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Sepsis contributes to the high prevalence of acute kidney injury (AKI), which

mainly occurs in hospitalized patients. The delay in AKI detection is a risk factor

for death and chronicity; thus, early diagnosis is essential for initiating proper

treatment strategies. Although serum creatinine is used as biomarker, it is

increased in plasma serum creatinine only at late stages of AKI. MicroRNAs

(miRNAs), a class of noncoding RNAs responsible for gene regulation, can be

found in biological fluids within vesicles such as exosomes and may be

promising tools for the early detection of AKI. We aimed to identify potential

blood miRNAs that can be used as early biomarkers of sepsis-induced AKI in

rats. Adult male Wistar rats received a single dose of lipopolysaccharide (LPS).

The earliest significant increase in serum creatinine was detected 4 h after LPS

administration. To evaluate whether miRNAs could act as early biomarkers,

blood samples were collected before and 2 h after LPS infusion. Serum NGAL

levels were used as a comparative marker. Serum miRNAs were derived from

exosomes, and their expression were evaluated by the PCR array.miR-181a-5p

and miR-23b-3p showed higher expression in LPS-treated rats than in the

control animals (p < 0.05). Bioinformatics analysis showed that both miRNAs

target molecules associated with transcription factors that regulate genes

related to proinflammatory cytokines. Considering that LPS activates

transcription factors that lead to the production of proinflammatory

cytokines, possible premature changes in the serum levels of miR-181a-5p

and miR-23b-3p may be used to identify sepsis-induced AKI earlier.
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1 Introduction

Acute kidney injury (AKI) is a clinical syndrome that occurs

in approximately one-third of hospitalized patients and is

associated with high morbidity and mortality (Bellomo et al.,

2004). Currently, sepsis is the most common cause of AKI in

hospitalized patients. Septic patients who develop AKI have a

worse prognosis and an increased risk of chronic kidney disease

(CKD) and death (Schrier and Wang, 2004; Lo et al., 2009; Levey

and James, 2017). The pathophysiology of sepsis-induced AKI

can occur through hemodynamic and nonhemodynamic

mechanisms; intrarenal vasoconstriction, altered blood flow

distribution, tissue toxicity and ischemic changes are the most

frequent mechanisms (Ma et al., 2019).

AKI is diagnosed by decreased urine output and increased

serum creatinine levels (Khwaja, 2012); however, serum

creatinine, which is currently the most frequently used marker

of the glomerular filtration rate (GFR), can be influenced by other

variables that are unrelated to renal damage, such as age, race,

nutritional status, muscle mass, enteral/parenteral diets, catabolic

status and volume status (Thomas et al., 2015). In addition, the

increase in serum creatinine is detectable when renal damage is at

a more advanced stage and there is greater impairment of renal

function, which in turn makes recovery more difficult. Therefore,

it is important to find new, more sensitive and earlier markers of

renal injury, which would allow real-time follow-up and predict

the risk of developing AKI and/or the risk of progression to more

advanced stages.

In recent years, several biomarkers have been considered to

detect AKI at an early stage. Among them, the 25 kDa protein

neutrophil gelatinase-associated lipocalin (NGAL) stands out. In

fact, plasma NGAL concentrations are increased in sepsis

(Mårtensson et al., 2010); however, changes in NGAL levels

are not exclusive to renal injury and can be high in acute

infectious conditions, such as pancreatitis, heart failure and

cancer, even with no signs of AKI (Hjortrup et al., 2013).

Thus, microRNAs (miRNAs), a class of small, noncoding

RNAs, stand out as potential biomarkers for the early diagnosis

of AKI. miRNAs are single-stranded RNAs consisting of

approximately 22 nucleotides (Ha and Kim, 2014) that can be

totally or partially complementary to the 3′ untranslated region

(3′UTR) of target messenger RNAs (Bhatt et al., 2016). Through

this binding, miRNAs regulate gene expression by degrading or

impeding target mRNA translation. Thus, miRNAs suppress the

translation of mRNAs, reducing protein synthesis. In addition,

because of its short length, a single miRNA is able to regulate the

expression of many mRNAs (Simpson et al., 2016).

The recognition of miRNAs as key factors in cellular

physiology and pathophysiology is well established. miRNAs

are secreted by cells through microvesicles, including exosomes,

and they remain stable in body fluids such as blood, saliva, urine,

and feces. (Hu et al., 2010; Gallo et al., 2012; Lv et al., 2013). Several

miRNAs have been previously associated with the

pathophysiology of AKI of many etiologies (Bhatt et al., 2016;

Fan et al., 2016; Liu et al., 2016; Zou and Zhang, 2018), including

septic AKI. Because sepsis-induced AKI can alter the expression

levels of specific miRNAs, these molecules may potentially be

effective tools for the early detection of sepsis-induced renal injury;

however, to our knowledge, there are no studies in the literature

analyzing the early miRNA profile in sepsis. In the present study,

we developed a rodent model of sepsis-induced AKI to identify

early miRNAs that were differentially expressed in the serum

exosomes of septic animals.

2 Materials and methods

2.1 Rodent model of sepsis-induced acute
kidney injury and serum creatinine analysis

All experimental procedures were approved by the Ethics in

Research Committee of the Federal University of Sao Paulo

(CEUA-UNIFESP #3083130317). Male Wistar rats weighing

150–200 g were used to establish the sepsis-induced AKI model.

Animals were purchased from the animal facility of the Federal

University of Sao Paulo, Brazil and were housed in collective cages

(5 animals/cage) at room temperature with a 12 h light/dark cycle

and free access to standard food and tap water. The basal

parameters were obtained from blood sampled by venipuncture

of the retro-orbital sinus under sedation. After 15–21 days, the

animals received 7.5 mg/kg LPS from Escherichia coli (strain 0111:

B4) intraperitoneally (i.p.). Pilot experiments were performed to

determine the ideal dose of LPS that was enough to induce AKI,

and 7.5 mg/kg was determined to the most suitable dose.

First, the animals were divided into 4 groups containing six

animals in each group to determine the kinetics of the increases in

serum creatinine. Animals received 7.5 mg/kg LPS, and blood samples

were collected at different times (2 hr, 4 hr, 6 hr, and 8 h) after LPS

administration. After this experiment, another group of animals (n=5)

received LPS (7.5 mg/kg). The animals were anesthetized with

xylazine/ketamine (5mg/kg/75 mg/kg), and blood samples were

collected before (basal) and 2 h after LPS administration. Animals

were euthanized by anesthetic overdose. All blood samples were

immediately centrifuged, and the serumwas stored at -80 °C until use.

Serum creatinine concentrations were determined by Jaffe’s

method. Serum concentrations of NGAL were measured using

the rat NGAL ELISA kit (BioPorto, Denmark) according to the

manufacturer’s instructions.

2.2 Exosome-derived RNA extraction,
cDNA synthesis and preamplification of
microRNAs

Total RNA, including miRNAs, was isolated from serum

exosomes using the commercial exoRNeasy serum plasma midi
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kit (Qiagen, Germany) according to the manufacturer’s

instructions. Exogenous cel-miR-39-3p (Qiagen) was added to

the samples to measure the RNA isolation efficiency, as

determined by the manufacturer.

The complementary DNA (cDNA) was then synthesized

from 100 ng of total RNA by using the miScript® II RT kit

(Qiagen), and miRNA preamplification was performed using the

miScript® PreAmp PCR kit (Qiagen) according to the

manufacturer’s instructions.

2.3 RT-qPCR array to analyze miRNA
expression

The expression levels of each miRNA were determined by

RT-qPCR in 5 serum samples from control (basal) animals and 5

serum samples from animals 2 h after LPS administration. PCR

arrays were performed using the QuantiStudio 7 system (Life

Technologies, EUA) according to the manufacturer’s

instructions. The expression levels of the miRNAs were

normalized to the cel-miRNA-39-3p, SNORD61, SNORD68,

SNORD95, SNORD96A and RNU6-2 controls using Data

Analysis Center software (Qiagen).

2.4 Target genes and pathway analysis of
the dysregulated microRNAs

The miRNA target gene databases miRDB (http://mirdb.org/)

and TargetScan (http://www.targetscan.org/) were used to predict

the target genes of the differentially expressed miRNAs. miRDB is

an online bioinformatics tool for predicting molecular targets of

microRNAs (Wong and Wang, 2014). TargetScan is another

online bioinformatics tool for predicting biological targets of

miRNAs that searches for the presence of conserved sites that

can bind with the seed region of each miRNA (Lewis et al., 2005).

The identified target gene set and the Enrichr database

(http://amp.pharm.mssm.edu/Enrichr/) were used to analyze

the biological process, molecular function, cellular component

and pathways that were significantly enriched by the target genes.

This online software integrates several databases and, from the

target genes listed, is able to identify enriched transcription

factors associated with these genes (Chen et al., 2013).

2.5 Analysis of exosome-enriched
extracellular vesicles

The exosome size and concentration were determined using a

Malvern Nanosight Tracking Analysis (NTA) system (NS300)

(Worcestershire, United Kingdom). All samples were diluted

according to the limit capacity of the equipment and the particle

concentration (particles/mL) was calculated.

2.6 Statistical analysis

The paired t-test was used to compare mean creatinine levels

between the LPS-treated animals and the respective basal values.

The Shapiro-Wilk test was used to assess the distribution of

NGAL, which did not show a normal distribution. Therefore, the

Wilcoxon test was used to compare the NGAL levels in the serum

of the animals 2 h after LPS injection compared to basal levels.

The data were considered statistically significant when p < 0.05.

3 Results

3.1 Characterization of the rodent sepsis-
induced AKI model

Results are presented as mean±standard deviation. High

lethality was observed mainly after more prolonged period

after LPS administration. One animal died after 2 h, and

4 animals died after 6 and 8 h. As shown in Figure 1, there

was an increase in serum creatinine 2 h after LPS administration,

but the difference was not significant. Serum creatinine was

significantly increased at 4 h, demonstrating that the detection

of renal dysfunction by serum creatinine levels was possible at 4 h

after LPS administration (Figure 1).

3.2 Sepsis-induced AKI induces the release
of small exosomes in the serum

Initially, we examined whether LPS stimulation interfered

with the release of exosomes. The representative image of size

distribution and particle concentration of exosomes between two

groups is shown in Figure 2A. Increased exosome release was

observed in LPS-stimulated animals compared to basal control

(p=0.005; Figure 2B). In addition, a significantly smaller exosome

size was observed in the LPS treatment group than in the control

group (p=0.036; Figure 2C). These data indicate that LPS

influences both the release and size of circulating extracellular

vesicles in rats.

3.3 Analysis of miRNA profiles

To identify an earlier biomarker of sepsis-induced AKI than

creatinine, the expression profile of miRNAs in samples collected

2 h after LPS administration, which was an earlier time than that

needed to detect serum creatinine elevation, was evaluated.

The expression heatmap of the miRNAs identified in

exosomes isolated from the serum of control or LPS-treated

animals is shown in Figure 3. The PCR array results showed that

of the 84 miRNAs identified, 40 had increased expression and

4 had decreased expression (Supplementary Table S1) compared

Frontiers in Physiology frontiersin.org03

Da-Silva et al. 10.3389/fphys.2022.944864

http://mirdb.org/
http://www.targetscan.org/
http://amp.pharm.mssm.edu/Enrichr/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.944864


to basal control levels. Only 2 upregulated miRNAs were

statistically significant, miR-181a-5p and miR-23b-3p, and

these miRNAs exhibited increased expression after LPS

treatment compared to those of controls (p=0.015 and

p=0.035, respectively; Figure 4). Downregulated miRNAs were

not statistically significant.

3.4 Analysis of miR-181a-5p target genes

Using the miRDB and TargetScan bioinformatics tools, we

verified the target genes ofmiR-181a-5p. Of these target genes, we

selected the 10 targets with potential involvement in the

pathophysiology of AKI, as shown in Supplementary Table S1.

We found that only the ZNF594 gene was identified as a target

gene of miR-181a-5p by the two tools. This gene encodes a “zinc

finger” nuclear protein that is capable of binding to DNA and is

related to mechanisms that control gene transcription (Jen and

Wang, 2016).

To better understand the biological role of miR-181a-5p, we

used the Enricher platform. As shown in Supplementary Table

S2, according to this tool, miR-181a-5p is associated with many

physiological processes, including the regulation of transcription,

regulation of macromolecule synthesis and regulation of gene

expression. Analysis by Enricher demonstrated thatmiR-181a-5p

mediates these mechanisms by interfering with DNA dynamics,

FIGURE 1
Serum creatinine concentrations before (controls) and at 2 (A), 4 (B), 6 (C) and 8 (D) hours after LPS administration. *p < 0.05 vs the control
(paired t-test).

FIGURE 2
Exosome characterization. (A) Histogram representing the profile of nanoparticle size by nanoparticle tracking analysis. (B) Exosome
concentration. (C) Exosome size. *p < 0.05 vs the controls (paired t-test).
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FIGURE 3
Heatmap of the expression of 84 miRNAs evaluated by RT-qPCR array. LPS (n=5); Control (n=5). Red indicates high relative expression, and
green denotes low relative expression.
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as shown in Supplementary Table S3, and is associated with

several organelle functions (Supplementary Table S4) and

pathophysiological processes, including prostate cancer

(Supplementary Table S5). These results suggest that miR-

181a-5p has several cellular functions, from gene transcription

to vesicle formation.

3.5 Analysis of miR-23b-3p target genes

miR-23b-3p and the top 10 target genes are shown in

Supplementary Table S1. The two target genes AUH and

FAM234B were identified by the two tools used in this

investigation. The Enricher platform identified the biological

processes (Supplementary Table S2), molecular functions

(Supplementary Table S3), cell components (Supplementary

Table S4) and pathways (Supplementary Table S5) associated

with miR-23b-3p. Among the many biological processes

regulated by miR-23b-3p, the cellular response to drugs

(Supplementary Table S2) is of interest since it could have an

impact on the results obtained in this study. This activity may be

related to the role of miR-23b-3p in upregulating 3′,5′-cyclic
AMP and cyclic 3′,5′-nucleotide phosphodiesterase activity

(Supplementary Table S3).

3.6 Serum NGAL is increased in the rodent
sepsis-induced AKI model

As a possible tool to validate the results obtained, we used

the NGAL serum concentration, which was measured in

samples of the animals 2 h after LPS injection to verify

whether this marker was also altered. We observed that

NGAL showed a statistically significant increase (p=0.018) in

serum samples from animals 2 h after LPS injection compared

to those of the controls (Figure 5).

FIGURE 4
Volcano plot of the analyzed miRNAs. Above the horizontal line are the differentially expressed miRNAs with statistical significance in LPS-
treated animals relative to the controls. The x-axis shows log 2 (fold change) changes between the LPS-treated animals and the control animals,
while the y-axis shows the log-10 of the p value.
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4 Discussion

Sepsis is one of the most common causes of AKI in clinical

practice, is characterized by very high mortality, and mainly

occurs in hospitalized patients. The use of early therapeutic

strategies, such as dialysis, may help reduce the morbidity and

mortality caused by the clinical consequences of sepsis-induced

AKI. Identifying the molecules and pathways involved in sepsis-

induced AKI is extremely important to better understand the

development of this disease, as well as to identify sensible

biomarkers capable of predicting the decline in renal function

at an earlier stage and, consequently, enabling appropriate

therapeutic strategies at the most opportune moments. The

identification of urinary markers can be difficult because of

the reduced urine output that is typical of most forms of AKI.

In addition, several studies have identified miRNAs associated

with sepsis-induced AKI (Leelahavanichkul et al., 2015; Colbert

et al., 2017; Fu et al., 2017; Ge et al., 2017; Chen Y. et al., 2018;

Zheng et al., 2018; Yongjun et al., 2019); however, most of these

studies identified tissue miRNAs that would make them unlikely

to be AKI biomarkers in clinical practice. miRNAs transported

by extracellular vesicles present in the serum are easily obtained

with minimal invasiveness and can therefore be used as

biomarkers of sepsis-induced AKI. In the present study, two

differentially expressed miRNAs were isolated from circulating

extracellular vesicles and identified in this sepsis-induced AKI

model: miR-181a-5p and miR-23b-3p. Both miRNAs were

upregulated before the increase in serum creatinine and

therefore at an earlier stage of sepsis-induced AKI development.

miR-181a-5p has been reported to be involved in many

pathophysiological mechanisms associated with different types

of cancer, (Yu C. et al., 2019; Yu J. et al., 2019; Mao et al., 2019;

Zhu et al., 2019), hypertension (Marques Francine et al., 2011;

Marques et al., 2015; Mathe et al., 2018), diabetic nephropathy

and renal fibrosis (Xu et al., 2017). Interestingly, miR-181a-5p

was increased in extracellular vesicles in the plasma of septic mice

(Xu et al., 2018) and induced proinflammatory cytokines such as

MIP-2, IL-6, IL-β, TNF-α and FB (Xu et al., 2018). Moreover, it

has been demonstrated that miR-181a also interferes with the

expression of IL-8 by modulating the immune receptor TLR4

(Galicia et al., 2014). Sepsis is characterized by severe

inflammatory responses; thus, these results suggest that miR-

181a-5p may constitute a very early signal of inflammation in

response to sepsis, and its increase in plasma can be detected

before serum creatinine elevation. The increase in miR-181a-5p

before renal function weakening suggests that miR-181a-5p is a

potential biomarker of sepsis-induced AKI; however, its

association with the decline in renal function in humans

needs additional study.

We also observed upregulation ofmiR-23b-3p, and similar to

miR-181a-5p, this miRNA is also associated with several types of

neoplasms (Wei et al., 2018; Xian et al., 2018; Yang et al., 2018;

Moreno et al., 2019; Rezaei et al., 2019). Interestingly, the

presence of miR-23b-3p in human urinary exosomes has been

reported, and its expression was increased in urinary exosomes of

patients with nephrotic syndrome (Cheng et al., 2014). There is

evidence thatmiR-23b-3p regulates multiple cellular processes in

podocytes, and therefore, increased miR-23b-3p expression may

be a consequence of glomerular and podocyte damage (Chen T.

et al., 2018). Similar to miR-181a-5p, miR-23b-3p can regulate

inflammatory responses (Smith et al., 2003), including the

primary T cell immune response (O’Connor et al., 2008).

Other aspects related to miR-23b-3p that are relevant in the

context of the present study include the regulation of the protein

PPARGC1A, which participates in the regulation of nephron

segmentation during embryogenesis (Chambers et al., 2018).

Additionally, PPARGC1A deficiency was associated with renal

inflammation and increased nephrotoxic severity in AKI (tubular

cell death and compensatory proliferation of these cells)

(Fontecha-Barriuso et al., 2019). Thus, these results, together

with those of the present study, reinforce thatmiR-23b-3p targets

important proteins in renal inflammation related to sepsis-

induced AKI.

The increase in miR-181a-5p and miR-23b-3p expression 2 h

after LPS administration was coincident with the increase in

NGAL in the serum of LPS-treated animals. Although NGAL has

been indicated as a gold standard biomarker for many forms of

AKI, it is important to emphasize that the diagnostic capacity of

NGAL remains somewhat controversial, especially in the context

of AKI. NGAL is a marker of minimal tubular damage, especially

in sepsis (de Geus et al., 2013; Macdonald et al., 2017); however,

there is no evidence the accuracy of NGAL measurement in

predicting sepsis-induced AKI (de Geus et al., 2013). On the

other hand, the increase in serum NGAL 2 h after LPS may

validate our results and indicate that the miRNAs identified in

the present study can be used as potential early biomarkers of

LPS-induced renal damage.

Finally, our results showed that LPS induced an increase in the

number of extracellular vesicles in serum. Based on size, these vesicles

FIGURE 5
Serum NGAL concentrations before (basal) and 2 h after LPS
administration. *p < 0.05 vs basal levels (Wilcoxon test).
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were mainly exosomes. This result was consistent with those of other

studies showing that pathogen infection can stimulate exosome and

proinflammatory cytokine release as a mechanism of immune

surveillance (Bhatnagar et al., 2007; Bhatnagar and Schorey, 2007;

Essandoh et al., 2015). We observed that extracellular vesicles are

significantly affected by LPS by decreasing the vesicle size and by

regulating the vesicular miRNA content. Exosomes ranged from

30 to 150 nm in size (Chen et al., 2022). The size of the exosomes

control group showed an average of 174 nm. However, the highest

concentration peaks in the control group are smaller than 150 nm in

diameter (Figure 2A). One factor indicating increased exosome size is

aggregates of vesicles that can be interpreted as a single vesicle by

NTA and showed a larger vesicle size. This data was observed by

Novaes et al. in a study that showed aggregates with variable sizes of

exosomes by electron microscopy (da Silva Novaes et al., 2019). Our

results revealed a significant decrease in the size of the exosome in the

LPS group (Figure 2C). Bell et al. examined the size exosome

characteristics of AC16 human cardiomyocytes stimulated with

LPS. The results revealed that LPS significantly decreased mean

exosome size (Bell et al., 2019). These findings corroborate that size of

the exosomes decreases substantially in cells stimulated with LPS.

Other stimuli also demonstrated similar results in a reduction of the

size of exosomes, like extracellular osmotic stress (Fathali et al., 2017),

sonication (Nizamudeen et al., 2021), and influence of storage at

37°C, 4°C, and −20 °C (Yuan et al., 2021). Our results showed that

LPS stimuli could reduce the size and increase the number of vesicles.

In summary, we have shown thatmiR-181a-5p andmiR-23b-

3p were differentially expressed in circulating extracellular

vesicles earlier than creatinine elevation in a sepsis-induced

AKI rat model. These miRNAs target several molecules

related to physiological and pathological conditions, especially

transcription factors related to regulatory proteins involved in

inflammatory processes. The difference in the expression of these

miRNAs may potentially be an important tool for the early

identification of sepsis-induced AKI and be useful for

discriminating sepsis-induced AKI from other causes of AKI.

Finally, it is worth pointing out that these miRNAs can serve as

therapeutic targets in sepsis-induced AKI.
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