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Abstract: The introduction of medical Internet of Things (IoT) for biomedical applications has brought
about the era of proactive healthcare. Such advanced medical supervision lies on the foundation of
a network of energy-constrained wearable or implantable sensors (or things). These miniaturized
battery-powered biosensor nodes are placed in, on, or around the human body to measure vital
signals to be reported to the sink. This network configuration deployed on a human body is
known as the Wireless Body Area Network (WBAN). Strategies are required to restrict energy
expenditure of the nodes without degrading performance of WBAN to make medical IoT a green
(energy-efficient) and effective paradigm. Direct communication from a node to sink in WBAN may
often lead to rapid energy depletion of nodes as well as growing thermal effects on the human body.
Hence, multi-hop communication from sources to sink in WBAN is often preferred instead of direct
communication with high transmission power. Existing research focuses on designing multi-hop
protocols addressing the issues in WBAN routing. However, the ideal conditions for multi-hop
routing in preference to single-hop direct delivery is rarely investigated. Accordingly, in this paper an
optimal transmission policy for WBAN is developed using Markov Decision Process (MDP) subject
to various input conditions such as battery level, event occurrence, packet transmission rate and
link quality. Thereafter, a multi-hop routing protocol is designed where routing decisions are made
following a pre-computed strategy. The algorithm is simulated, and performance is compared with
existing multi-hop protocol for WBAN to demonstrate the viability of the proposed scheme.

Keywords: medical IoT; WBAN; energy efficient; Markov Decision Process; routing; specific
absorption rate; transmission strategy

1. Introduction

Medical Internet of Things (IoT) [1] enables a collection of medical devices and applications to
be connected through the Internet, and has revolutionized the conventional concept of healthcare.
Wearable applications of IoT in the medical field has spawned the era of smart healthcare [2,3], which
enables constant medical supervision under free living conditions and thus upgrades the existing
medical infrastructure. A three-tier architecture [2] (as shown in Figure 1)—based proactive healthcare
approach could enhance the quality of living in different ways [3] by providing continuous medical
assistance at a reasonable cost. Such a health-monitoring system subject to an energy constraint
network, namely Wireless Body Area Network (WBAN) [2], a network of small-size, ultra-low-power,
wearable or implantable biosensor nodes powered by batteries placed in, on, or around the human
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body to measure vital physiological parameters together with a WBAN coordinator (that could be a
smart handheld device as well), acts as a sink to store and process health data locally. Tier 1 focuses
on network formation, whereas in tier 2, the sink communicates via WLAN or GPRS technology to a
remote medical server residing at tier 3 for analysis of health data by medical personnel and to provide
necessary actions.

Figure 1. Three-tier architecture of WBAN.

In tier 1 of WBAN, different applications could use a suitable physical and MAC layer as
defined by IEEE standards. These include IEEE 802.15.4 (Zigbee), IEEE 802.15.1 (Bluetooth) and
IEEE 802.15.6 (mainly used for implantable nodes). To prolong the lifetime [4] of the network
to achieve long-lasting benefits of WBAN applications [2,5] energy-efficient network layer [6,7] is
essential. The low-power-consumption (typically, power output rating lower than 0 dBm) feature
of BAN transceivers limits transmission distances to around 2 m, depending on power output and
environmental characteristics [8]. Hence, relay nodes are often placed in the network to acquire
the benefits of short-range multi-hop communication [4,7,9] with low transmission power over
long-distance high-power direct data delivery. However, the latest version of the IEEE standard
proposed for WBAN in February 2012 suggests two-hop communication [2]. Although a proprietary
system could use more than two hops, in such cases, interoperability could be a significant challenge.

Research works reported in [2,10] identified that data transmission is the prime source of
energy expenditure within WBAN and hence strategies should be made to obtain a balance between
reliable data delivery with minimal energy depletion. Previous research works reported in [11–14]
addressed the key factors related to the system state such as energy level of nodes, event occurrence,
energy-harvesting capacity, data importance etc. to carry out analytical formulation of transmission
strategies. Mathematical models, particularly Markov Decision Process (MDP) [15], is found to be
exploited in state-of-the-art works reported in [12,13] to predict the optimal sequence of actions to
be followed to achieve the desired goal. In addition, the type of nodes used in WBAN are either
implanted or wearable and thus data communication takes place through tissue and/or air medium
accordingly [3]. Hence, channel conditions impose an impact on reliable data delivery. Low power
transmission in adverse channel conditions could result in data loss. Besides, electromagnetic radiation
absorbed by human tissue (measured in terms of Specific Absorption Rate (SAR), [2]) generated due to
network activities of bio sensor nodes may result in several health hazards [16] if it reaches beyond the
regulatory limit [2]. However, the heat generation is proportional to the energy depletion rate of the
participatory nodes in the network which in turn subjects to the effective transmission power of data
communication. Thus, obtaining optimal transmission power for intra-BAN communication plays a
key role in effective network design. However, this analytical approach towards designing optimal
transmission strategy requires post-deployment feedback as well to justify its effectiveness. Another
trend is observed in literature [17,18] to address these pivotal issues related to data transmission within
WBAN during routing data towards the sink. Here, optimal transmission power is chosen adaptively
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at runtime as part of the routing decisions. Hence, in this case the complex mathematical analysis to
obtain optimal transmission power could over-burden such resource-constrained network.

In this work, a transmission strategy for multi-hop intra-BAN communication has been formulated
offline prior to network deployment based on the following input conditions: energy level of nodes,
event occurrence depicted in terms of data packet generated by nodes to deliver to sink, packet
transmission rate which reflects the effect of heat generation due to network activities and link quality.
The designed policies are incorporated into the nodes and thereafter a multi-hop routing protocol has
been devised where routing decision follows the pre-computed strategy. In this work the contributions
are as follows.

• An MDP formulation to develop the transmission strategy for multi-hop communication within
WBAN which not only focuses on obtaining optimal transmission power subject to the input
conditions but also reflects the necessity of multi-hop data transmission as well.

• A routing algorithm is designed based on the effective transmission strategies obtained by solving
MDP formulation prior to deployment. These transmission strategies correspond to the system
states that the network may undergo after deployment in terms of energy level, event occurrence,
packet transmission rate and link quality. The nodes route data following a simple but effective
routing algorithm and make a decision to transmit via multi-hop or single-hop based on suitable
transmission power.

• The effectiveness of the designed solutions is verified with extensive simulations, and performance
is evaluated with respect to the existing multi-hop protocol for WBAN.

The paper is organized as follows. Section 2 provides an overview of the state-of-the-art
works reported in literature followed by a discussion of MDP in Section 3. Section 4 presents the
proposed work in detail along with the system model and MDP formulations. Section 5 illustrates the
experimental particulars including the simulation setup and analysis of experimental results. Finally,
concluding remarks are presented in Section 6.

2. Related Work

A vast literature could be found on energy efficiency and lifetime improvement of WSN. Although
WSNs significantly differ from WBANs in many aspects including size, scope, application, coverage
etc., understanding of research efforts in traditional WSNs is important to gain deeper insight and
full context. Hence, the first part of this section discusses energy efficiency in traditional WSNs
for completeness. Grouping nodes to form clusters is one of the well-known mechanisms for
energy-efficient communications in WSN. A clustering-based protocol LEACH (Low-Energy Adaptive
Clustering Hierarchy) was proposed by Heinzelman et al. [19] that exploited randomized rotation
of cluster heads to evenly distribute the energy load among the sensors in the network. In-LEACH
scalability and robustness for dynamic networks are addressed by localized coordination, and data
fusion is found to be incorporated into the routing protocol to reduce the amount of information
to be transmitted to the base station. Another distributed clustering approach was proposed by
Younis et al. [20] for long-lived sensor networks. This approach does not make any assumptions
for factors like the presence of infrastructure, or the availability of multiple power levels in sensor
nodes. Instead, a Hybrid Energy-Efficient Distributed clustering (HEED) was presented by the authors.
In this protocol cluster heads are selected periodically based on the residual energy of a node and node
proximity to its neighbors or node degree. The advantages and objectives of clustering for WSN are
analyzed by Liu [21] along with a comparative study of these protocols.

There are works reported in literature that focus on designing transmission strategies for WSN
to achieve energy efficiency. In [11] a generic mathematical framework was proposed to characterize
the policies for single-hop transmission over a replenishable sensor network. Here different modes of
energy renewal were presented with Markov Chain Process and accordingly, optimal transmission
policy was derived for sensors with different energy budgets. The energy status and the reward
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for successfully transmitting a message were given as input to the formulations to maximize the
average reward rate and justify the existence of optimal threshold as well. In [22] optimal selective
forwarding policies was proposed to save energy and extend the lifetime of WSN based on the available
energy resources of the nodes, the energy cost of retransmitting a message or the importance of the
message. Forwarding schemes included three different scenarios: first, when sensors maximized the
importance of their own transmitted message; second, when the sensors maximized the importance
of messages that were successfully retransmitted by at least one of its neighbors; and finally, when
sensors maximized the importance of messages that successfully arrived at the sink. Performance was
measured in terms of gain of selective forwarding policies under exponential importance distribution
when energy costs were stochastic. Thus, the current energy level of nodes is found to be the key
element in modeling transmission strategy in the works reported in [11–13]. However, data importance
is obtained as another input parameter for optimal transmission strategy formulation in the works
reported in [13,22,23]. In [13] policies were developed whether to transmit the data packet or not,
based on the current energy level and data importance, to maximize the long-term average transmitted
data importance. Whereas, the work in [24] aimed at maximizing the long-term average transmission
rate considering energy-harvesting device with packet data queue.

However, the architecture, deployment area, and operating conditions of WSNs differ from
WBANs. WBANs are deployed on a human body thus having limited coverage area but sensitive to
transmission energy (as radiation may cause tissue damage). On the contrary, in WSNs, hundreds of
sensor nodes cover large areas such as an agricultural field or a city and use multi-hop communications.
Thus, clustering can be a useful solution for WSNs but for WBANs with typically 6–20 nodes (standard
for typical medical network [2]), it can add unwanted overheads. The body sensors require mostly
single-hop or two-hop data transmission. Not only node lifetime, but also the rate of energy depletion
due to computational and transmission power is important for WBAN as these factors directly
correspond to SAR.

Existing research works on development of transmission strategies are listed in Table 1 according
to time line. The works in [12,14,24] primarily focused on analytical development of transmission
strategies for intra-BAN data communications. In [17,18], authors reported the development of network
layer protocols which incorporate the adaptive selection of transmission power as a component of the
routing process. An energy-efficient fuzzy routing protocol was proposed in [17] which attempted to
prolong the lifetime of the network by taking the optimal route to a destination based on energy level,
traffic load and link usage. The following steps are found to be executed by the protocol proposed
in [17]. At the beginning, nodes access their own battery level. Next, transmission power is adjusted
depending on distance and subsequently, routing queries are generated to transfer data. Thereafter, a
single neighbor’s information is obtained, and routing path is calculated. Finally, a fuzzy inference
system is invoked to take the decision about the next hop. Here the node with low energy is avoided
to act as the next hop for the data packets to be delivered to the sink. The transmission power is
adjusted in the work according to the distance of the receiver node. However, adaptive power control
and routing in multi-hop WBANs are considered in [18] to develop a low overhead energy-efficient
routing scheme based on Collection Tree Protocol (CTP). However, these protocols attempted to
obtain optimal transmission power during network activities after deployment of body-sensor nodes
which could impose an additional overhead to the resource-constrained system. Nevertheless, the
use of mathematical models in developing transmission strategies have been a common practice
over the years. The works reported in [11–14,22,24] are found to exploit MDP [15] to formulate
transmission policies whereas in [25] Monte Carlo Simulation is used to design energy-efficient
adaptive transmission power control scheme. Network-coded transmission policies are presented
in [26] to reduce the number of transmissions in simple multi-hop networks. However, the existing
literature mostly uses MDP to design transmission policy as this is found to be the convenient
mathematical framework for planning under uncertainty. Hence, Table 1 refers to the existing works
formulated with MDP only.
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Table 1. Research work on developing transmission strategies published since 2009.

Year Existing Work Network Topology
Used Issues Handled Mathematical Model Used Input Conditions Performance Metric

2009 Generic model [11] WSN Single-hop Energy
replenishment Markov model Energy status Battery capacity, reward rate

2010 Transmission
strategies [12] WBAN Single-hop

Energy harvesting,
energy efficiency,

reliability
Markov model

Current energy level, state of data
generation process, battery recharge,

packet error probability
Quality of coverage

2011 Selective
forwarding [22] WSN Multi-hop Energy effiviency Markov Decision Process

available battery of the node, the
energy cost of retransmitting a

message or the importance
of messages

Suboptimal scheme and reduced computational cost

2012 Transmission
policies [13] WSN Single-hop Energy harvesting Markov model Current energy level of sensors,

data importance Transmission probability, energy level

Routing protocol [18] WBAN Multi-hop

Energy efficiency,
power control,
transmission

reliability,
low overhead

CTP Changing link quality, end to end
delay, packet loss

Packet reception ratio, delay, energy consumption,
energy balancing

2013 Transmission
policies [14] WSN Single-hop Energy harvesting Markov model battery capacity, data transmission

with a given energy cost
Asymptotic average reward as a function of SNR,

transmission probability

Routing protocol [17] WBAN Multi-hop
Energy efficiency,

power control,
lifetime

- Distance of the receiver Remaining energy

2015 Transmission
policies [24] WSN Energy harvesting Markov model Energy level, data queue Buffer size and battery, large data buffer case, low

complexity policy

Transmission
approach [27] WBAN Single-hop Energy efficiency Circuit energy, transmission energy

on distance
Energy consumption, recovery energy, transmission time,

duty cycle

2016 Transmission
policies [26] WSN Multi-hop Energy efficiency Network coding

No. of relay, recoding scheme and
field size, Source and

relay transmission
Mean transmission, medium access probability

2017 Transmission
strategies [28] WBAN Energy efficiency Discrete Markov Arrival

Process
Channel state, battery state, no. of

buffered packet in the system

Optimizing
transmission [7] WBAN Multi-hop

Transmission
reliability, energy
efficiency, lifetime,
body movement

Signal to noise ratio, bit error rate

Transmission success rate, packet size, sensed data
percent, burden packets per sec, transmission reliability,

energy efficiency, energy consuming speed, energy
balance degree, lifetime

2018 This study WBAN Multi-hop

Transmission power,
energy efficiency,
body movement,
heat generation

Markov Decision Process
Energy level, event generation,

packet transmission rate,
link quality

Packet received by sink, consumed energy, packet
delivery ratio, heating ratio
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In [27], authors reported a system level energy consumption model associated with transmission
distance and transmission data rate over on body communication link. Then, they derived a threshold
distance for energy saving in WBAN based on the analysis of tradeoff between circuit energy and
transmission energy. According to the work in [27], for a distance less than or equal to threshold
distance, circuit energy is comparable to the transmission energy consumption and as such total energy
expenditure could be restricted by optimizing the transmission data rate.

A two-hop communication system with energy-harvesting nodes was presented in [29] where
both source and relay were able to harvest energy from environment during communication. The works
in [13,14] also aimed at harvesting energy from ambient resources apart from conventional objectives
such as energy efficiency, reliability, throughput maximization etc. A comprehensive taxonomy of
the various energy-harvesting sources in WSN was presented by the authors in [30]. In [12,31],
authors included energy-harvesting process as an input criterion to develop optimal transmission
policy as well. In [12], authors devised a transmission strategy by taking into account energy level
of nodes, event generation, battery recharge and packet error probability. Here two transmission
modes are assumed to be available for the sensors allowing tradeoff between energy consumption
and packet error probability. Decision policies are formulated here to obtain the transmission mode to
be used at a given instant of time to maximize the quality of coverage. The problem was structured
exploiting MDP framework and an upper bound in the performance of arbitrary policies was figured
out. However, in [31], authors considered energy replenishment process and battery capacity to find
optimal transmission policies for rechargeable nodes. Here optimal solutions have been identified for
two related problems; first the transmission policy that maximizes the short-term throughput in terms
of the amount of data transmitted in a finite time horizon is obtained and next minimization of the
transmission completion time for a given amount of data is addressed accordingly. In this work, a
model with discrete packets of energy arrival has been considered for battery replenishment. However,
the recharging or replacement of batteries of body-sensor nodes is not always feasible in the case of
WBAN particularly in case of implanted nodes. A cross layer design was proposed in [7] to address
the pivotal issues of WBAN communication such as transmission reliability, energy efficiency, lifetime
grounded on transmission power control, relay decision and packet selection within WBAN. The work
adopted cross layer design involving physical, MAC as well as network layer. The work is found to
focus on choosing optimal transmission power by maximizing energy efficiency over a single link
and after that optimal relay is decided through the tradeoff between maximization of energy and
minimization of energy consumption speed. Next, remaining energy of leaf nodes of WBAN topology
is exploited to enhance transmission reliability without any loss of lifetime. At the end, the optimized
packet size has been selected for optimizing energy efficiency.

Thus, the existing works opt for developing transmission strategies for energy-constrained
networks (i.e., WSN and WBAN) particularly focusing on finding optimal transmission power subject
to different input conditions such as current energy level, event generation, data importance etc. Thus,
prime issues related to communication (such as energy efficiency, reliability, throughput etc.) along
with energy harvesting (to cope up with scarcity of energy) can be addressed. Initially, research was
carried out focusing on one or two input conditions, but more dimensions were gradually added
for better analysis. In addition, previously most of the approaches were designed to be used for
single-hop data transmission but later, the trend moved towards multi-hop scenario. Still there is
room for further exploration of modeling multi-hop strategy. Besides, the transmission power has
severe impact on heat generation in WBAN which is hardly investigated in state-of-the-art literature.
The transmission policies framed for WSN cannot be applied directly in WBAN due to its inherent
challenges as well. Furthermore, use of mathematical model with intricate numerical formulations to
predict optimal strategy could intensify the complexity of resource-constrained network. Herewith, in
this paper energy-efficient multi-hop transmission strategy following MDP is proposed for intra-BAN
communication which predicts optimal policy prior to deployment of the network. The outcome is
incorporated into the nodes to get reflected in routing decisions during post-deployment phase.
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3. Markov Decision Process

MDP [15] is described as a discrete-time-state transition stochastic process which gives a
mathematical framework for making any rational decision when the outcome is partly random
and partly regulated by the decision makers [27]. It is convenient to use MDP formulations to
line up a strategy under uncertainty. Here decisions are optimized in either of the following way,
i.e., minimization of the expected cost to meet the objective or maximization of the expected reward.
MDP process model is presented in Figure 2.

Figure 2. MDP Process Model where ti denotes i-th time instant.

MDP is expressed by five-tuple: (Xt, At, P, R, γ′). Here Xt denotes system state at any time
instant t and At represents the finite set of actions (at) where the corresponding action at if performed
at Xt drives the system state Xt to one of the probable next states Xt+1 as depicted in Figure 2.
The state transition probabilities from each system state Xt to next possible state Xt+1 depending on
the action at performed are recorded in matrix P and the corresponding reward generated at each
state are documented in matrix R. The structure of P matrix and R matrix are presented in Figure 3a,b
respectively for m number of system states subject to an action at. Both matrices are represented
in m × m dimensions indicating all possible state changes where each row heading and column
heading, i.e., State i ∃m−1

i=0 indicate present system state and next possible system state, respectively.
For instance, the element of P matrix PX0→2 represents state transition probability from state 0 to state 2
and accordingly the element RX0→2 of R matrix denotes the corresponding reward generated due to
state change from state 0 to state 2 depending on the action at. However, each system state could be
represented as a combination of k state variables

X = {SV1, SV2, .., SVk} (1)

Each state variable could have different range of values, say m1,m2,..,mk then the product of these
values gives the order of these matrices, i.e., m = m1 × m2 × .. × mk. For simplicity, let State 0
and State 2 are represented as {SV1

0 , SV2
0 , .., SVk

0 } and {SV1
2 , SV2

2 , .., SVk
2 } respectively in Figure 3a,b.

In such case, the element of P matrix PX0→2 is given by the product of state transition probabilities of
each state variables from State 0 to State 2, i.e., PX0→2 = PSV1

0→2
× PSV2

0→2
× ...× PSVk

0→2
. Accordingly,

the reward RX0→2 in R matrix gives the reward value which results due to performing action at at
State0({SV1

0 , SV2
0 , .., SVk

0 }) which drives the system to State2({SV1
2 , SV2

2 , .., SVk
2 }). Hence, a pair of P

matrix and R matrix are required for each action.
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(a) Structure of P matrix (b) Structure of R matrix

Figure 3. Structure of State transition matrix (P) and corresponding reward matrix (R) for m system
states subject to an action (at).

The series of rewards obtained due to performing sequence of actions at each predicted state
starting from the current state yield the utility value. Obtained rewards are simply put in to quantify
additive utility, i.e.,

Uadd([r0, r1, r2...]) = r0 + r1 + r2 + .. (2)

whereas discounted utility is measured using a discount factor (γ′ < 1) where sooner rewards have
more impact than later rewards.

Udis([r0, r1, r2...], γ′) = r0 + γ′r1 + γ′2r2 + .. (3)

Discounted utility is particularly suitable for convergence of optimization algorithms where the
sequence of actions is predicted to intensify the expected discounted utility. Optimal MDP policy is
designed by value iteration process that is repeated for all states s. An arbitrary value V0 assigned at
each state. Vn+1(s) is enumerated exploiting Bellman backup at s [15] such that the iteration process
continues until ε-convergence is meet, i.e., maxs|Vn+1(s)−Vn(s)| < ε. State transitions matrix P and
reward matrix R together with discount factor (γ′ < 1) are fed as input to the value iteration process to
acquire the discounted utility value along with the number of iterations. Next, finite horizon method is
employed which takes the number of iterations obtained from value iterations process along with other
inputs as in value iteration process, (i.e., P, R, γ′) and results in non-stationary policies (π). Thus, MDP
is pertinent to foresee the optimal course of actions initiating from the present state to accomplish
utmost benefit.

4. Our Work

In this paper, the entire work is carried out in two phases. Phase I presents the work done in
pre-deployment phase. Markov Decision Process [15]-based mathematical formulation is presented
in this phase to design multi-hop transmission strategy to predict optimal sequence of actions to
be performed subject to the input conditions, i.e., energy level of nodes, event occurrence, packet
transmission rate and link quality. This is followed by Phase II where a multi-hop routing protocol has
been devised which reflects the obtained transmission policies of Phase I in the routing decisions to
address the prime issues of WBAN communications.

4.1. System Model

A network is built with n bio sensor nodes, and single sink node which acts as network coordinator
and accumulates the data from the sensor nodes to communicate to the remote medical server.
Two nodes are assumed to be implanted inside human body near heart and right knee and rest
(n-2) wearable nodes are assumed to be placed on human body (discussed in Section 5.2). The nodes
in the network transmit data with transmission power Ptx governed by the proposed transmission
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strategy following MDP [15] that is elaborated in the following subsection. Intra-BAN communications
are carried out via electromagnetic radio frequency (RF) wave. The radiation absorbed by human
tissue is quantified in terms of SAR (Watts/Kg). SAR is evaluated for each node in the network due to
performing network activities. SAR assessment is based on the effective distance ‘d’ from each node
location to the reference point in the human tissue. If the reference point is located at the near field
region with respect to a node, SAR is evaluated as follows [32]

SAR =
σ

ρ

µω√
σ2 + ε2

1ω2
(

Ilsinθ

4π
e−αd(

1
d2 +

|γ1|
d

))2 (4)

Here σ, ε1, µ represent conductivity (S/m), permittivity (F/m) and permeability (H/m) of the
medium, respectively. γ1 is the complex propagation constant. α is the attenuation constant and ρ is
the density of the medium. l is the dipole length and current I is uniform and varies sinusoidally with
time. However, if the location of the reference point is at far field region with respect to a node, SAR is
formulated as follows [32]

SAR =
σ

ρ
(|η||γ1|

Idlsinθ

4πd
e−αd)2 (5)

where η is complex intrinsic impedance defined as η = γ1
α+jωε1

.
A discrete-time model has been taken into account where time is slotted in intervals of unit length.

Each node can generate and transmit a single data packet per time slot. Data transmission between
source and sink is described as event occurrence that is defined with correlated, two-state process.

The remaining energy of each node is classified into several levels Lt depending on predefined
range (to be obtained empirically) such that at any time slot t remaining energy of each node belongs
to one of the defined energy levels Ltε{0, 1, 2, 3, 4...N} .

If an event is generated in the present slot, probability of generation of another event (respectively,
no event) in the next slot is given by pon (respectively, 1− pon) where 0.5 < pon < 1 [12]. If no event
is generated in the present slot, an event is generated (respectively, not generated) in the next slot
with probability 1− po f f (respectively, po f f ) where 0.5 < po f f < 1 [12]. However, in both cases the
probability of event generation and no event at present time slot are two complementary as well as
equally likely outcomes. Hence, the value of pon and po f f lies between 0.5 to 1. During each time slot
Packet Transmission Rate (PR) is compared with a limiting value, i.e., PRth. If the PR reaches beyond
threshold PRth in the current slot, it will be greater than (respectively, less than) PRth in the subsequent
slot with probability pron (respectively, 1− pron) where 0.5 ≤ pron < 1. However, if the PR is less than
the threshold PRth in the present slot, it will remain less than (respectively, greater than) PRth in the
following slot with probability pro f f (respectively, 1− pro f f ) where 0.5 ≤ pro f f < 1.

Link quality (LQ) is measured at each time slot to estimate channel conditions as well and if it
is found high in the present slot, i.e., greater than predefined threshold LQth, it will remain high in
the following slot with probability lqon (respectively, 1− lqon) where 0.5 ≤ lqon < 1. Whereas, if LQ
is estimated as low as (LQ < LQth) in the current slot, then it will be in such condition in the next
slot with probability lqo f f (respectively, 1− lqo f f ). Such a two-state model can effectively describe the
scenario for many WBAN applications related to healthcare as mentioned in [12].

During each time slot t a node performs action at s.t. atε{0, 1, 2, 3, ...K}which is described in terms
of performing data transmission with varying transmission power Ptx.

4.2. Phase I (Pre-Deployment Phase)

Markov Decision Process Formulation

The optimal transmission power Ptx in each slot is determined following MDP [15] subject to four
prime aspects, i.e., current battery level of the node, event occurrence, data PR and LQ. Consequently,
at any time slot t the system state is represented by
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Xt = (Lt, Et, PRt, LQt) (6)

where Ltε{0, 1, 2, 3, 4, ..., N} denotes the energy level of sensor node at time slot t. Etε{1, 0} represents
an event to be reported in other words whether a node has packet to transmit at time t. For instance,
when a data packet is received from upper layer ready for transmission, Et is 1. It is assumed that
at-most one data packet is generated by each node per time slot. PRtε{1, 0} indicates if data packet
transmission rate is low or high; high packet transmission rate intensifies energy depletion rate which
in turn increase SAR. PRt is 1 if PRt ≥ PRth at present slot and 0 otherwise. Here, PRth is directly
related to SAR threshold of a node specified by an application. Finally, LQtε{1, 0} denotes link quality
where LQt is 1 for stable channel conditions at present slot such that

φi
(δ0 + δi)

>
φi+1

(δ0 + δi+1)
s.t. iε{1, 2, ..., N}

and 0 otherwise. Here δ0 quantifies the energy depleted to run the circuitry and δi for 0 < i ≤ N gives
the amount of required energy (in addition to δ0) for data transmission with transmission power Ptx

and φi represents corresponding packet success rate.
Energy level Lt changes according to the action at taken at time slot t, where atε{0, 1, 2, 3, ..., K}.

Lt = 0 if Erem(t) = δ0

= i if Erem(t) = δ0 + δi where 1 ≤ i ≤ N (7)

Following MDP, an action at is performed at each state Xt that takes the system to the next state
Xt+1 while resulting in a reward R(Xt, at) as shown in Figure 2. Solving the MDP formulation gives
us the actions to be performed in each iteration that results in maximum reward. It is to be noted that
calculation of both next state and reward only depend on the current state and the action taken at that
state. Thus, at any time slot t reward (R) is quantified as the probabilities of successful data delivery
subject to the input conditions, i.e., possible combination of energy level, event occurrence, PR and
channel conditions.

R(Xt, at) =



(1− po f f )× pro f f × (1− lqo f f ), if Et−1 = 0 &PRt−1 = 0 &

LQt−1 = 0 &Lt > δ0 + δi

(1− po f f )× pro f f × lqon, if Et−1 = 0 &PRt−1 = 0 &

LQt−1 = 1 &Lt > δ0 + δi

(1− po f f )× (1− pron)× (1− lqo f f ), if Et−1 = 0 &PRt−1 = 1 &

LQt−1 = 0 &Lt > δ0 + δi

(1− po f f )× (1− pron)× lqon, if Et−1 = 0 &PRt−1 = 1 &

LQt−1 = 1 &Lt > δ0 + δi

pon × pro f f × (1− lqo f f ), if Et−1 = 1 &PRt−1 = 0 & (8)

LQt−1 = 0 &Lt > δ0 + δi

pon × pro f f × lqon, if Et−1 = 1 &PRt−1 = 0 &

LQt−1 = 1 &Lt > δ0 + δi

pon × (1− pron)× (1− lqo f f ), if Et−1 = 1 &PRt−1 = 1 &

LQt−1 = 0 &Lt > δ0 + δi

pon × (1− pron)× lqon, if Et−1 = 1 &PRt−1 = 1 &

LQt−1 = 1 &Lt > δ0 + δi

0, Otherwise
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The system state in next time slot (t + 1) is denoted by

Xt+1 = (Lt+1, Et+1, PRt+1, LQt+1) (9)

Energy level in the next slot is given by

Lt+1 = Lt − lt s.t. Lt+1 ≤ Lt (10)

where lt is the amount of energy consumed due to data transmission.

lt = i w.p. [Et × pon + (1− Et)× (1− po f f )]Ii−1(at)

if Erem(t) > δ0 + δi & 1 ≤ i ≤ N (11)

here Iy(at) represents the indicator function that equals one only when value of at equals the subscript
y and zero otherwise. In the equation, “w.p.” stands for with probability. Event generation in the next
time slot (t+1) is predicted as

Et+1 = 1 w.p. [Et × pon + (1− Et)× (1− po f f )]

= 0 Otherwise (12)

Accordingly, whether packet transmission rate PR exceeds PRth in the next time slot (t+1) is
evaluated as

PRt+1 = 1 w.p. [PRt × pron + (1− PRt)× (1− pro f f )]

= 0 Otherwise (13)

Likewise, link quality LQ in the next time slot is predicted as

LQt+1 = 1 w.p. [LQt × lqon + (1− LQt)× (1− lqo f f )]

= 0 Otherwise (14)

At any time slot t with the current state Xt the transition probability for Xt+1 is found using
Equation (11)–(14). A matrix P is constructed to record the state transition probabilities from each of
the current state Xt to its corresponding next state Xt+1 depending on the working condition of a node
in terms of Lt, Et, PRt and LQt. At each system state Xt, some action at is performed which results
in certain reward (as illustrated in Equation (9)) and accordingly a reward matrix R is formed with
all possible rewards corresponding to a system state Xt for each action at. This MDP formulation is
solved using value iteration technique [15]. For any stationary policy π = (π0, π1, ...), the state value
function at a state x ∈ X satisfies the Bellman equation [15],

Vπ(x) = R(x, π(x)) + γ
′
Σy p(y|x, π(x))Vπ(y) (15)

A few frequently used terms are listed in Table 2 along with their meaning for convenience.
The steps followed are summarized in Phase I of Figure 4.

Initially, for a given combination of pon, po f f , pron,pro f f ,lqon and lqo f f the state transition table
is constructed where all possible state transitions are recorded based on all possible actions (at)
performed on all possible current states (Xt). Besides, rewards generated due to actions performed at
each state are noted accordingly following Equation (9). At this point the process is provided with two
matrices, i.e., state transition matrix (P) and reward matrix (R) which are then fed to value iteration
technique. Value iteration function takes into account P, R and discount factor γ

′
as arguments and

assigns an arbitrary value V0 to each state which is repeated for all state s. In next iteration Vn+1(s) is
computed by Bellman backup at s [15] and the iterations are continued until maxs|Vn+1(s)−Vn(s)| < ε
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(i.e., ε convergence). This value iteration technique results in number of iterations and discounted
utility values U[(r0, r1, r2, ...)] = r0 + γ′r1 + γ′2r2 + .... Herewith, finite horizon function is called
which takes P, R, γ

′
and number of iterations as arguments and terminates after fixed number of steps

and results in non-stationary policy (π) depending on time left. Finite horizon guarantees that for
every policy, a terminal state will eventually be reached. The process can be repeated for different
combinations of pon, po f f , pron, pro f f , lqon and lqo f f to explore effective transmission strategies.

Figure 4. Work flow of MDP formulation of our work.
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Table 2. Description of frequently used terms.

Terms Description

Xt A finite set of states
At A finite set of actions (at) to be taken

P

Transition probability matrix, where the state transitions are given by
p(x(t+1) | xt, at) = p(x(t+1)|x0...xt, a0...at) . This matrix plays the key role in finding the next
state x(t+1) which is considered to be a possible consequence of performing an action (at) in a
state (xt). Hence it is depicted as a set of square matrices one for each action having both
dimensions indexed by states.

R
Reward matrix where each entry gives the immediate reward (or expected immediate reward)
r(xt, at) received for state transition from xt to x(t+1) performing action at.

γ′ [0,1] Discount factor denoting the importance of future reward in present reward.

Π(x) A policy Π gives an action for each state x , Π∗(x) is optimal policy, i.e., the sequence of
actions which maximizes expected utility if followed

Udis(x) Expected discounted resultant utility value at each state obtained using value iteration process
Ptx Transmission power
pon [0.5,1]Probability of occurrence of an event in next slot when there is an event in present slot
po f f [0.5,1]Probability of occurrence of no event in next slot when there is no event in present slot

pron
[0.5,1]Probability of exceeding maximum limit of packet transmission rate, PRth in next slot
when PRth exceeded in current slot

pro f f [0.5,1]Probability of not exceeding PRth in next slot when PRth not exceeded in current slot

lqon
[0.5,1]Probability that indicates stable channel condition in next slot when link quality is above
threshold (LQ > LQth) in present slot

lqo f f
[0.5,1]Probability that indicates unstable channel condition in next slot when link quality is
below threshold (LQ < LQth) in present slot

Erem Remaining energy of a node

4.3. Phase II (Post-Deployment Phase)

In Phase II, the obtained policy of Phase I (denoted as π∗ in Figure 4) is incorporated into each
node before deployment to initiate Phase II which focuses on developing network layer protocol.
Thus, routing decisions could be made based on this pre-calculated policy to get long-term benefit in
terms of energy consumption, successful data delivery and minimal thermal effect as well. This policy
can be stored as a data structure where the optimal transmission power corresponding to each system
state (Xt) would be listed. The optimal transmission strategy thus obtained can be fed to each node in
WBAN as summarized in the routing protocol illustrated in Algorithm 1. The nodes when deployed,
may tune themselves to the optimal transmission power according to their working conditions by
simply looking into the data structure (DSj). However, each node tries to establish connection with
sink at the suggested optimal transmission power following MDP formulation for present system
state. If it succeeds, data is transferred to the sink directly using the specified transmission power level.
However, if sink is found to be not reachable at the suggested power level, it looks for relay nodes
which are reachable with the same power level. pon and po f f are mapped in Algorithm 1 using f lagon,
f lago f f . f lagon is true to indicate data is sent in the previous time slot and data will be transmitted in
the current slot with probability pon; similarly f lago f f is true when there is no data transmission in
previous slot and data will be transmitted in the next slot with probability (1− po f f ).



Sensors 2018, 18, 4450 14 of 24

Algorithm 1: EstimateTransmissionPower ().
Input :

1 system state (Xt), battery levels (Lt), event generation process
(Et : {pon, po f f } → { f lagon, f lago f f }), packet transmission rate (PRt) and link quality (LQt)

2 Data structure (DSj):{Xt, Ptx}
Output :

3 Conditions for direct data delivery or multi-hop routing with optimal transmission power
for sending data

4 repeat
5 if ( f lagon == true) then
6 receive((data)j) from upper layer with probability pon;
7 else
8 receive((data)j) from upper layer with probability (1− po f f );
9 end

10 if (data) then
11 f lago f f = f alse;
12 Obtain(Xt)j as in Equation (6);
13 Obtain(Ptx) f rom DSj;
14 repeat
15 Broadcast(SETUP_REQ);
16 if Receive(SETUP_RES_SINK) then
17 connectedToSink = True;
18 Destination = Sink
19 else
20 Destination = Relay
21 end
22 if Receive(SETUP_REQ) then
23 if (isSink||connectedToSink) then
24 Send(SETUP_RES)
25 end
26 end
27 if (PRt == 0) then
28 Send(dataj) to Destination;
29 f lagon = true
30 end
31 if (PR < PRth) then
32 PRt = 0;
33 else
34 PRt = 1;
35 end
36 if (LQ < LQth) then
37 LQt = 0;
38 else
39 LQt = 1;
40 end
41 until for N data;
42 else
43 f lago f f = true;
44 f lagon = f alse
45 end
46 until every t time slot;

In the proposed algorithm, a node needs to execute simple local computations, conditional
statements and simple table lookup that consume computation power denoted by ecompute, econdition
and elookup respectively. As noted in step 10 of Algorithm 1, if a node finds data to transmit in its queue,
it will perform simple computational steps to come up with suitable transmission power (through
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steps 11–13) and broadcasts setup request if sink information is not cached. After receiving setup reply,
the node can assign the sink or relay information and send data accordingly with given transmission
power if it is not heated (according to step 28 of Algorithm 1) Thus, to send data, following the
algorithm, (2econdition + 4ecompute + elookup) is consumed initially and (2econdition + 2ecompute + elookup)

is consumed if the destination information is cached. In other words, to send a single data packet
the associated computational complexity of the proposed algorithm is O (1). However, if n messages
are sent in between two successive setup phases the computational complexity becomes O (n).
Thus, the nodes need not perform complex computational steps such as fuzzy logic as in [17] or
linear programming as in [33]. These works involve distance calculation between the nodes that
require incorporation of path loss models. Moreover, generation of routing query, fuzzy inference
system [17] or linear programming [33] are not simple conditional and assignment statements. Instead,
each of these models requires multiple assignment and conditional statements, loops etc. that makes
the system computationally complex. Thus, MDP formulation in the pre-deployment phase makes the
routing algorithm for the nodes simple as far as the calculation of transmission power and decisions
about single-hop and multi-hop are concerned.

5. Simulation Results

Accordingly, the process of implementation of the proposed approach is performed in two phases,
i.e., implementing Phase I and then feeding the outcome of Phase I while simulating Phase II. Phase I
includes the experiments related to the transmission strategy formulation mostly carried out using
spreadsheets and R [34] software. In Phase II, a WBAN is simulated using Castalia 3.2 [35] simulator
where each node is incorporated with the pre-computed strategy developed in Phase I. Nodes are
programmed to follow Algorithm 1 to route data to the sink. Several experiments are performed in this
phase to estimate the performance of the entire process in terms of the identified performance metrics.

5.1. Experimental Results of Phase I

Phase, I i.e., pre-deployment phase focuses on analytical formulation of transmission strategy
with mathematical calculations before the probable states as defined in Equation (6) are put into effect.
The experimental setup of Phase I includes MDP formulation with respect to the input conditions.
At the beginning, the state transition matrix P containing all possible transitions from the current state
(Xt) to the probable next states (Xt+1) depending on actions at performed on Xt have been formulated.
Here four actions (at ∈ {0, 1, 2, 3}) have been taken into account which are defined in terms of data
packet transmission with transmission power −20 dBm, −15 dBm, −12 dBm, −10 dBm respectively
(that are standards for WBAN defined by IEEE 802.15.4 [35]) which draw the remaining energy of a
node into one of the corresponding five energy levels (Lt ∈ {0, 1, 2, 3, 4}). Hence, probability matrix
(P) for each action is constructed as 40× 40 matrix. The matrix includes all possible combinations of
input variables considering five energy levels Lt, two probable values for event Et ∈ {0, 1}, packet
transmission rate PRt ∈ {0, 1} and link quality LQt ∈ {0, 1} respectively and thus 5× 2× 2× 2
probable states could be defined. Next, reward matrix (R) is developed by estimating rewards following
Equation (9) depending on actions at performed at each system state Xt. In this phase the mathematical
calculations are carried out first in Spreadsheet following Equations (1)–(14). The formulation thus
formed is solved using value iteration and finite horizon methods, that are executed using R [34]
software. R [34] is a simulation tool for statistical computing that has been exploited to carry out
experiments of Phase I.

At this stage, a set of experiments have been done to study how discount factor (γ′) puts an
impact on discounted utility value with corresponding number of iterations. The value iteration
process iterates until convergence to calculate the utility values for all states that got refined through
approximation towards optimal value. Experiments have been performed for three representative
input combinations of probability values corresponding to event generation process (pon, po f f ), PR
(pron, pro f f ), and link quality (lqon, lqo f f ). These depict the best-case, average-case and worst-case



Sensors 2018, 18, 4450 16 of 24

scenario (by regulating probability values) for event occurrence and successful data delivery to sink.
Results are plotted in Figure 5a,b. As found in Figure 5a, utility value grows gradually for each
combination with increasing discount factor γ′ < 1 as sooner rewards have higher utility than later
ones. In addition, smaller discount factor γ′ < 1 leads to smaller horizon and hence the algorithm
converges within few iterations which is reflected in Figure 5b as well. However, increasing discount
factor γ′ expands the horizon and the number of iterations intensifies accordingly for each combination
which gives benefit in longer run.

(a) Variation of utility values with varying discount factor (b) Variation of no. of iteration with varying discount factor

Figure 5. Performance of MDP with varying discount factor for different combinations of probability
values related to event generation P (pon, po f f ), PR (pron, pro f f ) and link quality LQ (lqon, lqo f f ).

Another experiment has been carried out at this stage before deployment of the network to
get insight about the resultant utility obtained from the value iteration process [15] corresponding
to each state. The experiment has been performed for two different combinations of probability
values (pon, po f f ,pron, pro f f ,lqon, lqo f f ) as (0.9,0.55,0.55,0.9,0.9,0.55) and (0.6,0.9,0.55,0.9,0.9,0.55). The
combinations are taken such that the values of (pon, po f f ) pair denote high and low event generation
probability respectively (to cover the entire horizon) whereas the other pairs, i.e., (pron, pro f f ) and
(lqon, lqo f f ) remain unchanged at their best values to provide favorable conditions for data transmission.
Results are presented in Figure 6. The system states represented as a combination of energy level
Lt ∈ {0, 1, 2, 3, 4}, event generation Et ∈ {0, 1}, packet transmission rate PRt ∈ {0, 1} and
link quality LQt ∈ {0, 1} (as described in Equation (6)). Thus, system state (4, 0, 0, 1) implies Lt

is 4, Et is 0, PRt is 0 and LQt is 1. It is observed from the outcome that the resultant utility values
corresponding to each state vary significantly for these combinations due to variation in the values
of (pon, po f f ) pair although other probabilities remain constant which indicates the impact of event
generation probabilities in resultant discounted utility values. Furthermore, since the variation in
energy level subject to the event generation probability and the action performed (illustrated in
Equations (10) and (11)), the resultant discounted utility values are found to be zero when the system
is at very low energy level, i.e., Lt = 0. Hence, no reward is generated as there is insufficient
energy to carry out any action (irrespective of events). Accordingly, the resultant utility values get
larger corresponding to the system states with high energy levels and get maximized when Lt = 4.
In addition, similar pattern is observed for these representative combinations of probability values
which mark two different horizon of event generation process. Hence, the obtained strategy, i.e., the
optimal sequence of actions to be performed corresponding to each system state if incorporated into
the nodes at the time of deployment, the system will work effectively. Measurable performance could
be obtained irrespective of event generation probabilities when the other probabilities related to the
PR and LQ are at favorable conditions.



Sensors 2018, 18, 4450 17 of 24

Figure 6. Variation of resultant discounted utility with system state for different combinations of
probability values related to remaining battery power Lt, event generation P (pon, po f f ), packet
transmission rate (pron, pro f f ) and link quality (lqon, lqo f f ) .

Next, finite horizon function is performed in R [34] with formulated P and R matrix along with
the number of iterations obtained from previous value iteration process as input to acquire optimal
policy which indicates the end of pre-deployment phase as well.

5.2. Experimental Results of Phase II

The output obtained in Phase I is fed as input in Phase II, i.e., post-deployment phase where a
WBAN configuration is simulated in Castalia 3.2 [35] which is a Wireless Sensor Network simulator
based on OMNET++ platform useful for early phase algorithm/protocol testing. A total of 13 nodes
including sink are deployed all over human body (around 10 m × 10 m simulation area) out of
which node 4 and node 9 are considered as implanted ones as shown in Figure 7 in such a way
that they form a connected graph at the beginning where the sink node acts as BAN coordinator
residing at roughly the center (i.e., waist). The network size follows the typical medical network
based on WBAN which consists of 6 to 20 nodes (maximum) [2]. The default parameters used
in the experiments are listed in Table 3 and any alterations to these values are stated explicitly.
Mobility of each node due to posture change is modeled with LineMobility model [35]. The effective
transmission power for each data communication is obtained from the set of transmission power
levels {−20 dbm,−12 dbm,−15 dbm,−10 dbm} defined by BANRadio (i.e., the radio module of
Castalia 3.2 [35] for WBAN communication) to be operated with IEEE 802.15.4 ZigBeeMAC protocol.
Accordingly, the transmission range corresponding to each power level is governed by BANRadio [35]
as well. Although the experimentations are carried out based on IEEE 802.15.4 ZigBeeMAC but the
proposed approach can work with other existing technologies (for instance Bluetooth Low Energy
(BLE) [2]). The SAR is quantified for each node following Equations (4) and (5). The optimal set
of actions depending on Xt of a node as obtained in Phase I is incorporated in each node during
deployment following Algorithm 1 to minimize computational complexity and maximize lifetime
without degrading the performance.

Table 3. Simulation parameters and their default values.

Simulation Parameter Default Value

Simulation area 10 m× 10 m
Simulation time 10,000 s

Network size 13
Mobility model LineMobility model [35]
MAC protocol IEEE 802.15.4

Data generation rate 14 packets/s
SARth 0.3357 Watt/Kg [3]
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Figure 7. Node locations along with sink position.

Herewith, a series of experiments have been carried out to validate the proposed strategy as
well as to estimate performance with respect to the state-of-the-art work. Data packets received by
sink has been chosen as a metric to quantify the performance of the proposed approach. At the
beginning, experiments have been done to determine ideal combinations of the probability values, i.e.,
pon, po f f , pron, pro f f , lqon, lqo f f in relation to event generation, packet sending rate and LQ respectively
as illustrated beforehand. As depicted in Figure 8a utility values corresponding to each combination
are presented in ascending order. The corresponding performance of each combination when mapped
into routing strategy measured in terms of data packets received by sink has been plotted in Figure 8b.
Other metric data packets forwarded by relay nodes are also included in Figure 8b to study the
behavior of the multi-hop routing. Results show that performance of the proposed strategy when
simulated (in Figure 8b) enhanced following similar pattern as predicted before deployment of the
network presented in terms of utility values in Figure 8a. This justifies the correctness of mapping
of the mathematical formulations into routing approach. In addition, when data packets forwarded
by relay nodes are observed corresponding to implementation of each probability combination,
marginally more forwarding traffic is found in adverse situations as regulated by the probability
values to sustain the performance of the proposed strategy. Accordingly, the combination {0.9, 0.55}
for {pon, po f f }, {0.55, 0.9} for {pron, pro f f } and {0.9, 0.55} for {lqon, lqo f f } having highest utility value
and corresponding maximum data delivered to sink have been selected as reference values to carry
out the subsequent experiments. For instance, the reference value for pon, i.e., 0.9 is implemented in
the experimental setup using f lagon and a random number generator which generates any number
between 0 to 9. When there is data in the previous time slot f lagon is set as true and the probability of
data generation in the next slot is regulated with probability of occurrence of any number from 0 to 9
using random number generator except any particular number such as 5.
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(a) (b)

Figure 8. Mapping of MDP formulation into routing strategy. (a) Variation of utility values with
varying pon, po f f , pron, pro f f , lqon, lqo f f . (b) Variation of data packets received by sink with varying
pon, po f f , pron, pro f f , lqon, lqo f f

Next experiment attempts to fix threshold values for packet transmission rate (PRth) and link
quality (LQth) as shown in Figure 9. Here X axis represents the threshold value pair ({PRth, LQth})
and the effect of variation in these threshold value pair in system performance is quantified in terms
of data packets received by sink. Threshold value is a positive value set as reference point such
that the obtained values can be compared with respect to the threshold to determine whether it
violates its regulatory limit. Packet transmission rate (PR) is measured in terms of number of packets
(having size of 2000 bits each) sent per second. Initially, PRth is set as a default large value, i.e.,
125 packets/s (in other words 250 kbps which is maximum permissible data rate for IEEE 802.15.4
standard [2]) to adjust LQth first. Link quality (LQ) is quantified in terms of link quality indicator (LQI)
which is a metric to measure quality of the received signal. Gradually the LQth is varied keeping PRth
fixed at 125 and the effect is observed. It is found that data packets received by sink saturates when
LQth is beyond 100 and hence it is set as reference for LQth. Thereafter, PRth is varied in descending
order keeping LQth constant at reference value and the behavior is noticed. It is found that data packet
reception by sink grows sharply when PRth is beyond 50. Hence, the reference value for PRth is set as
50 to bound PR to restrict SAR.

Figure 9. Obtaining threshold values for packet transmission rate (PRth) and link quality (LQth).

Following set of experiments are carried out to estimate the performance of the proposed strategy
subject to different mobility models defined by Line Mobility Model (LMM) [35] and Smooth Random
Mobility Model [36]. The nature of data packets received by sink with respect to time is observed
here in case of LMM and Smooth Random Mobility Model (SRMM) and the outcome is plotted in
Figure 10a,c respectively and corresponding energy consumption of the network measured using
resourseManager module in Castalia [35] (that models realistic node behavior to access the radio) is
depicted in Figure 10b,d accordingly. A recent protocol presented in [17] is also simulated in similar
experimental setup to compare performance. It is observed from the outcome that relatively better
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performance in terms of data packets received by sink is achieved by both approaches while SRMM is
followed with marginally less energy expenditure since in SRMM movement pattern does not have any
sharp turn or sudden stop. Besides, the speeds are also increased gradually. Thus, LQ is not changed
drastically when SRMM is followed to model body movement due to posture change. However, the
proposed approach exhibits better performance in terms of data packets received by sink than the
existing protocol [17] though the amount of energy consumption is comparable.

(a) (b)

(c) (d)

Figure 10. Performance evaluation of the proposed routing strategy with respect to time. (a) Variation
of data packets received by sink with time following Line Mobility Model (LMM). (b) Variation of
energy consumption with varying time following LMM. (c) Variation of data packets received by sink
with time following Smooth Random Mobility Model (SRMM). (d) Variation of energy consumption
with varying time following SRMM.

In the subsequent experiment, the proposed strategy is evaluated in terms of heat generation due
to network activities. For this experiment, another metric heating ratio has been introduced which is
defined as follows

Heating ratioi =
∑SARi>SARth :i∈n Timei

∑ Time
(16)

Heating ratio (Heating ratioi) of any node i in the network of n nodes is evaluated as the
summation of the discrete timespans for which the SAR results due to node i (SARi) measured
following Equations (4) and (5) exceeds its regulatory limit (given in Table 3) with respect to the entire
simulation period. The outcome is plotted in Figure 11. It is found from the outcome that the nodes
in the network exhibit much low heating ratio as they got heated for small duration while following
the proposed strategy. However, the nodes which are closer to sink as shown in Figure 7 for instance
node 6, node 7, node 4, etc. produce relatively high heating ratio with respect to other nodes in the
network as they often work as forwarder for others as well exploiting their connectivity to sink. Even,
the proposed approach shows low heating ratio as compared to the state-of-the-art energy-efficient
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protocol [17]. Hence, the objective to prevent thermal damage of human tissue is achieved with the
designed multi-hop transmission strategy.

Figure 11. Heating ratio of each node in the network.

Finally, the behavior of the proposed strategy is observed with growing network size. Reliability
of the proposed work is quantified here in terms of Packet Delivery Ratio (PDR) which is defined as
the ratio between total number of packets received by sink to the sum of the packets sent by the nodes
presented as follows

PDR =
∑s datareceived

∑n
i=1 datasent

(17)

The experiments started with 5 nodes having connected topology at the beginning and gradually
more nodes are included to form a bigger network (up to default network size) to estimate the
scalability of the proposed approach. The experiments were carried out following LMM [35] and
SRMM [36] for three different data sending rates 14 packets/s, 70 packets/s and 125 packets/s having
packet size 2000 bits each (i.e., in other words 28 kbps, 140 kbps and 250 kbps). Results are plotted in
Figure 12a,b. Since the number of relay nodes increases with growing network size which enhances
the chances to find route to destination for the data traffic, the performance of the proposed protocol
improves irrespective of the data sending rate in case of both mobility models. Hence, it is evident
from the outcome that the proposed strategy can cope up with the increasing network size while
ensuring substantial reliability in terms of PDR.

(a) (b)

Figure 12. Reliability assessment of the proposed routing strategy in terms of Packet Delivery Ratio
(PDR) with respect to growing network size. (a) Variation of PDR with growing network size following
LMM. (b) Variation of PDR with growing network size following SRMM.

Herewith, the entire experimental procedure can be perceived as an integration of two phases
namely Phase I and Phase II. In Phase I, transmission strategy for intra-BAN communication has
been formulated following MDP and experiments are conducted to analyze the behavior of MDP
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parameters (discount factor (γ′), number of iteration) and output (utility value calculated for several
iterations given a discount factor) subject to varying input conditions. In Phase II, the proposed
approach is simulated. Here the strategy obtained from Phase I (in terms of optimal transmission
power corresponding to each system state Xt) has been incorporated to the nodes before deployment
of the network.

Theoretical analysis of Phase I has been mapped to the simulated outcome of Phase II for the first
two experiments of Phase II shown in Figures 8 and 9. The results in Figure 8 validate the prediction
by MDP when the nodes are actually routing data to yield maximum utility (mapped to data packets
received). Next experiment finds out the tunable values of threshold parameters as shown in Figure 9.

Subsequent experiments are conducted to find out the effectiveness of the transmission strategies
with respect to routing data. Performance metrics such as data packets received by sink, consumed
energy, heating ratio, and reliability in terms of PDR are observed with respect to time and increase
in network size subject to relative node movement. Values of the tunable parameters for the overall
experimental process are listed in Table 4.

Table 4. Tunable parameters and their values.

Tunable Parameters Tunable Values

Phase I:
γ′ 0.9

number of iterations Up to 19
Phase II:

PR 10 kbps to 125 kbps
PRth 50
LQth 100

6. Conclusions

Widespread deployment of IoT in medical applications requires effective handling of challenges
related to planning, developing, and managing solutions for medical IoT. Strategies are to be developed
for communications among energy-constrained body-sensor nodes (or things) within WBAN for
making medical IoT green (or energy efficient) without degrading the performance. In this paper,
an energy-efficient transmission strategy has been formulated following MDP which effectively
determines the actions to be performed described in terms of acquiring optimal transmission power
for intra-BAN communication based on the system state defined as quadruplets of current energy
level of the node, event occurrence, PR of the node and LQ. The policy is designed offline using
value iteration process and incorporated into the nodes to be reflected at the time of making routing
decisions. This strategy enables planning under uncertainty with minimum computational overhead.
The proposed approach predicts the favorable conditions for multi-hop routing over single-hop direct
data delivery to achieve long-term benefits in energy consumption. The algorithm is validated through
extensive simulations and the proposed approach is found to outperform the state-of-the-art work in
terms of data packets received by nodes. In addition, the proposed routing approach can restrict heat
generation as well. The future work plan will include more dimensions in strategy formulation.
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