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Abstract: In humans, retinoic acid receptor responders (RARRES) have been shown to be altered in
third trimester placentas complicated by the pathologies preeclampsia (PE) and PE with intrauterine
growth restriction (IUGR). Currently, little is known about the role of placental Rarres in rodents.
Therefore, we examined the localization and expression of Rarres1 and 2 in placentas obtained from a
Wistar rat model of isocaloric maternal protein restriction (E18.5, IUGR-like features) and from an
eNOS-knockout mouse model (E15 and E18.5, PE-like features). In both rodent models, Rarres1 and
2 were mainly localized in the placental spongiotrophoblast and giant cells. Their placental expression,
as well as the expression of the Rarres2 receptor chemokine-like receptor 1 (CmklR1), was largely
unaltered at the examined gestational ages in both animal models. Our results have shown that
RARRES1 and 2 may have different expression and roles in human and rodent placentas, thereby
underlining immanent limitations of comparative interspecies placentology. Further functional
studies are required to elucidate the potential involvement of these proteins in early placentogenesis.

Keywords: RARRES; chemerin; placenta; IUGR; PE; eNOS-knockout; CmklR1; IL-11; low protein
diet; pregnancy

1. Introduction

Our previous human studies indicated a dysregulation of the tumor suppressor genes retinoic acid
receptor responsive proteins (retinoic acid receptor responders, RARRES) 1 and 2 in the third trimester
placentas complicated by preeclampsia (PE) and PE conjoined with intrauterine growth restriction
(IUGR) [1,2]. We observed an induction of RARRES1 expression in primary villous cytotrophoblasts
isolated from PE and PE/IUGR placentas with a concomitant increase in RARRES1 syncytial staining.
RARRES2 mRNA expression, on the contrary, seemed reduced, yet unaltered at the protein level in third
trimester villous placental samples [1]. These results are controversial, as others have found increased
RARRES2 protein expression in samples from total placentas in pregnancies complicated by PE [3].
Furthermore, we had previously determined that RARRES1 and 2 were located in distinct functional
placental compartments [1]. RARRES1 (also known as Tazarotene-induced gene 1 (TIG1), Latexin-like
(LXNL), or Phorbol Ester-induced gene 1 (PERG-1) [4]) was located in human villous and extravillous
trophoblast cells (EVT) [1], while RARRES2 (also known as chemerin, HP10433, and TIG2 [5]) was

Int. J. Mol. Sci. 2020, 21, 242; doi:10.3390/ijms21010242 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-6889-1493
http://dx.doi.org/10.3390/ijms21010242
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/1/242?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 242 2 of 16

specifically expressed in human placental EVTs [1]. In contrast, Garces et al. described an additional
placental RARRES2 expression in cytotrophoblasts and Hofbauer cells [6].

RARRES1 stimulates the expression of antioxidant enzymes, inhibits angiogenesis, and stimulates
autophagy via mTOR [7]. In line with its proposed tumor suppressor function [8–10], RARRES1, along
with RARRES2, was reduced in choriocarcinoma [2] and its expression was also significantly reduced
in certain choriocarcinoma cell lines (i.e., Jeg-3 and BeWo) [1].

While RARRES1 is located intracellularly [10,11], RARRES2 is a secreted adipocytokine that
requires activation of its pro-form by proteolytic cleavage to exert its functions via chemokine-like
receptor 1 (CMKLR1, ChemR23) [12,13]. Wang et al. [3] were able to show that RARRES2 exerts
anti-inflammatory functions by inducing endothelial nitric oxide synthase (eNOS) expression in human
umbilical vein endothelial cells (HUVECs) and by significantly decreasing TNF-α-induced nuclear
factor (NF)-kappa B, and vascular cell adhesion molecule (VCAM)-1 production [3]. RARRES2 further
modulates chemotaxis and activation of dendritic cells and macrophages via CMKLR1 [14,15], which
is expressed in various leukocyte populations [16].

Pregnancy represents a state of constant metabolic adaptation and increased inflammation.
In this respect, IUGR and PE represent two extreme gestational disturbances [17–19]. In PE the
production of placental inflammatory cytokines [18,19] is increased. It is known that adipocytokine
and interleukin signaling interact [20–22]. Recently IL-11, a member of the IL-6 family also known as
adipogenesis inhibitory factor (AGIF) [23], has been found by others to be upregulated in PE and leads
to inflammation and preeclampsia-like features in mice [24]. Treatment of mice with IL-11 negatively
affects placentation, including trophoblast invasion and spiral artery remodeling, a key process in the
pathogenesis of human PE [24,25]. IL-11 further increases systolic maternal blood pressure and leads to
PE-like proteinuria in dams [24,25]. Mice with an eNOS-deficiency (eNOS−/− [26–29]) display PE-like
features (e.g., vascular placental impairment [19,27,30] and an increased inflammatory state [31–34]).

To confirm this, we tested placental IL-11 expression in these mice. Moreover, we analyzed Rarres
expression in second and third trimester placenta of eNOS−/− mice, because Garces et al. detected a
maximum of placental Rarres2 expression at this gestational age in rodents [6].

To expand our findings from third trimester human placenta [1], we investigated Rarres1, Rarres2,
and Cmklr1 expression in third trimester rodent placenta. Moreover, we analyzed the influence of
maternal protein restriction in rats (IUGR-like features [35,36]) on placental Rarres1 and 2 expression.
We additionally compared placentas in the context of fetal sex, given the differences in Rarres2 expression
that were already described by Watts et al. [37] for male and female fetuses.

2. Results

2.1. Auxology

Animal data are displayed in Table 1. Maternal protein restriction led to a significant decrease
in fetal weight (p = 0.03) and a significant increase in placental/fetal ratio (p = 0.03) at E18.5 in rats.
This had no significant influence on placental weight (p = 0.11). In our eNOS−/− mice, fetal and
placental weights were examined at E15 and E18.5. The animals showed a significant decrease of fetal
weight at both time points compared to wildtype controls (p < 0.001). Mouse placental weights were
significantly decreased at E18.5 (p = 0.006), with a similar trend at E15 (p = 0.08). The placental-to-fetal
weight ratio was unaffected by eNOS deficiency (Table 1).
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Table 1. Animal auxology. NP: normal protein diet; LP: low protein diet.

Rat † E18.5 NP E18.5 LP p Value

fetal weight (fw) 1.38 ± 0.09 0.86 ± 0.05 0.03 *
placental weight (pw) 0.34 ± 0.04 0.30 ± 0.01 0.11 *

pw/fw ratio 0.25 ± 0.02 0.35 ± 0.02 0.03 *

Mouse ‡ E15 C57BL/6 E15 eNOS−/− p Value E18.5 C57BL/6 E18.5 eNOS−/− p Value

fetal weight (fw) 0.34 ± 0.07 0.28 ± 0.03 0.08 * 1.19 ± 0.15 0.97 ± 0.08 0.006 *
placental weight (pw) 0.10 ± 0.01 0.08 ± 0.01 <0.001 * 0.09 ± 0.01 0.07 ± 0.01 <0.001 *

pw/fw ratio 0.31 ± 0.06 0.29 ± 0.06 0.58 * 0.08 ± 0.02 0.07 ± 0.01 0.63 *

* Mann-Whitney U-Test. † For rats, each group consisted of n = 4 dams each with n = 6 NP/LP pups/damn,
respectively. ‡ For mice, groups consisted of n = 6 eNOS−/− vs. n = 5 C57BL/6 dams at both time points with
n = 2 pups/dam. Legend: bold values denote statistical significance.

2.2. Localization of Rarres1 and 2

Representative images of Rarres1 and 2 immunohistochemical (IHC) stains are given in Figure 1A,D
and Figure 2A,D, respectively. Both proteins shared similar localization in functional placental
compartments. In contrast to Rarres1 (cytoplasmic stain, Figure 1), Rarres2 (Figure 2) additionally
showed nuclear staining. IHC did not reveal species differences between rat (Figures 1A and 2A)
and mouse (Figures 1D and 2D) placentas regarding Rarres1 and 2 localization. Positive staining
was mostly present in the cytoplasm of trophoblast giant cells (GC) and spongiotrophoblasts (ST) of
rat (Figure 1A) and mouse (Figure 1D) placentas at E18.5. In mice, we did not note differences in
Rarres1 and 2 staining in comparison to E15 (data not shown). We additionally found positive staining
for both proteins in the yolk sac, decidual stroma, and the umbilical cord lining membrane (data not
shown). Glycogen cells and the labyrinth zone (LZ) stained negative for Rarres1 and 2.



Int. J. Mol. Sci. 2020, 21, 242 4 of 16
Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 16 

 

 
Figure 1. Rarres1 expression in rat and mouse placenta. (A−C) Rat placenta, (D−F) mouse placenta. 
(A,D) Immunohistochemical (IHC) stains of methyl Carnoy-fixed placental paraffin sections. 
Abbreviations: GC = giant cell, BZ = basal zone, ST = spongiotrophoblast, LZ = labyrinth zone, star = 
glycogen cells. The bar equals 100 µm. (B) Maternal protein restriction rat model: placental Rarres1 
mRNA expression on E18.5 (*p = 0.03, Mann-Whitney U-Test, n = 4 NP/LP dams with 6 pups each). E) 
eNOS-/- mouse model: placental Rarres1 mRNA expression on E15 and E18.5 (* p = 0.03, ** p = 0.008 for 
C57BL/6 and p = 0.002 for eNOS-/-, ns: p = 0.66, Mann-Whitney U-Test, WT: n = 5 dams, eNOS-/-: n = 6 
dams with 2 pups each). C + F) Analysis of Rarres1 protein expression versus β-Tubulin housekeeper 
by Western blotting (WB, Rat: ns: p = 0.057, Mann-Whitney U-Test, n = 4 NP/LP dams with n = 2 pups 
each, E18.5; Mouse: ns: p = 0.20, Mann-Whitney U-Test, n = 4 C57B6 and eNOS-/- dams per group with 
n = 1 pup each, E18.5). Abbreviations: LP = low protein diet, NP = normal protein diet in the rat IUGR 
model with m = male fetus, f = female fetus; C57B6 = C57BL/6 wild type (WT) control strain, eNOS-/- 
= preeclampsia (PE)/intrauterine growth restriction (IUGR) model eNOS knockout mouse, ns = not 
significant. RARRES = retinoic acid receptor responders. 

Figure 1. Rarres1 expression in rat and mouse placenta. (A–C) Rat placenta, (D–F) mouse placenta. (A,D)
Immunohistochemical (IHC) stains of methyl Carnoy-fixed placental paraffin sections. Abbreviations:
GC = giant cell, BZ = basal zone, ST = spongiotrophoblast, LZ = labyrinth zone, star = glycogen cells.
The bar equals 100 µm. (B) Maternal protein restriction rat model: placental Rarres1 mRNA expression
on E18.5 (*p = 0.03, Mann-Whitney U-Test, n = 4 NP/LP dams with 6 pups each). E) eNOS−/− mouse
model: placental Rarres1 mRNA expression on E15 and E18.5 (* p = 0.03, ** p = 0.008 for C57BL/6 and
p = 0.002 for eNOS−/−, ns: p = 0.66, Mann-Whitney U-Test, WT: n = 5 dams, eNOS−/−: n = 6 dams
with 2 pups each). C + F) Analysis of Rarres1 protein expression versus β-Tubulin housekeeper by
Western blotting (WB, Rat: ns: p = 0.057, Mann-Whitney U-Test, n = 4 NP/LP dams with n = 2 pups
each, E18.5; Mouse: ns: p = 0.20, Mann-Whitney U-Test, n = 4 C57B6 and eNOS−/− dams per group
with n = 1 pup each, E18.5). Abbreviations: LP = low protein diet, NP = normal protein diet in the rat
IUGR model with m = male fetus, f = female fetus; C57B6 = C57BL/6 wild type (WT) control strain,
eNOS−/− = preeclampsia (PE)/intrauterine growth restriction (IUGR) model eNOS knockout mouse,
ns = not significant. RARRES = retinoic acid receptor responders.
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Figure 2. Rarres2 expression in rat and mouse placenta. (A−C) Rat placenta, (D−F) mouse placenta. 
(A,D) Immunohistochemical (IHC) stains of methyl Carnoy-fixed placental paraffin sections. 
Abbreviations: GC = giant cell, BZ = basal zone, ST = spongiotrophoblast, LZ = labyrinth zone, star = 
glycogen cells. The bar equals 100 µm. (B) Maternal protein restriction rat model: placental Rarres2 
mRNA expression on E18.5 (ns: p = 0.89, Mann-Whitney U-Test, n = 4 NP/LP dams with 6 pups each). 
E) eNOS-/- mouse model: placental Rarres2 mRNA expression on E15 and E18.5 (E15: ns: p = 0.31, E19: 
ns: p = 0.66, Mann-Whitney U-test, WT: n = 5 dams, eNOS-/-: n = 6 dams with 2 pups each). C + F) 
Analysis of Rarres1 protein expression versus β-Tubulin housekeeper by Western blotting (WB, Rat: 
ns: p = 0.10, Mann-Whitney U-Test, n =4 NP/LP dams with n = 2 pups each, E18.5; Mouse: ns: p = 0.49, 
Mann-Whitney U-Test, n = 4 C57B6 and eNOS-/- dams per group with n = 1 pup each, E18.5). 
Abbreviations: LP = low protein diet, NP = normal protein diet in the rat IUGR model with m = male 
fetus, f = female fetus; C57B6 = C57BL/6 wild type (WT) control strain, eNOS-/- = PE/IUGR model eNOS 
knockout mouse, ns = not significant. 

2.3. Expression Analyses of Rarres1/2, CmklR1 Receptor, and IL-11 

We detected a small but significant decrease of placental Rarres1 mRNA expression in our 
maternal protein restriction rat model at E18.5 (p = 0.03, Figure 1B). Sex did not show any significant 
influence on the expression of Rarres1, 2 and CmklR1 mRNA expression levels (Table 2). In contrast 
to the rat, we could determine significant differences in Rarres1 mRNA expression between eNOS-/- 

Figure 2. Rarres2 expression in rat and mouse placenta. (A–C) Rat placenta, (D–F) mouse placenta. (A,D)
Immunohistochemical (IHC) stains of methyl Carnoy-fixed placental paraffin sections. Abbreviations:
GC = giant cell, BZ = basal zone, ST = spongiotrophoblast, LZ = labyrinth zone, star = glycogen cells.
The bar equals 100 µm. (B) Maternal protein restriction rat model: placental Rarres2 mRNA expression on
E18.5 (ns: p = 0.89, Mann-Whitney U-Test, n = 4 NP/LP dams with 6 pups each). E) eNOS−/− mouse model:
placental Rarres2 mRNA expression on E15 and E18.5 (E15: ns: p = 0.31, E19: ns: p = 0.66, Mann-Whitney
U-test, WT: n = 5 dams, eNOS−/−: n = 6 dams with 2 pups each). C + F) Analysis of Rarres1 protein
expression versus β-Tubulin housekeeper by Western blotting (WB, Rat: ns: p = 0.10, Mann-Whitney U-Test,
n =4 NP/LP dams with n = 2 pups each, E18.5; Mouse: ns: p = 0.49, Mann-Whitney U-Test, n = 4 C57B6 and
eNOS−/− dams per group with n = 1 pup each, E18.5). Abbreviations: LP = low protein diet, NP = normal
protein diet in the rat IUGR model with m = male fetus, f = female fetus; C57B6 = C57BL/6 wild type (WT)
control strain, eNOS−/− = PE/IUGR model eNOS knockout mouse, ns = not significant.

2.3. Expression Analyses of Rarres1/2, CmklR1 Receptor, and IL-11

We detected a small but significant decrease of placental Rarres1 mRNA expression in our maternal
protein restriction rat model at E18.5 (p = 0.03, Figure 1B). Sex did not show any significant influence
on the expression of Rarres1, 2 and CmklR1 mRNA expression levels (Table 2). In contrast to the rat,
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we could determine significant differences in Rarres1 mRNA expression between eNOS−/− mice and
C57BL/6 wildtype controls at E15 (p = 0.03) but not on E18.5 (p = 0.66) (Figure 1E). However, a 3.6-fold
(eNOS−/−) and 6.5-fold (C57BL/6) temporal increase of placental Rarres1 mRNA expression was detected
from E15 to E18.5 (p = 0.008 for C57BL6 mice and p = 0.002 for eNOS−/− mice, Figure 1E). Western blot
analysis did not reveal significant differences in placental Rarres1 protein expression E18.5 in both
animal models (rat: p = 0.057, mouse: p = 0.20, Figure 1C,F).

Placental Rarres2 mRNA (Figure 2B,E) and protein expression (Figure 2C,F) was neither affected by
maternal protein restriction in the rat (PCR: p = 0.89, WB: p = 0.10, Figure 2B,C), nor eNOS−/− in the mice
(PCR: E15: p = 0.31, E19: p = 0.66, WB: p = 0.49, Figure 2E,F). Also, the expression of Rarres2 remained
unchanged from E15 to E18.5 in the mouse (p = 0.31 for C57BL6 mice and p = 0.13 for eNOS−/− mice,
Figure 2E).

Placental CmklR1 expression was unchanged by maternal protein restriction in the rat and eNOS−/−

in the mouse. Gestational age seemed to have no significant influence on CmklR1 expression in the
mouse (Table 3). However, a significant increase of placental interleukin 11 (IL-11) mRNA expression
at E15 (2.3-fold, p = 0.004, Figure 3) was observed in eNOS−/− mice compared to controls. No such
change in IL-11 expression was noted at E18.5 (p = 0.99).

Table 2. Sex differences in mRNA expression (fold-change).

Rat NP m NP f p Value LP m LP f p Value

Rarres1 1.00 ± 0.36 0.97 ± 0.17 0.89 * 0.48 ± 0.26 0.58 ± 0.19 0.69 *
Rarres2 1.00 ± 0.30 1.30 ± 0.41 0.49 * 0.90 ± 0.75 1.52 ± 0.42 0.23 *
CmklR1 1.00 ± 0.44 0.89 ± 0.60 0.99 * 1.10 ± 0.51 0.95 ± 0.29 0.99 *

* Mann-Whitney U-Test; For Rarres1 and 2, groups consisted of n = 4 NP/LP dams with n = 3 female/male
pups, respectively. For CmklR1, groups consisted n = 3 NP/LP dams with n = 2 female/male pups, respectively.
Abbreviations: LP = low protein diet, NP = normal protein diet in the rat IUGR model; m = male fetus, f =
female fetus.

Table 3. Placental CmklR1 mRNA expression (fold-change).

Rat † E18.5 NP E18.5 LP p Value

1.00 ± 0.53 1.08 ± 0.32 0.99 *

Mouse ‡ E15 C57BL/6 E15 eNOS−/− p Value E18.5 C57BL/6 E18.5 eNOS−/− p Value

1.00 ± 0.43 0.9 ± 0.42 0.93 * 0.51 ± 0.1 0.41 ± 0.18 0.18 *

* Mann-Whitney U-Test. † For rats, groups consisted of n = 3 dams per group (NP/LP) with n = 5 pups each; ‡

For mice, groups consisted of n = 6 eNOS−/− vs. n = 5 C57BL/6 dams at both time-points with n = 2 pups/dam.
Abbreviations: LP = low protein diet, NP = normal protein diet in the rat IUGR model; C57BL/6 = Wild type (WT)
control, eNOS−/− = PE/IUGR model knockout mouse.
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Figure 3. Placental IL-11 mRNA expression in eNOS−/− mice on E15. (** p = 0.004, Mann-Whitney
U-test, WT: n = 5 dams, eNOS−/−: n = 6 dams with 2 pups each) Abbreviations: C57B6 = C57BL/6 wild
type (WT) control strain, eNOS−/− = PE/IUGR model knockout mouse.
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3. Discussion

Summarizing our findings, we demonstrate a sufficient induction of intrauterine growth restriction
in both rodent models, as determined by fetal weight reduction, when compared to the respective
controls. Rarres1 and 2 were pre-dominantly located in the spongiotrophoblast and giant cells of both
rat and mouse placenta. In the rat, no consistent regulation of Rarres1/2 was detected under maternal
protein restriction. Similarly, we did not find changes in Rarres1 and 2 mRNA or protein expressions in
eNOS−/− mice. In the mouse, we observed a temporal increase in placental Rarres1 mRNA expression
from E15 to E18.5 independent of their genotype. Moreover, we found an IL-11 induction at E15 in the
eNOS−/− mice, suggestive of increased placental inflammation, a common feature of human PE [24].

3.1. Expression of Rarres1 in Rodent Placenta

Based on its localization in the human placenta, we have previously hypothesized that RARRES1,
as a tumor-suppressor gene, might slow down invasion and migration of EVTs in terminal placentas
and that it might regulate proliferation, syncytialization, and apoptosis of villous trophoblasts [1,2].
Thus, an increased RARRES1 expression in human PE might represent a state of reduced trophoblast
proliferation and syncytialization with increased apoptosis [1,38,39].

In our current study, we determined that rodent Rarres1 was predominantly located in the
placental junctional zone (giant cells and the spongiotrophoblast) with only minor expression in the
labyrinth layer (resembling the human syncytiotrophoblast). Based on this observation, it could be
assumed that Rarres1 plays a minor role in rodent placental syncytial physiology at the examined
gestational stages. Other than a common hemochorial nature, murine placental anatomy shares limited
features with the human placenta [40,41]. Nevertheless, the rodent placenta junctional zone (JZ) shares
similarities with the human extravillous compartment [42–45], as it is positioned between the labyrinth
and the maternal decidua [46]. From ~E12.5 onwards, trophoblast cells of the JZ invade into the
decidua, where they become associated with maternal blood spaces. As a counterpart to the human
placental syncytium, the JZ also constitutes the main placental endocrine compartment affecting both
maternal and fetal physiology [46]. We have previously demonstrated that the placental distribution
pattern of RARRES1 changes throughout human gestation [1]. Since we were able to detect temporal
changes in the gestational expression of Rarres1 in mice, an involvement of Rarres1 in placental
development and growth seems feasible, potentially regulating invasiveness of JZ trophoblast.

In contrast to our previous results from human PE placentas, Rarres1 expression was not induced
in placentas of eNOS−/− mice. In fact, late gestational expression of placental Rarres1 was rather
reduced by dietary-induced IUGR in the rat. However, our Rarres1 mRNA data were not supported
by Western blot analysis, potentially owing to alterations in translation rate/protein degradation or
transcription/mRNA stability (reviewed by [47]).

Our findings argue for a species-specific role of RARRES1 in the human syncytium and its
involvement in PE [48,49]. While in the murine placenta temporal changes of placental Rarres1
expression were noted, gestational changes in Rarres1 expression in the rat were not studied.
No differences in Rarres1 expression were detected in placentas of male or female fetuses.

3.2. Expression of Rarres2 in Rodent Placenta

We found that our Wistar rats expressed Rarres2 in the same placental compartments as Rarres1
(see above). The pronounced localization of Rarres2 in rat trophospongium supports our previous
findings in human placenta [1], where RARRES2 was specifically expressed in extravillous trophoblasts
(see above).

The expression and regulation of Rarres2 during rat pregnancy has been previously studied
by Garces et al. [6] in Sprague Dawley rats at multiple gestational timepoints. In contrast to our
findings, Garces et al. [6] found relevant Rarres2 staining in the labyrinthine trophoblast, besides the
trophospongium in rats, which might have been due to the difference in employed rat species (Wistar
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vs. Sprague Dawley). Similarly, they found syncytial RARRES2 expression besides its extravillous
localization in the human placenta, which was not supported by our previous studies [1]. This difference
requires further investigation. It might be due to divergent IHC techniques (fixation: methyl Carnoy’s
solution (our study) versus paraformaldehyde [6], rabbit antibody vs. recombinant full length human
RARRES2 (our study) versus goat antibody vs. N-terminal human RARRES2 [6]). The placental
Rarres2 expression increased until E16 in rats and then decreased until term, while rat maternal serum
levels (ELISA) steadily decreased over the course of pregnancy in their animals [6]. This finding is in
contrast to analyses of the same research group in humans, where RARRES2 levels were shown to rise
significantly over the course of pregnancy [50]. This might argue for species-specific differences in
the regulation of gestational Rarres2 expression and/or different functions of Rarres2 in murine and
human placenta. The expression of Rarres2 in rat mesenteric adipose tissue remained mainly constant,
despite a singular increase at E19 [6]. IUGR (30% of total ad libitum maternal diet) resulted in a ~50%
reduction of placental Rarres2 expression in Sprague Dawley rats. The gestational expression pattern
of Rarres2 (i.e., maximum of placental expression around E16), however, remained unchanged [6].
Rarres2 expression in rodents was higher at the end of the second trimester, than at the end of the third
trimester. This is in line with our findings of a more prominent Rarres2 expression in mouse placenta
at gestational E15 compared to gestational day E18.5.

In contrast to Garces et al. [6], we did not observe a reduction of Rarres2 in our isocaloric rat
model of maternal protein restriction. This might be due to the divergent use of maternal diets (i.e.,
isocaloric protein restriction vs. total caloric reduction). We have just recently shown that our diet does
not resemble a stress-model, unlike other models of total intake restriction [36]. Furthermore, models
with total calorie restriction [51,52] seem more prone to develop insulin resistance after IUGR.
Thus, the observed placental reduction of rat Rarres2 expression under the condition of profound
maternal food restriction [6] might underscore its proposed role as placental adipocytokine [6,53], with
putative involvement in the development of maternal insulin resistance [54,55] and in feto-maternal
metabolic homeostasis during pregnancy [56]. However, this hypothesis and the association of markers
of insulin sensitivity with circulating RARRES2 is controversially discussed [50,57]. Unfortunately, there
was no description of the influence of IUGR on Rarres2 levels in rat maternal adipose tissue or serum
by Garces et al. [6].

In vitro findings of Wang et al. [3] indicated that RARRES2 induces NO production in HUVECs.
Our PE mouse model did not show local induction of Rarres2 despite the knockout of eNOS, which
suggests a lack of local negative feedback. At this point, systemic feedback-signaling cannot be ruled
out, as circulating Rarres2 remained undetermined in our study.

3.3. Expression of CmklR1 in Rodent Placenta

Our finding of stable placental CmklR1 expression levels in our Wistar rats resembled the gestational
findings of Sanchez-Rebordelo et al. in Sprague Dawley rats [58]. Similarly, we could not detect
significant differences or gestational changes of CmklR1-expression in our eNOS−/−mice. This finding is
of interest, as CMKLR1 activation has been shown to induce vasoconstriction of peripheral vessels [59]
and a reduced uterine blood flow is characteristic in eNOS−/− mice [60]. Thus, CmklR1 might
play a minor role in the dysregulation of vascular tone in these mice. However, as knockout of
CmklR1 seems to induce higher abortion rates in mice [61], different mechanisms of action need to be
taken into consideration.

3.4. IL-11 as a Novel Regulatory Cytokine in eNOS−/− Mice

The level of IUGR in our rats, as determined by fetal weight, was comparable to our previous
experience with this model [36,62]. Additionally, the observed level of fetal and placental weight
reduction in eNOS−/−mice (18% and 22%, respectively; E18.5) was similar to findings from the literature
(11% and 10%, respectively; E17 [28]), when compared to C57BL/6 control mice.
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Interestingly, we found an induction of placental IL-11 in our eNOS−/−mice at midgestation, which
has not been shown previously. As IL-11 has been demonstrated to contribute to the development
of inflammation in PE and placental vascular changes in mice [24,25], our finding might indicate
respective changes in our rodent placentas, which are found in a similar manner in human PE.

4. Materials and Methods

4.1. Animals and Diets

This study was carried out following the recommendations of the National Institute of Health
(NIH) Guide for the Care and Use of Laboratory Animals and the Directive 2010/63/EU. All procedures and
protocols were governmentally approved by the corresponding board (Regierung von Mittelfranken, AZ
#54-2531.31-31/09 (10 November 2010) and AZ #55.2-2532-2-820 (17 January 2019)). Surgical procedures
were performed under isoflurane anesthesia and all efforts were made to minimize suffering.

4.1.1. Alimentary Rat Model with IUGR-Like Features

Animal procedures and the dietary regimen were carried out as previously described by us in
detail [36]. Wistar rats were ordered from Charles River (Sulzfeld, Germany). Weighing 240–260 g, rats
were mated, and the beginning of gestation was determined via assessment of vaginal plug expulsion.
Subsequently, dams were randomly assigned into two groups consisting of six animals each and
received semi-purified diets (Altromin Spezialfutter GmbH & Co. KG, Lage, Germany) of either low
protein diet (LP group, 25 g/d of Altromin C1003, 8% protein) or an isocaloric diet of normal protein
content (NP group, 25 g/d of Altromin C1000, 17% protein) from day 1 of gestation. This results in
reduced birth weight and increased placental-to-fetal weight ratio, indicating preserved placental
efficiency [63]. Rat placentas were obtained at E18.5. Animal characteristics are displayed in Table 1.
Sex verification was carried out via sex-determining region Y (Sry) gene PCR, as previously described
by us in detail [36].

4.1.2. Mouse Model with PE/IUGR-Like Features

The eNOS-knockout (eNOS−/−) mice came from Jackson Laboratories (Bar Harbor, Maine, USA).
The recommended wild-type (WT) C57BL/6 mice were ordered from Charles River (Sulzfeld, Germany).
A homozygous breeding strategy was followed. Both strains were kept over ten generations in
our animal facility before being utilized in experiments. Mice were housed at 22 ± 2 ◦C and a
12 h light/dark cycle in our animal facilities. Animals had unlimited access to standard chow
(SSNIFF V1534, ssniff Spezialdiäten GmbH, Soest, Germany) and tap water. The animal model of
eNOS−/− mice was previously described in detail by others [28,64,65]. The placental dysfunction
in eNOS−/− mice [26,64,65] is caused with an impaired systemic vascularization of the dam [29]:
eNOS deficiency significantly reduces the essential maternal cardiovascular adaptive capacity via
reduction of circulating nitric oxide [28]. Thus, maintenance of constant uterine and feto-placental
blood flow and of low feto-placental vascular resistance via modulation of smooth muscle myogenic
tone is disabled [19,27,30]. Moreover, eNOS deficiency seems to be associated with an increased
inflammatory state [31–34]. We chose eNOS−/− mice over various other rodent models of PE (reviewed
by [18]) as placentas of this model lack gross anatomic alterations [28] similar to our low protein
rat model [66]. Each group of mice was mated, and the presence of a copulation plug was denoted
as day 0.5 of pregnancy. Mouse placentas were obtained from these mice at day E15 and E18.5.
Animal characteristics are displayed in Table 1. Based on our finding that sex seemed to have no
influence on Rarres1/2 expression in the rat placenta, we did not include it as a variable in the mouse
model analysis. The placental eNOS mRNA expression was well detectable in control mice but was
below the detection limit in eNOS−/− mice (data not shown).
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All rodent placentas were fixed in methyl Carnoy’s solution (Roth, Karlsruhe, Germany) for
embedding in paraffin or were snap frozen and stored at −80 ◦C for messenger RNA (mRNA)
preparation and protein extraction.

4.2. RNA Extraction, RT-PCR, and Real-Time Quantitative PCR

Gene expression analysis has previously been described by us in detail [36]. PCR was performed
in n = 5 pups (mean) per litter from 4 NP/LP dams, respectively. In our mouse model, n = 2 pups
per litter from n = 6 eNOS−/− dams and n = 5 C57BL/6 wild type controls, respectively, were
examined at two different time points (E15; E18.5). Snap-frozen placental tissues were minced using a
Mikro-Dismembrator (Sartorius Stedim Biotech GmbH, Göttingen, Germany). RNA purification of
our rat placentas was achieved with peqGold TriFast reagent (Peqlab, Erlangen, Germany), and RNA
pretreatment with DNase I (Sigma-Aldrich, Darmstadt, Germany) was used. For mouse samples,
the frozen tissue was homogenized by grinding with a T10 basic ULTRA TURRAX disperser (IKA,
Staufen im Breisgau, Germany), and total RNA was extracted using the RNeasy Mini Kit with DNase
treatment (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. RNA concentration
was determined by NanoDrop spectrophotometry (Peqlab, Erlangen, Germany) and adjusted to 100 ng/

mL for all rodent placenta samples. Complementary DNA (cDNA) synthesis was conducted using
TaqMan Reverse Transcription (Applied Biosystems, Waltham, MA, USA) in a Biometra Trio thermal
cycler (Analytik Jena, Jena, Germany). Quantification of Rarres1, Rarres2, CmlkR1, and IL11 mRNA
expression was achieved by qRT PCR analysis using the Fast SYBR Green Master Mix and Sequence
Detector StepOnePlus (Applied Biosystems, Waltham, MA, USA) with r18s RNA as a reference gene.
Measurements were performed in duplicate. Primers were designed using Primer Express software
(version 3.0.1, Applied Biosystems, Waltham, MA, USA) or Primer-BLAST (NCBI, NIH). Primers were
ordered from Eurofins (Eurofins Genomics Germany GmbH, Ebersberg, Germany) and sequences are
listed in Table 4.

Table 4. Primer sequences.

Rat Forward Reverse

Rarres1 5′-AGGTGGACCTGGTGTTTAGCA-3′ 5′-AACACCCTCGCAGAACATTTG-3’
Rarres2 5′-AAATGGGAGGAAGCGGAAAT-3′ 5′-CCATCCGGCCTAGAACTTTACC-3′

CmlkR1 5′-AAGAGATGGAGTACGAGGGTTACAA-3′ 5′-GATGTAGTCCGAGCCGTCAGA-3′

r18s 5′-TTGATTAAGTCCCTGCCCTTTGT-3′ 5′-CGATCCGAGGGCCTCACTA-3′

Mouse

Rarres1 5′-AGCGGCTGAAAACGGATGA-3′ 5′-CCAAGTGAATACGGCAGGGA-3′

Rarres2 5′-CACTGCCCAATTCTGAAGCAA-3′ 5′-CGCCAGCCTGTGCTATCTTAA-3′

Cmlkr1 5′- CAACGGTGAACAGTGAAAGGTC-3‘ 5′- TTGTAAGCGTCGTACTCCATCTCT-3‘
eNos 5′-CACCAGGAAGAAGACCTTTAAGGA-3′ 5′-CACCGTGCCCATGAGTGA-3′

IL-11 5′-GCTCCCCTCGAGTCTCTTCA-3′ 5′-TGTCTCTCATCTGTGCAGCTAGTTG-3′

r18s 5′-TTGATTAAGTCCCTGCCCTTTGT-3′ 5′-CGATCCGAGGGCCTCACTA-3′

4.3. Western Blot Analysis

For protein expression analysis, placental tissue of rat NP/LP (4 dams with 2 pups/dam) and
mouse E18.5 eNOS−/− versus C57BL/6 control (8 dams with 1 pup each) was homogenized by mincing
in 20 mL RIPA buffer, consisting of 50 mM Tris (pH 7.2), 10 mM EDTA, 150 mM NaCl, 0.1% SDS, 1.0%
Triton X-100, 1.0% sodium deoxycholate, 20 µL/mL proteinase inhibitor (Complete proteinase inhibitor,
Santa Cruz Biotechnology Inc., Dallas, TX, USA), and 2 mM Na3VO4. Buffer amount was adjusted
to sample weight. The protein concentration was determined by the kit (Pierce, Rockford, IL, USA).
Rat samples containing 30 µg/44 µl and mouse samples containing 30 µg/40 µL of protein were boiled
at 95 ◦C for 8 min and separated on a 10% denaturing SDS-PAGE gel (for Rarres1 measurements of rat
samples, 12% gel was used). Semi-dry electro-blotting was performed using Hartenstein GB33 PVDF
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membranes (Bio-Rad Laboratories, Hercules, USA), which were then blocked with Rotiblock (Roth,
Karlsruhe, Germany) for 60 min. The membrane was incubated overnight at 4 ◦C with a polyclonal
rabbit anti-rat antibody to Rarres1 (Biorbyt, Cambridge, UK) at a concentration of 1:250, or polyclonal
rabbit anti-rat antibody to Rarres2 (Thermo Fisher, Waltham, MA, USA) at a concentration of 1:500
(rat)/1:1000 (mouse). Subsequently, the membrane was incubated for 60 min at room temperature
with a secondary donkey anti-rabbit antibody (GE Healthcare, Amersham, UK) in the concentration
1:10,000 (for Rarres1 rat–blots 5% milk powder was added). As a reference, a monoclonal mouse
anti-vinculin antibody at a concentration of 1:2000 and a monoclonal mouse anti-β-Tubulin antibody
at a concentration of 1:10,000 (both from Sigma Aldrich, St. Louis, MO, USA) followed by a secondary
sheep anti-mouse antibody (GE Healthcare, Amersham, UK) were used. As both reference genes
resulted in similar results, only β-Tubulin blots were displayed. Immunoreactivity was visualized
using the fluorescent ECL Plus Western Blotting Substrate according to the manufacturer’s instructions
(Thermo Fisher Scientific, Waltham, MA, USA) and quantified with a luminescent imager (LAS-1000,
Fujifilm, Berlin, Germany) and AIDA Image Analysis software (version 2.1, Elysia-raytest GmbH,
Straubenhardt Germany).

Coomassie Brilliant Blue staining served as the loading control.

4.4. Immunohistochemistry

For immunohistochemical (IHC) analysis, tissues were fixed in methyl Carnoy’s solution and
embedded in paraffin, as previously described [67]. Each group consisted of 6 placentas (3 sections of
the central region, each) from 2 dams. Two-micrometer paraffin sections were prepared with a HM340E
microtome (Thermo Fisher Scientific, Waltham, MA, USA). After de-paraffinization and rehydration
with intermittent Tris-buffered saline (TBS) washing, tissue sections were unmasked by cooking in
target retrieval solution (TRS, Dako Agilent, Santa Clara, CA, USA) for 10 min. Endogenous peroxidase
activity was blocked with 3% H2O2 for 20 min at room temperature. Sections were then incubated in
fetal calf serum (FCS) at 37 ◦C for 30 min and coated with the primary antibody (Rarres1: MyBioSource,
San Diego, CA, USA, 1:50; Rarres2: Thermo Fisher, Waltham, MA, USA 1:100). After incubation at 4
◦C overnight, sections were washed in TBS and layered with the secondary antibody (dilution 1:500;
biotin-conjugated, goat anti-rabbit immunoglobulin G; Vector Laboratories, Burlingame, CA, USA)
at room temperature for 30 min. Subsequently, sections were incubated with avidin-biotinylated
horseradish peroxidase complex (Vectastain PK-6100; Vector Laboratories) at RT for 30 min and with a
DAB (diaminobenzidine tetrahydrochloride) kit (SK-4100; Vector Laboratories, both supplied by Linaris,
Dossenheim, Germany) for 15 min and counterstained with hematoxylin (Merck, Darmstadt, Germany).
After embedding in Entellan (Merck, Darmstadt, Germany), imaging was performed with a DMC
6200 camera mounted on a Leica DMR microscope (Type 020-525.731) using LASX 3.4.2.18368 image
software (all from Leica Microsystems, Wetzlar, Germany). Representative photomicrographs for
antibody specificity testing are shown in supplementary Figure S1.

4.5. Statistical Analysis

Results were expressed as mean ± standard deviation (SD) unless stated otherwise.
Statistical analyses were performed using GraphPad Prism software (version 7.0, GraphPad Software,
San Diego, CA, USA). We checked for outliers by using the PRISM “robust regression and outlier
removal” (ROUT) method (Q = 1%, equivalent to a false discovery rate of 1%), as described by Motulsky
and Brown [68] and Hughes and Hekimi [69]. Excluded data points (n = 0 in rats; n = 1 for mouse PCR
of Rarres1, CmklR1, and IL-11, respectively) were not included in the calculation of the mean per litter.
Subsequently, the means per litter were subjected to further statistical analysis. Before performing
groupwise comparisons, outliers were removed [36] and a non-parametric Mann–Whitney U-test was
executed. A p value <0.05 was considered statistically significant. Data processing and imaging was
performed with Microsoft Office 2016 (Microsoft, Redmond, WA, USA) and Adobe Photoshop CS6
(Adobe Systems, San José, CA, USA).
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5. Limitations

In our study, rodent placental tissue was analyzed in toto. Thus, compartment specific changes
might have been masked. We did not analyze circulating Rarres2 levels in maternal or fetal serum.
Thus, at this point, our conclusions regarding Rarres1/2 are limited to the placental level only. In line
with this limitation, no other local sources of Rarres1/2 (e.g., adipose tissue) were evaluated in our study
and only certain gestational time-points were examined. Thus, temporal changes in placental expression
profiles remain elusive. The choice to analyze mid-/late-gestational placental tissue was based on our
previous findings in human third trimester placentas and trophoblasts [1,2]. Consequently, a potential
involvement of Rarres1/2 in placentation and early gestation of our animal models remains to be
determined. Furthermore, the use of eNOS−/− as a model for IUGR or preeclampsia has been
controversially discussed [70,71]. This model is characterized by impaired endothelial function with
uterine artery dysfunction and a lack of blood vessel expansion, as well as a placental transport
phenotype [26]. Therefore, eNOS−/− might only represent certain early subtypes of human PE and/or
IUGR, which on the other hand may not be relevant to rodents themselves.

6. Conclusions

To our knowledge, we were the first to examine Rarres1 localization in the rodent placenta.
Also, Rarres1 and 2 expressions have not been studied in the above rodent models.

Rarres1/2 findings in both animal models did not resemble placental alterations of
RARRES1/2 observed by us in human PE or PE/IUGR. These results might indicate species-specific
differences in placental regulation and compartmentation. The fact that others observed reduced
placental Rarres2 expression following more profound maternal food restriction suggests metabolic
functions of the peptide beyond its potential tumor-suppressor role that need further investigation.
Furthermore, the clarification of a potential feto-maternal crosstalk via adipocytokine Rarres2 and its
possible role in the regulation of immunologic and inflammatory processes at the placental interface
requires further functional studies. Moreover, the role of IL-11 in the placental pathophysiology of
eNOS−/− mice remains to be determined.
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