. However, different transcription
factors and different cell types have different histone modifications around their respective
TFBSs, suggesting that the genomic distribution of histone modifications around TFBSs is
transcription factor-specific and cell type-specific [14]. Interestingly, shape and orientation
analyses revealed that the distributions of histone modifications around TFBS areas are
asymmetric for all chromatin features [12]. This finding suggests that most transcription
factor binding events correlate with structured, directional patterns of histone modifications.
Moreover, the binding sites of different transcription factors overlap, suggesting the mutual
association of transcription factors, and different associations are specific to different
genomic contexts. For example, the associations of HDAC2, GABPA, CHD2, GTF2F1,
MXI1, and MYC are more specific to promoter regions, while the associations of SP1, EP300,
HDAC2, and NANOG are more specific to intergenic regions [12].

Several studies suggest that TFBSs show a polymorphism density that is higher than
the average polymorphism density across the human genome [6]. Of all TFBS variants,
most overlap one TFBS, while some overlap two or more TFBSs. When we categorized TFBS
nucleotide changes by variant type, 95% were single nucleotide polymorphisms, 2% were
deletions, and 1% were insertions, suggesting a distribution similar to that of the overall
variant types across the human genome (96% are single nucleotide polymorphisms, 2% are
deletions, and 1% are insertions) [15]. As regards the genomic locations of TFBS variants,
the largest proportion of TFBS variants is found in introns (~50%) and intergenic regions
(~30%), with the remaining TFBS variants mostly located in promoters (~10%) and others
distributed over coding regions, 5′ untranslated regions (5′UTRs), and 3′ untranslated
regions (3′ UTRs) [16]. Similar to the epigenetic signature of TFBSs, TFBS variants are also
enriched for various histone modifications (H3K27ac, H3K4me1, and H3K4me3) [17].

3. Mechanisms Linking TFBS Variations and Differential Gene Expression

In light of the functional relevance of TFBS variants in gene regulation, numerous
studies have explored the ways in which TFBS variants can regulate gene expression.
According to the current literature, three mechanisms through which transcription factors
calibrate gene expression have been extensively studied:

A. Local histone modification: transcription factor binding causes specific histone mod-
ifications via interactions between transcription factors and chromatin-modifying
enzymes [18], and histone modifications regulate gene expression (Figure 1, Pathway
A) [19].

B. Local DNA methylation: transcription factor–DNA binding leads to an altered local
DNA methylation profile (Figure 1, Pathway B) [20]. Through modulating DNA
methylation, transcription factor binding exerts downstream effects on genome regu-
lation. Thus, the consideration of DNA methylation data in the interpretation of the
functional role of variants is recommended [20].

C. Changes in chromatin conformation: several studies have utilized chromosome con-
formation capture (Hi-C) datasets to demonstrate that transcription factors might
drive topological genome reorganization and change the structure of enhancer-
promoter loops and recruiting other co-factors, thereby contributing to gene regulation
(Figure 1, Pathway C) [21].
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Figure 1. Mechanisms of gene expression regulation by transcription factor binding site (TFBS) 
variants. Polymorphisms of TFBSs regulate gene expression via several mechanisms: (A) Allele-
specific transcription factor binding alters histone modification, which causes differences in gene 
expression between different alleles. (B) Allele-specific transcription factor binding modulates 
local DNA methylation, resulting in allele-specific gene expression. (C) Allelic differences intro-
duce differential transcription factor binding, which causes chromatin conformational changes 
and differential co-factors recruitment (the blue circle and the orange box), leading to differential 
gene expression. WT: wild-type allele; MT: mutant-type allele. 

The allelic variation in TFBSs may affect transcription factor binding [20]. Combined 
with the aforementioned mechanisms, allele-specific transcription factor binding can re-
sult in differential gene expression via the alteration of histone modifications, local DNA 
methylation, and chromatin conformation. The following findings are in agreement with 
such arguments: 
A. rs2886870 disrupts a nuclear factor-κB (NF-κB) binding site and is associated with 

H3K27ac levels and C3orf59 mRNA expression (Table 1) [22]. rs4784227 is a breast 
cancer risk-associated polymorphism. The risk allele of rs4784227 enhances FOXA1 
binding, decreases H3K9Ac levels, inhibits the expression of TOX3, and therefore, 
promotes the proliferation of breast cancer cells (Table 1) [23]. rs6983267 is associated 
with numerous malignancies. The risk allele of rs6983267 is associated with enhanced 
TCF4 binding and more prominent histone modifications and drives elevated c-MYC 
expression (Table 1) [24]. 

B. The rs2240032 allele specifically binds SMAD3, affects the methylation of the 
promoter region, and influences RAD50 and IL4 expression (Table 1) [25]. Similarly, 
the rs612529 risk allele decreases binding of YY1 and PU.1, is associated with the 
hypermethylation of the promoter, specifically downregulates SIRL-1 expression, 

Figure 1. Mechanisms of gene expression regulation by transcription factor binding site (TFBS) variants. Polymorphisms
of TFBSs regulate gene expression via several mechanisms: (A) Allele-specific transcription factor binding alters histone
modification, which causes differences in gene expression between different alleles. (B) Allele-specific transcription
factor binding modulates local DNA methylation, resulting in allele-specific gene expression. (C) Allelic differences
introduce differential transcription factor binding, which causes chromatin conformational changes and differential co-
factors recruitment (the blue circle and the orange box), leading to differential gene expression. WT: wild-type allele; MT:
mutant-type allele.

The allelic variation in TFBSs may affect transcription factor binding [20]. Combined
with the aforementioned mechanisms, allele-specific transcription factor binding can result
in differential gene expression via the alteration of histone modifications, local DNA
methylation, and chromatin conformation. The following findings are in agreement with
such arguments:

A. rs2886870 disrupts a nuclear factor-κB (NF-κB) binding site and is associated with
H3K27ac levels and C3orf59 mRNA expression (Table 1) [22]. rs4784227 is a breast
cancer risk-associated polymorphism. The risk allele of rs4784227 enhances FOXA1
binding, decreases H3K9Ac levels, inhibits the expression of TOX3, and therefore,
promotes the proliferation of breast cancer cells (Table 1) [23]. rs6983267 is associated
with numerous malignancies. The risk allele of rs6983267 is associated with enhanced
TCF4 binding and more prominent histone modifications and drives elevated c-MYC
expression (Table 1) [24].

B. The rs2240032 allele specifically binds SMAD3, affects the methylation of the promoter
region, and influences RAD50 and IL4 expression (Table 1) [25]. Similarly, the rs612529
risk allele decreases binding of YY1 and PU.1, is associated with the hypermethylation
of the promoter, specifically downregulates SIRL-1 expression, and increases the risk
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of atopic dermatitis (Table 1) [26]. A rare variant at chr22:24,059,610 disrupts the
UA4 binding motif, increases the methylation levels at the promoter of the nearby
GUSBP11 gene, and reduces the expression of GUSBP11 (Table 1) [20].

C. The rs12913832 risk allele increases the binding of HLTF, LEF1, and MITF to the
enhancer region and enhances chromatin loop formation, and increases OCA2 expres-
sion and, thus, pigmentation (Table 1) [27]. The C allele of rs13228237 causes increased
binding of ZNF143, leads to an increase in chromatin loop formation between the
first intron of the ZC3HAV1 gene and two distal regulatory elements, and increases
ZC3HAV1 expression (Table 1) [28]. The presence of the G allele of rs2802292 creates
an HSF1 binding site, which induces promoter–enhancer interaction via chromatin
looping, thereby fostering FOXO3 expression (Table 1) [29].

Table 1. Examples of TFBS variants that alter transcription factor binding, regulating target gene
expression through altered histone modification, DNA methylation, and chromatin conforma-
tional changes.

Variants Transcription Factors Target Genes References

Alter histone modification
rs2886870 NF-κB C3orf59 [22]
rs4784227 FOXA1 TOX3 [23]
rs6983267 TCF4 c-MYC [24]

Alter DNA methylation
rs2240032 SMAD3 RAD50 and IL4 [25]
rs612529 YY1 and PU.1 SIRL-1 [26]

chr22:24,059,610 UA4 GUSBP11 [20]
Alter chromatin conformation

rs12913832 HLTF, LEF1, and MITF OCA2 [27]
rs13228237 ZNF143 ZC3HAV1 [28]
rs2802292 HSF1 FOXO3 [29]

4. Challenges of Investigating Genetic Variants in TFBSs

Although nucleotide changes in TFBSs show great potential as critical players affecting
disease characteristics, studies in regard to how such characteristics are actually related
to polymorphisms of TFBSs remain rare due to a lack of knowledge in three main areas:
(1) deciphering the transcription factors whose binding is affected by genetic variations,
(2) elucidating target genes whose expression is modulated by causal polymorphisms, and
(3) uncovering the biological consequences of altered target gene expression in diseases.

With regard to the first area, the major challenge is obtaining a complete list of
TFBSs from the human genome. Unfortunately, binding site sequence specificity has
been analyzed in detail for only a small proportion of transcription factors [30]. ChIP-
seq, which has replaced the array-based ChIP-on-chip (ChIP-chip) strategy [31], is the
gold-standard method for identifying DNA fragments bound by a specific transcription
factor [32]. The newly developed ChIP-exo strategy, in which an exonuclease trims ChIP
DNA to a precise distance from the crosslinking site, can result in a single-nucleotide spatial
resolution, representing an improvement from the resolution of ChIP-seq [31]. Additionally,
there are several complementary methods for studying the interaction between DNA
sequences and transcription factors, including electrophoretic mobility shift assay (EMSA),
systematic evolution of ligands by exponential enrichment (SELEX) [33], mechanically
induced trapping of molecular interactions (MITOMI) [34], and total internal reflection
fluorescence (TIRF) [35]. However, not all TFBSs can be easily retrieved with experimental
methods because ChIP-grade and/or experiment-grade antibodies are not available for
many transcription factors [30]. In addition to experimental methods, there are also
several computational approaches for studying the contribution of genetic polymorphisms
that create or disrupt TFBSs, such as SNP2TFBS [36], sTRAP [37], MatInspector [38],
TFBIND [39], and RSAT [40]. Nevertheless, a single transcription factor can recognize
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many DNA binding site sequences—from dozens to hundreds—over a range of binding
affinities, which are affected by multiple biophysical properties of transcription factors,
DNA structure, cooperative cofactors [41], and the methylation statuses of nucleotides [42].
In agreement with this, genetic variants in TFBSs result in changes at the transcript level in
specific cell types and induce disease in specific organs [43,44]. Overall, the effects of human
TFBS variants depend on the cellular context as well as the local genomic environment. All
these factors complicate experimental and in silico analyses of genetic variants that localize
within positions in TFBSs [45]. Moreover, there are numerous experimentally characterized
TFBSs in the human genome (7–10%) that are derived from repetitive DNA [46], and
sequencing reads for repetitive regions tend to be filtered out during analysis [47]. In light
of these complexities, it is plausible that our understanding of transcription factor–DNA
binding events is informed by only a fraction of the transcription factor–DNA interactions
that are biologically active in vivo [48]. In line with this idea, a previous study showed
that the results from bioinformatic tools need to be complemented with experimental
analyses [37]. There is still ample room for alternative approaches or technologies that will
enable a more comprehensive characterization of the current catalog of human TFBSs.

With regard to the second area, a detailed analysis of expression quantitative trait loci
(eQTLs) is the most popular approach for identifying associated target genes [49] because a
regulatory element could have multiple target genes and genetic variants may not influence
the expression of the nearest gene but instead act on distant targets residing kilobases
away [50,51]. As transcriptional regulatory networks are highly tissue-specific, eQTL anal-
ysis can only be accurately performed within the tissue concerned [52]. However, the target
tissue affected by the respective genetic variants might not have been known previously.

Another approach to inferring the effector genes of regulatory regions is the analysis
of the spatial chromatin organization by C-methods (chromosome conformation capture-
based methods), including ChIA-PET, HiChIP (in situ Hi-C followed by ChIP), and pro-
moter capture Hi-C [50,51]. Although the active regulatory regions are thought to be
spatially close to the promoters of their target genes, spatial proximity does not guarantee
a functional relationship between a regulatory region and a gene [53,54]. Moreover, while
an individual TFBS variant may contribute, neighboring risk variants might also modulate
the transcriptional landscape of target genes. Therefore, the relationship suggested from
ChIA-PET, HiChIP, or promoter capture Hi-C analyses could arise from neighboring risk
variants and not necessarily from the altered transcription factor binding introduced by
TFBS variants [55]. Accordingly, C-methods do not replace further functional verification.
However, high-throughput versions of C-methods, such as Hi-C, allow for the annota-
tion of all target genes for all potential enhancers from GWAS-identified regions in one
experiment. These techniques are often used as intermediate steps for the detection of
genes potentially regulated by enhancers in GWAS-identified regions before performing
time-consuming functional confirmation [54].

For the third area, assigning biological roles to the identified genes requires experi-
mental validation. In the process of functional validation, overexpression and knockdown
experiments are necessary to decipher the biological roles of identified target genes in
diseases [56]. The most commonly utilized techniques are RNA activation (RNAa) [57]
and RNA interference (RNAi) [58]. CRISPR activation (CRISPRa) and CRISPR interference
(CRISPRi) screening are alternative gene-editing approaches [50,51]. However, the follow-
ing must be noted: (a) It is well documented that, even when we successfully overexpress
specific proteins, the expressed proteins do not mimic endogenous proteins in terms of
their spatiotemporal expression, localization, and functions [59]. (b) A total of 90–95% of
human genes encode two or more isoforms, and different protein isoforms often differ
in their structures and biochemical properties and, thus, have distinct functions [59]. In
addition, different types of cells may express different splicing isoforms, which add to the
diversity in biological function [59]. Although there are some computational models for
predicting the functions of isoforms, such as DisoFun [60] and ISOGO [61], experimental
evidence is still necessary to functionally validate computational predictions. Functionally
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validating specific isoforms requires manipulating a specific isoform—without affecting
other isoforms—in a cell-specific fashion. This process is very technically challenging [59].
(c) Many genes probably have essential functions; the loss of their function causes lethality,
hindering functional validation [62]. (d) Most studies provide information in regard to only
the short-term effects of changes in gene expression; longer-term studies may be necessary
to provide more comprehensive insights into the effects of altered gene expression on the
eventual traits.

5. Origin of TFBS Genetic Variants: Natural Selection

As expected from the above understanding, TFBS perturbation leads to strong changes
in transcriptional activity throughout development and changes organisms’ phenotypes [63].
One emerging question is why there are so many TFBS genetic variants. Because the natu-
ral selection exerted by environmental factors contributes substantially to the population
genetic structure [64], one prominent hypothesis is that TFBS variants arise from natural
selection and facilitate human adaptation to the local environment. Several theories sug-
gest that TFBS sequences may be particularly important in evolutionary adaptation. The
most important reason for this is that variations in such sequences help to minimize the
functional tradeoffs associated with evolutionary changes, since these elements primarily
impact the expression of a single gene in a specific cell type or under specific conditions,
whereas protein-coding variations tend to have broader effects [65]. Compatible with
such concepts, whole-genome sequences and genome-wide ChIP and sequencing data
demonstrate that natural selection has profoundly influenced human TFBSs since the diver-
gence of humans from chimpanzees 4–6 million years ago. For example, previous analyses
estimated that, on average, an adaptive substitution occurred approximately once every
~8300 nucleotides in TFBSs and that approximately one in 20 recent nucleotide substitu-
tions in binding sites have been driven by positive selection, which is much higher than
the background substitution rate [65]. Moreover, the local binding affinity of individual
binding sites is well correlated with the strength of natural selection at individual binding
sites [65]. Additional work has also found that affinity-increasing mutations showed enrich-
ment for adaptive substitutions, whereas affinity-decreasing mutations showed enrichment
for weakly deleterious polymorphisms [65]. Furthermore, common low-frequency alle-
les account for a substantially larger fraction of deleterious mutations in TFBSs than in
coding sequences [65]. Positive selection signal acting on TFBSs is also observed [66].
These findings collectively demonstrate the genome-wide impact of natural selection on
human TFBSs.

Based on previous observations, it can be concluded that polygenic variations in
TFBSs have been a major target of evolutionary forces and a key contributor to different
phenotypes across human populations. Numerous well-known examples provide support
for this conclusion:

A. Infection: rs139999735 is associated with APAF1-interacting protein (APIP), which
inhibits pyroptosis and apoptosis, both of which are responses to Salmonella infection
(Table 2). Individuals homozygous for rs139999735 show decreased APIP expression
and, therefore, might generate a better response to Salmonella infection. Interestingly,
rs139999735 displays a higher allelic frequency in Africans (0.34) than in Asians (0.11)
and Europeans (0.12), suggesting the natural selection of rs139999735 in Africans [67].
The ACKR1-null polymorphism rs2814778 located in ACKR1, which disrupts the
binding of the transcription factor GATA binding protein 1 (GATA1), is associated with
reduced susceptibility to malaria infections caused by Plasmodium vivax (Table 2). The
associated protective effects may explain the spread of the ACKR1-null polymorphism
by natural selection in areas of relatively high malaria transmission, such as central,
western, and southeastern Africa, in which the prevalence reaches almost 100% [68].
Another well-studied example is IFN-γ + 874. This risk allele fails to provide a binding
site for the transcription factor NF-κB. As NF-κB induces IFN-γ expression, the risk
allele correlates with reduced IFN-γ expression and susceptibility to tuberculosis
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(Table 2). Because only the more resistant individuals survived and reproduced,
over successive generations of selective pressure from tuberculosis, the frequency of
the risk genotype decreased, and eventually, the cases of tuberculosis in the white
population decreased. Consistent with these observations, the frequency of the risk
genotype is much higher in South African populations (47%) than in Sicilian (26%)
and Spanish populations (28%) [69].

B. Radiation: rs201097793 and rs2279744 both illustrate the molecular adaptation of
modern human populations to ultraviolet radiation. rs201097793 is located in a TFBS
and is associated with MC1R (Table 2). Interestingly, rs201097793 has a higher allelic
frequency in Africans (0.70) and Asians (0.64) than in Europeans (0.17) [67]. MC1R is
known to be associated with pigmentation in humans and is maintained by purifying
selection in low-latitude, high-ultraviolet-radiation regions, protecting against folate
photolysis [70]. In line with this idea, the rs201097793 allele associated with darker
skin pigmentation exhibits a high frequency in Africans and Asians. As regards
rs2279744 (SNP309) in MDM2, MDM2 counteracts p53 in a “yin and yang” fashion
to regulate embryo implantation [71]. A single-nucleotide change from T to G in
rs2279744 creates a binding site for the transcription factor SP1 [71]. Consistent with
this observation, homozygotes for the G allele express more MDM2 than homozygotes
for the T allele [72]. Modern humans migrating northwards to regions with lower
ultraviolet radiation required less p53 to avert the adverse effects of p53 hyperactivity,
such as embryonic death. Correspondingly, the population data in both East Asia and
Europe show that MDM2 rs2279744 G homozygotes are selected for by low ultraviolet
radiation exposure (Table 2) [71].

C. Taste: Taste perception has been critical in evolution, especially for the detection of
toxins. rs139938620 in TAS1R3, a sweet receptor, shows a high allelic frequency in
Asians (0.79) compared with other populations (Table 2). TAS1R3 is a component
of the dimeric protein TAS1R1/TAS1R3, which is the umami taste receptor, and the
umami taste is a common feature of many foods in Asia. As a result, it is reasonable
to speculate that this variant is beneficial for toxin detection in Asians and is, thus,
selected for [67].

D. Water conservation: A well-studied example is rs16846053. The minor allele of
rs16846053 in SLC4A10 that predisposes individuals to increased plasma osmolality—
the reduced central sensing of water loss and/or renal water conservation—is under-
represented in the African population (minor allele frequency 0.02) compared with
the European population (minor allele frequency 0.10) (Table 2) [73].

Table 2. Examples of selective pressures acting on TFBSs.

Category Variant Gene Biological Function Reference

Infection rs139999735 APIP Response to Salmonella [67]

rs281477 8 ACKR1 Protection against
malaria infection [68]

IFN-γ + 874 IFN-γ Tuberculosis
susceptibility [69]

Radiation rs201097793 MC1R Pigmentation [67]
rs2279744 MDM2 Embryo implantation [71,72]

Taste rs139938620 TAS1R3 Umami taste [67]
Water

conservation rs16846053 SLC4A10 Increased plasma
osmolality [73]

6. Consequences of TFBS Genetic Variants: Disease Susceptibility

Similar to the selection pressure experienced by TFBS genomic sequences, the genes
affecting the risk of gout exhibit the hallmarks of natural selection [74]. Gout is associated
with numerous comorbidities, such as increased body mass index [75], chronic kidney
disease [76], diabetes, altered low-density lipoprotein (LDL), high-density lipoprotein
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(HDL), and triglyceride levels [75], coronary artery disease/ischemic heart disease [77,78],
hypertension [79], hyperuricemia [75], osteoporosis [80], and prostate cancer [81].

Interestingly, previous studies suggest that there is some selection pressure in these
comorbidities (body mass index [82], chronic kidney disease [83], diabetes [84], altered
LDL/HDL/triglyceride levels [74,85], coronary artery disease/ischemic heart disease [86],
hypertension [87], hyperuricemia [74], osteoporosis [88], and prostate cancer [89]) related
to gout [74]. Accordingly, in the following section we focus on examples of mechanistic
investigations of the regulatory elements of TFBSs related to transcription factors, affected
genes, and disease phenotypes in gout and its associated comorbidities which exhibit
selection signatures in susceptibility loci.

6.1. Gout

Gout susceptibility loci displayed selection signatures [74]. In gout, the engagement
of CD14 mediates the phagocytosis of monosodium urate crystals by macrophages and
their subsequent inflammatory response, culminating in interleukin−1β production [90].
Past studies demonstrate that TFBS DNA variants can directly contribute to gout through
altered transcription factor binding. A well-known example is rs2569190. The risk allele of
CD14 rs2569190 decreases the affinity of Sp3 protein binding, amplifies the transcriptional
activities of CD14, and contributes to the development of gout (Figure 2) [91–93]. As
Sp3 complexes with HDAC to alter histone modification and drive chromatin remodel-
ing [94], it is possible that histone modification is causally related to Sp3 binding-induced
CD14 upregulation.

6.2. Body Mass Index

Previous studies found a significant association between gout and increased body
mass index, whose genetic loci are under extensive natural selection pressure [75,82].
The current literature also supports the roles of TFBS variants in determining body mass
index. A striking example is rs1421085. The risk allele of rs1421085 disrupts a conserved
motif in the ARID5B repressor. This disruption results in the derepression of a potent
preadipocyte enhancer and the escalation of IRX3 and IRX5 expression during adipocyte
differentiation [95]. The ultimate consequences of these changes include a cell-autonomous
developmental shift from energy-dissipating beige adipocytes to energy-storing white
adipocytes [95]. Combined with a reduction in mitochondrial thermogenesis as well as an
increase in lipid storage, the risk allele of rs1421085 ultimately contributes to increased body
mass index (Figure 2) [95]. Interestingly, rs1421085 is located in a linkage disequilibrium
block associated with DNA methylation [96], and future study is necessary to reveal the
exact role of DNA methylation in the relationship between altered ARID5B binding and
IRX3/IRX5 expression.

6.3. Chronic Kidney Disease

Gout is associated with chronic kidney disease [76], and selective pressure is also
observed for chronic kidney disease-associated alleles [83]. rs17319721 is associated with
chronic kidney disease [97]. The risk allele of rs17319721 [97] increases the binding of
TCF7L2, alters the repressive looping between rs17319721 and the novel start site, and
decreases the expression of a short isoform of SHROOM3, which is necessary for kidney
function (Figure 2) [98]. rs881858 is associated with chronic kidney disease [99]. The risk al-
lele of rs881858 diminishes binding to CHOP [100] and upregulates VEGFA expression [44],
which is essential for glomerulogenesis and ureteric bud growth during embryogenesis
and impacts the number of nephrons (Figure 2) [99]. The risk allele of OAT1-475 decreases
the binding of hepatoma-derived growth factor (HDGF) and enhances OAT1 expression,
which results in the increased transportation of organic anion toxins into cells. The cellu-
lar accumulation of organic anion toxins causes cytotoxicity and leads to chronic kidney
disease (Figure 2) [101]. The roles of histone modification, DNA methylation, and chro-
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matin conformation changes in these chronic kidney disease-associated gene dysregulation
remain unexplored.
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Figure 2. Mechanisms underlying the associations between the risk alleles of various transcription factor binding site (TFBS)
variants and susceptibility to gout and related comorbidities (increased body mass index (BMI); chronic kidney disease
(CKD); diabetes; levels of high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides (TGs); coronary
artery disease (CAD); ischemic heart disease (IHD); hypertension (HTN); hyperuricemia (HU); osteoporosis; prostate
cancer) are shown. Variants (rs2569190, rs17712208, rs780094-rs780095-rs780096, CETP C-629A, GNAI2 -318, rs1800012,
and rs684232) with data supporting a role of histone modification in target gene regulation are shown in purple. Variants
(rs1421085, rs11257655, rs163184, rs4846913, and rs339331) with data suggesting a role of DNA methylation in target gene
regulation are shown in green. The variant (rs9533090) with data suggesting a role of chromatin conformational changes
in target gene regulation is shown in blue. Red arrows indicate increased transcription factor binding or gene expression,
while a blue X means decreased transcription factor binding or gene expression.

6.4. Diabetes

The association between gout and diabetes is well known [75], and previous stud-
ies have uncovered evidence of purifying selection for diabetes-associated variants [84].
Similar to the research related to TFBS variants in gout, several detailed analyses have



Int. J. Mol. Sci. 2021, 22, 4187 11 of 22

documented the roles of TFBS genetic variants in diabetes. For example, rs10830963, the
index variant of the MTNR1B locus, overlaps with a NEUROD1 binding site. The risk allele
of rs10830963 specifically binds NEUROD1 and magnifies MTNR1B expression, which
blocks insulin release from pancreatic β cells in response to glucose (Figure 2) [102,103].
Overall, the risk allele of rs10830963 triggers a cascade of molecular changes facilitating di-
abetes. The rs11257655 risk allele shows allele-specific binding to FOXA1/FOXA2, thereby
upregulating the transcription of CAMK1D, which increases gluconeogenesis and, there-
fore, the risk of diabetes (Figure 2) [104,105]. The risk allele of rs11257655 is associated
with decreased methylation in the promoter region of CAMK1D, supporting the role of
DNA methylation in the relationship between the risk allele, FOXA1/FOXA2 binding, and
CAMK1D expression [84]. rs163184 is a diabetes susceptibility polymorphism located in the
TFBS of Sp3. The risk allele of rs163184 attenuates Sp3 binding, and therefore, enhances the
transcriptional activity of cyclin-dependent kinase inhibitor 1C (CDKN1C) (Figure 2), which
inhibits human β cell proliferation and promotes diabetes [106]. Because rs163184 is associ-
ated with nearby CpG differential methylation [107], the likely intermediary role of CpG
methylation in Sp3′s regulation of CDKN1C expression warrants study. The risk allele of
rs1635852 preferentially recruits PDX1 and lowers JAZF1 transcription. These alterations
could result in impaired β cell function and, therefore, are strongly associated with dia-
betes (Figure 2) [108]. The risk allele of rs17712208 disrupts HNF1B binding, decreases
H3K27ac, and reduces the expression of PROX1, leading to impaired β cell insulin secretion
and thereby increasing susceptibility to diabetes (Figure 2) [109,110]. Analogously, the
rs4430796 risk allele decreases PAX6 binding and downregulates the expression of HNF1B,
leading to an elevated risk of diabetes (Figure 2) [111].

rs4684847 is another diabetes risk variant located in a TFBS. The rs4684847 risk allele,
by binding the homeobox transcription factor PRRX1, represses PPARG2, perturbs lipid
metabolism and insulin sensitivity, and contributes to the onset of diabetes (Figure 2) [112].
The rs7074440 risk allele binds C-FOS with decreased avidity, and thus, attenuates TCF7L2
expression. The consequence of TCF7L2 attenuation is aggravated hyperglycemia, which
confers susceptibility to diabetes (Figure 2) [113]. FOXA2 also binds an enhancer locus
in GCKR represented by the haplotype rs780094-rs780095-rs780096. The risk haplotype
preferentially binds FOXA2, increases H3K27Ac histone marks, upregulates GCKR expres-
sion, enhances glucose metabolism, and, therefore, is associated with the risk of diabetes
(Figure 2) [114]. rs7903146 in TCF7L2 is another common genetic variant highly associated
with diabetes [115]. The risk allele of rs7903146 interferes with HMGB1 binding, leading
to reduced TCF7L2 expression and, therefore, impaired insulin secretion and increased
diabetes risk (Figure 2) [115].

IVS1G + 123A is located in a TFBS. The transcription factor YY1 binds allele-specifically
to the risk allele of IVS1G + 123A in the tumor necrosis factor α (TNF-α) gene region and
increases TNF-α expression and, thereby, diabetes risk (Figure 2) [116]. The risk haplotype
of P-MU1, P-MU2, and P-MU3 in the SIRT2 promoter enhances the binding between signal
transducer and activator of transcription 1 (STAT1) and the SIRT2 promoter, leading to
an increase in SIRT2 transcription, which elevates fasting plasma glucose and glycated
hemoglobin (HbA1c) (Figure 2) [117]. It remains to be seen whether the transcription factor
binding of diabetes-associated variants other than rs11257655, rs163184, rs17712208, and
rs780094-rs780095-rs780096 regulates target gene expression via altered histone modifica-
tion, DNA methylation, or chromatin conformational changes (Figure 1).

6.5. Dyslipidemia

Gout is associated with an altered lipid profile [75], and risk loci associated with the
levels of LDL, HDL, and triglycerides show evident natural selection signatures [74,85].
Several studies have provided evidence for the effects of TFBS variants on lipid metabolism.
A well-known example is rs10750098. The HDL-increasing allele of rs10750098 enhances
HEY1 binding, elevates the expression of APOA1, and increases HDL (Figure 2) [118]. In
the same way, rs4846913, which is in complete linkage with rs4846914, overlaps with CEBPB



Int. J. Mol. Sci. 2021, 22, 4187 12 of 22

binding sites (Figure 2) [119]. Functional studies show that the HDL-increasing allele of
rs4846913 strengthens CEBPB binding and is associated with upregulated GALNT2 [119],
which increases HDL levels (Figure 2) [120]. Since rs4846913/rs4846914 shows associations
with DNA methylation [121], the effects of CEBPB on GALNT2 might be mediated via
DNA methylation. Similarly, the HDL-increasing allele of the CETP C-629A polymorphism
creates a binding site for the Sp1/Sp3 complex, represses CETP promoter transcriptional
activity, and therefore increases HDL [122,123]. As a previous study observed that Sp1/Sp3
proteins recruit HDAC complexes to the proximal promoter, thus preventing chromatin
remodeling and resulting in the transcriptional repression of the gene, we hypothesize that
histone modification may be involved in Sp1/Sp3-induced CETP modulation [94].

Similarly, rs12740374 overlaps with a CCAAT/enhancer binding protein (C/EBP)
TFBS. The risk allele of rs12740374 disrupts C/EBP binding, downregulates the hepatic
expression of the SORT1 gene, and increases the level of LDL (Figure 2) [124,125]. Another
example is rs6511720. The risk allele of rs6511720 inhibits serum response element (SRE)
binding, attenuates LDLR expression, and increases LDL (Figure 2) [126]. One more
example is rs13282783, which is associated with hypertriglyceridemia [127]. Notably,
the region around rs13282783 overlaps with the ZFP161 binding site [127]. Because the
rs13282783 risk allele prevents ZFP161 binding, the risk allele upregulates miR-320a, which
aggravates hypertriglyceridemia (Figure 2) [127].

6.6. Heart Disease

Gout is associated with increased coronary artery disease [77] and ischemic heart
disease [78], which show selection signatures on trait-associated variants [86]. A series
of studies provide solid evidence that DNA variants in TFBSs, including rs72664324 and
rs1800804, influence coronary artery disease/ischemic heart disease via allele-specific
transcription factor binding.

The coronary artery disease risk allele of rs72664324 decreases C/EBP beta binding
and inhibits the expression of PPAP2B, a gene that deactivates proinflammatory mediators,
thus promoting coronary artery disease (Figure 2) [128]. The rs1800804 risk allele has
a weak affinity for C/EBP binding, lowers MTTP transcriptional activity, and results in
a higher accumulation of lipids and increased susceptibility to ischemic heart disease
(Figure 2) [129]. Whether histone modification, DNA methylation, and chromatin confor-
mation play mediating roles in the relationship between transcription factor binding and
these target genes’ expression remains unexplored.

6.7. Hypertension

Hypertension is present in a considerable number of patients with gout [79], and
selection pressures on hypertension-associated loci have been reported in the past [87].
Several studies further provide evidence for the effects of TFBS variants on the risk of
hypertension. The risk allele of rs1017448 binds to Phox2a and Phox2b in an allele-
dependent manner to enhance SCG2 expression [130,131]. The secretoneurin peptide
derived from SCG2 stimulates the migration and proliferation of vascular smooth mus-
cle cells and acts as an endothelial cytokine promoting angiogenesis and vasculogenesis,
facilitating an increase in blood pressure [131]. Therefore, the risk allele of rs1017448
confers hypertension susceptibility (Figure 2) [131]. Through transfection experiments,
computational prediction, and structure-based conformational and molecular dynamics
simulation studies, it has been shown that the risk allele of rs11568818 exhibits increased
binding affinity for cyclic AMP response element-binding protein (CREB), confers in-
creased promoter activity, and enhances matrix metalloproteinase-7 (MMP7) expression,
which aggravates hypertension (Figure 2) [132]. Another example is rs2004776, which is
located in HNF3β binding sites. The risk allele of rs2004776 binds HNF3β more strongly
than does the non-risk allele, increasing angiotensinogen expression and thereby aggra-
vating hypertension (Figure 2) [133]. Similarly, rs5050 in the angiotensinogen promoter
overlaps with the binding sites of upstream stimulatory factor 2 (USF2) [134]. The risk
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allele of rs5050 preferentially binds USF2, augments angiotensinogen transcription, and
is associated with hypertension (Figure 2) [134,135]. Additionally, the DNA sequence
around rs604723, a hypertension-associated polymorphism, matches the serum response
factor (SRF) binding site [136]. The risk allele variation at rs604723 decreases SRF binding,
downregulates ARHGAP42 expression, and increases Ras homologue family member A
(RhoA)-dependent vascular smooth muscle cell contractility, thereby contributing to hy-
pertension risk (Figure 2) [136,137]. Likewise, the ECE1 C-338A polymorphism is strongly
associated with hypertension [138]. The risk allele of the ECE1 C-338A polymorphism in-
terferes with E2F2 binding and endothelial ECE-1b expression and facilitates hypertension
(Figure 2) [138].

The risk allele of the GNAI2-318 specifically binds Sp1 and reduces GNAI2 expres-
sion [139]. GNAI2 downregulation promotes sodium retention, sympathoexcitation, and
rapid renal nerve-dependent hypertension [140]. The risk allele of GNAI2-318 impairs
transcriptional activity through the specific binding of Sp1, exacerbating salt-sensitive
hypertension via a renal nerve-dependent mechanism (Figure 2) [140]. As the Sp1 protein
interacts with HDAC complexes to modify histone acetylation, we hypothesize that histone
modification may be involved in Sp1-mediated GNAI2 downregulation [94]. Except for
GNAI2-318, there are no clues about the roles of histone modification, DNA methylation,
and chromatin conformation changes in target gene regulation by these hypertension-
associated TFBS variants.

6.8. Hyperuricemia

Gout is associated with hyperuricemia [141], and uric acid-associated variants harbor
evidence of selection [74]. Similar to the findings in regard to TFBS variants in gout, studies
also support a role of TFBS nucleotide variation in hyperuricemia. The urate-increasing
allele of rs1967017 enhances HNF4A’s binding to the PDZK1 promoter, thereby stimulating
PDZK1 expression (Figure 2) [142]. As PDZK1 is a scaffold protein for many ion-channel
transporters and PDZK1 increases the apical localization of ABCG2, a urate transporter in
the intestine [143], increased PDZK1 expression can increase urate absorption and thereby
contribute to hyperuricemia. Unfortunately, the molecular mechanism that results in
HNF4A-induced PDZK1 expression changes is not known.

6.9. Osteoporosis

Gout is associated with osteoporosis [80], which is under the forces of purifying se-
lection [88]. rs11568820 is associated with osteoporosis [144]. The risk allele markedly
decreases the binding of Cdx-2 compared with that for non-risk alleles and suppresses the
transcriptional activity of the VDR, which plays a key role in intestinal calcium absorption
and the development of osteoporosis [145,146]. rs1800012 is significantly associated with
osteoporosis. The COL1A1 rs1800012 risk allele increases the binding affinity of Sp1 protein,
increases the ratio of COL1A1 to COL1A2, and reduces the yield strength of bone [147,148].
As the Sp1 protein results in histone modification [94], histone modification is one potential
mediator of Sp1-mediated COL1A1 dysregulation. rs9533090 is an allele-specific regulatory
polymorphism associated with osteoporosis [149,150]. The risk allele robustly recruits tran-
scription factor NFIC and increases RANKL expression, thus, contributing to osteoporosis
risk [149]. Because rs9533090 forms a long-range chromatin interaction with RANKL to
regulate RANKL expression, chromatin conformational changes possibly mediate the link
between risk allele and osteoporosis susceptibility [149].

6.10. Prostate Cancer

Gout is associated with prostate cancer [81], and prostate cancer risk genes display the
signature of selection pressure [89]. Several studies have also identified the transcription
factor and downstream effector genes involved with the prostate cancer-associated TFBS
variant. The prostate cancer-associated polymorphism rs339331 lies within a functional
HOXB13-binding site. The risk-associated allele at rs339331 increases HOXB13 binding
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in a transcriptional enhancer, resulting in the allele-specific upregulation of RFX6, which
enhances prostate cancer cell proliferation, migration, and invasion [151]. Because rs339331
is associated with CpG methylation [152], DNA methylation might mediate the regulatory
chain between HOXB13 and RFX6. The prostate cancer risk polymorphism rs684232
has been reported to function as an eQTL. The risk allele diminishes androgen receptor
(AR) occupancy, is associated with decreased H3K27ac levels, and downregulates the
expression of VPS53, FAM57A, and GEMIN4, and the knockdown of VPS53, FAM57A, and
GEMIN4 in prostate cancer cells results in an increase in cell viability [153]. For prostate
cancer-associated rs7077275 [154], the risk allele enhances CTCF binding and enhances
the allele-specific expression of CTBP2 [155], which decreases the apoptosis of prostate
cancer cells and increases tumor growth in a mouse xenograft model of human prostate
cancer [156]. It is unknown about the role of histone modification, DNA methylation, and
chromatin conformational changes in the link between CTCF and CTBP2 expression.

7. Consequences of TFBS Genetic Variants: Treatment Response

In addition to affecting disease susceptibility, TFBSs also induce functional effects,
including modulating the responses to drugs [157]. A growing body of work also implicates
variants of TFBSs in the treatment responses of patients with increased body mass index
and coronary artery disease. The first example is CYP2C19*17 (rs12248560). Clopidogrel
is often used as part of dual antiplatelet therapy for the secondary prevention of acute
coronary syndrome [158]. The CYP2C19*17 allele creates a consensus binding site for
the GATA transcription factor family, resulting in increased CYP2C19 expression and
activity [159]. Interestingly, the CYP2C19*17 allele is associated with a better platelet
response to clopidogrel in acute coronary syndrome patients [160]. Another example is
GNAS-1211. The G allele at position-1211 of the GNAS promoter results in enhanced
upstream stimulatory factor 1 binding and upregulated Gαs expression and lipolysis. In
line with these findings, the effect on body weight change in response to sibutramine
was stronger in G-allele carriers than in carriers of other alleles in a clinical phase 3
trial [161]. The intermediatory roles of histone modification, DNA methylation, and
chromatin conformational changes in the target gene regulation induced by these two
polymorphisms remain unexplored.

8. Conclusions

Although genetic variants of TFBSs have offered humans survival advantages in
their fight against nature during evolution, they have also resulted in predispositions to
diseases in modern environments. In other words, TFBS variants are not only triggered
by human adaptation to evolution but are also triggers of various diseases. Based on
this viewpoint, TFBS variants could be considered a genomic defense mechanism against
potential environmental threats, contributing to genetic diversity and effective adaptation.
However, various diseases are the price humans pay for such adaptation and survival.

Despite the well-known fact that the genetic variants located in TFBSs constitute
important mediators of phenotypes, there are relatively few examples that establish a
clear mechanistic relationship between causal variants, involved transcription factors, and
implicated downstream genes. Furthermore, the current understanding of the effects of
transcription factor binding-induced histone modification, DNA methylation, and chro-
matin conformational changes is extremely limited. A major obstacle is the inherently
complex relationship between the genomic sequence, the associated histone and methy-
lation profile and chromatin structure, and the involved transcription factors and target
genes. Deciphering the regulatory “logic” underlying TFBS variation, the effects on target
genes, the ultimate biological consequences, and the role of these three mechanisms in
regulatory pathways remains one of the greatest challenges facing the genomics field today.
New experimental and computational approaches that enable us to better predict genuinely
involved transcription factors and affected downstream genes and evaluate how motif
variation affects transcription factor–DNA binding are urgently needed. Although there is
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still a long road ahead, progress has been made in dissecting the genetic basis of transcrip-
tion factor–DNA binding variation. It is our hope that these efforts will endow us with a
nucleotide-level understanding of various molecular mechanisms underlying numerous
complex traits and the ability to ultimately translate these findings into new therapies.
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