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Abstract

The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in
biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We
have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also
an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA)
significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on
C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control
compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of
biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas
chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The
mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to
HICA (p,0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for
4 h at neutral pH. Mutagenic levels (.40 mM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no
ACH production was detected from D-glucose in the presence of HICA at acidic pH (p,0.05). Expression of genes
responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant
hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as
an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the
mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm infections.
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Introduction

C. albicans is the most common fungal pathogen in humans

causing both superficial and systemic infections [1]. The ability of

C. albicans to form biofilms is a major virulence factor and

approximately 65% of microbial infections in humans are biofilm-

related [2,3]. This mode of growth protects Candida spp. against

endogenous and exogenous inhibitory substances. High antifungal

tolerance is a well-known factor of Candida biofilms and a challenge

for treatment [4]. The surrounding environment and its cues have

a major impact on C. albicans biofilm formation. Hyphal growth is

an essential element of C. albicans biofilms that provides integrity

within these complex and dense structures [5,6]. Multiple studies

have shown that environmental pH, oxygen levels and nutritional

status impact on the morphogenesis of C. albicans [7–10].

Chronic biofilm infections cause inflammation, which is linked

to carcinogenesis [11]. Biofilm related chronic mucocutaneous

candidosis (CMC) has been associated with a significant risk for

oral cancer in vivo [12–14]. C. albicans isolated from these patients

are able to produce high levels of carcinogenic acetaldehyde

(ACH) in vitro thus providing one possible explanation for

carcinogenesis [15]. The International Agency for Research on

Cancer (IARC) has classified ACH associated with alcoholic

beverages as a GROUP I carcinogen [16]. Our group has
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previously shown that planktonically grown Candida spp. can

produce significant and mutagenic levels of ACH (.40 mM) as

part of their ethanol metabolism in vitro [17,18]. ACH is an

intermediate product of the pyruvate bypass pathway that converts

pyruvate into acetyl-CoA in the cytosol under low oxygen tension

or anaerobic conditions during fermentation (Fig. 1A; [19]). In

bypass, pyruvate is first converted to ACH by pyruvate

decarboxylase (Pdc) and then ACH is metabolized either to

acetate by aldehyde dehydrogenases (Ald) or turned into ethanol

by alcohol dehydrogenase (Adh) enzymes. Acetate is further

metabolized to acetyl-CoA by acetyl CoA synthetase (Acs)

enzymes and transported into mitochondria by a carnitine

dependent mechanism.

Genomic databases show that there are five putative genes

encoding Adh enzymes for C. albicans [20]. ADH1 encodes a

cytosolic Adh1p enzyme that is the only isoenzyme studied

extensively and the protein is able to function bi-directionally in

ACH-ethanol conversion thus making the use of ethanol as a

carbon and energy source possible [21]. Proteomic and transcrip-

tional studies have shown that ADH1 is one of the factors that

controls biofilm formation and growth [22,23]. Recently more

information has been revealed about other Adh isoenzymes. In S.

cerevisiae Adh2p functions in glucose-depleted conditions, and

converts ethanol to ACH in vitro [24]. In C. albicans, ADH2 is

upregulated in planktonic cells grown in hypoxic conditions and

mainly in the stationary growth phase [8,25]. ADH5 has a role in

controlling the biofilm matrix formation in C. albicans [26].

The number and role of Ald enzymes in C. albicans are not well

known, but in S. cerevisiae there are five known genes [27]. The

mitochondrial isoforms in S. cerevisiae are encoded by ALD4 (major)

and ALD5. The cytosolic counterparts are encoded by ALD2,

ALD3 and ALD6 (major). In C. albicans, the protein encoded by

ALD4 is known to function in carnitine biosynthesis in the cytosol

[28]. The carnitine biosynthesis and carnitine-dependent trans-

formation of Acetyl-CoA are vital for growth on non-fermentable

carbon sources and contribute to biofilm formation [29]. ALD5 is

upregulated in C. albicans biofilms exposed to oxidative stress and

hypoxia [30–32]. Our group has shown that ALD6 together with

ACS1 control the accumulation of ACH in planktonic C. albicans

cultures in hypoxia [25]. Acs enzymes have been studied

extensively in C. albicans. ACS2 is essential for growth and ACS1

is necessary for utilization of alternative carbon sources [33].

Recent studies show that proteins linked to fermentation are

abundant in hyphae and biofilms [30,34,35]. Upregulation of

fermentation has been shown in C. albicans colonization in vivo [36].

Altogether, these facts underline the importance of pyruvate

bypass genes and fermentation for biofilm formation.

Poor efficacy and patient compliance and various side effects of

commonly used antifungals have been major problems in the

management of Candida infections [1]. The most promising

chemotherapeutic approaches against Candida biofilms are ob-

served with the echinocandin class of antifungals, which are non-

competitive inhibitors of (1,3)-b-D-glucan synthase, an essential

enzyme in cell wall synthesis and integrity [37,38]. Caspofungin is

the most extensively used echinocandin, especially in treatment for

invasive candidosis [39,40]. Although caspofungin has proven

effective against C. albicans biofilms, a paradoxical effect on growth

by induction of chitin synthesis and decreased susceptibility have

been noted, suggesting there are limitations in its use [41,42].

Recent studies from our group show promising efficacy of D,L-

2-hydroxyisocaproic acid (HICA) against the growth of a spectrum

of planktonically grown pathogenic bacteria and fungi including C.

albicans, C. glabrata and C. tropicalis [43,44]. HICA is a a-hydroxy-

aminoacid and a leucine metabolite, which is produced by

Figure 1. Relative expression of genes related to ACH metabolism. (A) A schematic model of central carbon metabolism incorporated with
genes of interest within ethanol metabolism (abbreviations as follows: G6P = glucose-6-phosphate, KICA = a-ketoisocaproic acid). (B) Heat map panel
of gene expression in C. albicans biofilms at three different stages of growth at pH 5.2 and 7.4 after 24 h exposure to PBS, caspofungin, HICA, leucine,
cysteine or ethanol. Fold changes are expressed relative to control (RPMI) at the corresponding time point. Black represents no change in expression,
green is up-regulation, and red is down-regulation. A brighter color indicates greater degree of change in expression. Relative gene expressions were
calculated by the Pfaffl method using the REST 2009 software provided by Qiagen [63].
doi:10.1371/journal.pone.0097864.g001
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Lactobacillus species and also found in human muscle and

connective tissues [45–47]. It has been used as a nutritional

supplement by professional athletes and industrially as animal

feeds [47,48]. Therefore it is proven to have a good biocompat-

ibility and safety profile. In addition, there is evidence that HICA

has anti-inflammatory properties through inhibition of host

extracellular matrix degrading proteases in vitro [49]. Multiple

studies have shown that Lactobacillus spp. metabolites which are

similar to HICA and other amino acid derivatives inhibit fungal

growth [45,50–52].

In this study our aim was to determine the ability of HICA to

inhibit biofilm formation and to reduce the mutagenic potential of

C. albicans biofilms through changes in ACH metabolism in vitro.

We also wanted to show visually the impact of HICA on biofilm

ultrastructure and examine further the effect of caspofungin and

HICA-related carbon sources on biofilm formation and ACH

metabolism. Our hypothesis is that the formation of C. albicans

biofilms is strongly reduced and damaged by HICA and

furthermore the mutagenic potential is significantly decreased by

the induction of genes involved in pyruvate bypass and ACH

metabolism.

Materials and Methods

Study design
Biofilms were grown on coverslips in RPMI medium at 37uC at

pH 7.4 for 4, 24 and 48 h (Fig. 2; [53,54]). Pre-grown biofilms

were exposed to HICA, leucine, cysteine or ethanol for 24 h at

pH 5.2 or pH 7.4. Leucine was included as a metabolic

comparator. Cysteine is toxic to fungi in high concentrations

similar to HICA and was included as a comparator. Ethanol is the

end product of fermentation and main source of ACH.

Caspofungin was used as an antifungal comparator, and PBS

and RPMI as controls. Five different methods were used to

evaluate the effects of these substances on C. albicans biofilm

formation and mutagenic properties.

XTT assay was used to determine cellular metabolism, and the

amount of double stranded DNA (dsDNA) was used to reflect

biofilm biomass [55–58]. ACH production in glucose or ethanol

was measured by gas chromatography. To detect changes in ACH

metabolism, gene expression of seven target genes (ADH1, ADH2,

ACS1, ACS2, ALD4, ALD5 and ALD6) and one reference gene

(RIP1) was analyzed by quantitative real time PCR (RT-qPCR).

Scanning electron microscopy (SEM) was used to visualize the

impact of HICA on biofilm structure. All experiments were done

twice in triplicate. In total 1,300 biofilms were used in the study.

Strain and culture conditions
C. albicans laboratory strain SC5314 was used [20,59]. The

strain was stored at 280uC and plated twice on Sabouraud

dextrose agar (Melford, UK) and incubated at 37uC for 48 h

before use to check viability and purity. One colony was then

inoculated into 20 ml yeast peptone dextrose (YPD) broth

(Melford, UK) and grown overnight at 37uC with continuous

shaking. The cells were harvested, washed twice with sterile

phosphate-buffered saline (PBS) (Sigma-Aldrich, USA) and then

re-suspended in RPMI-1640 (Sigma-Aldrich) supplemented with

L-glutamine and buffered to pH 7.4 with morpholinepropanesul-

fonic acid (MOPS) (Oxoid Ltd., UK). The cell density was

measured using a haemocytometer and adjusted to 1.06106 cells/

ml to produce the standardized biofilm inoculum.

Biofilm growth and treatments
C. albicans biofilms were grown on Thermanox coverslips

(Thermo Scientific Nunc, USA) in RPMI-1640 medium contain-

ing 2 g/l D-glucose (#6504; Sigma-Aldrich, USA) at pH 7.4 in

static 24-well plates (Corning CoStar, USA) for 4, 24 or 48 h at

37uC. The biofilms were then exposed to 5% (w/v) HICA (TCI

Europe, Belgium), 10 mg/l caspofungin (Merck & Co., USA), 5%

(w/v) leucine (L-leucine Sigma-Aldrich, USA), 5% (w/v) cysteine

(L-cysteine, Sigma-Aldrich, USA), 0.05% (v/v; 11 mM) ethanol,

PBS or RPMI-1640 #6504 for 24 h at pH 5.2 or 7.4 at 37uC.

Substrates were dissolved in RPMI-1640 #6504 except for the

ethanol treatment, which was dissolved in RPMI-1640 #1383

without D-glucose or sodium bicarbonate and then adjusted to

pH 5.2 or 7.4.

XTT-assay and dsDNA measurements
Before analysis, biofilms were washed with sterile PBS and then

transferred into fresh 24-well plates. Then 200 ml saturated XTT/

1 mM menadione solution was added to the biofilms, the plates

covered with aluminium foil and transferred to a 37uC incubator

for 2 h. After incubation, 100 ml of the XTT supernatant was

transferred into fresh 96-well plates and the colorimetric changes

were measured spectrophotometrically (BMG Labtech, UK) at

490 nm.

Fluorescent nucleic acid Quant-iT PicoGreen dsDNA reagent

(Molecular Probes Inc., USA) was used for quantifying dsDNA in

solution. Briefly, DNA was extracted from the biofilms using a

modified cetyltrimethylammonium bromide (CTAB) method [60].

The DNA and PicoGreen reagent were mixed thoroughly in the

well before fluorometric analysis at 492 nm (BMG Labtech, UK).

The lambda DNA within the Quant-iT kit was used to construct

the standard curve (concentration range 40–500 ng/ml) according

to the manufacturer’s instructions and measured alongside the

samples (100 ml per well; Corning Costar, UK).

Acetaldehyde measurements
ACH production was measured by headspace gas chromatog-

raphy using a previously described method [18]. Briefly, gas

chromatography was performed with a Varian CP-3800 equipped

with a Zebron ZB-WaxPlus column (30 mx0.32 mmx0.5 mm,

Phenomenex, UK), and CombiPal autosampler (CTC Analytics

GmbH, Germany). Peaks were detected by flame ionization.

Figure 2. Summary of study design.
doi:10.1371/journal.pone.0097864.g002
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Biofilms were washed once with PBS post-exposure (24 h in 5%

(w/v) HICA, 0.05% (v/v) ethanol, 10 mg/l caspofungin or RPMI)

and transferred into 20 ml glass vials containing 1 ml 11 mM

(0.05% (v/v)) ethanol, 100 mM (1.8% (w/v)) D-glucose or PBS

(control). The samples were sealed with silicon caps and incubated

at 37uC for 30 min. The reaction was stopped by the addition of

100 ml of perchloric acid (PCA, final concentration 0.6 M). To

measure baseline or artefactual ACH production, 100 ml PCA was

added immediately after transferring the biofilms into vials and

prior to adding ethanol, D-glucose or PBS substrate.

Gene expression analysis
Exposed biofilms were flash-frozen in liquid nitrogen, then

stored at 280uC until RNA extraction. Biofilms were detached by

vortexing and then homogenized using glass beads (425–600 mm

in diameter; Sigma, UK) and a FastPrep Instrument (MP

Biomedical, USA). The samples were centrifuged at RT for

1 min at 12,000 g after the FastPrep step. RNA extractions were

performed using the ISOLATE I RNA Mini kit (Bioline, UK) and

genomic DNA was removed using Ambion DNA-free DNAse (Life

Technologies, UK) treatment according to the manufacturer’s

instructions. RNA was quantified and quality assessed by

spectroscopy (A260nm) and the purity was further determined by

RT-qPCR and gel electrophoresis. RNA was stored at 280uC for

further analysis.

cDNA was synthesized using the AffinityScript QPCR cDNA

synthesis kit (Agilent, UK) following the manufacturer’s directions

using 6 ml of RNA (10 ng/ml) as a template. In no-RT controls

reverse transcriptase was replaced by water. Reverse transcription

was carried out at 25uC for 5 min, then at 42uC for 60 min and

finally at 95uC for 5 min. RT-qPCR reactions were prepared

using the Brilliant II SYBR Green 2-step kit (Agilent, UK) with the

reaction containing 6.25 ml SYBR Green master mix, 1 ml

Forward (F) primer, 1 ml Reverse (R) primer, 2 ml cDNA and

2.25 ml DNA/RNA-free molecular grade water. PCR was

performed with a Stratagene MX3005P instrument (Agilent,

UK). For all RT-qPCR experiments, primers were designed using

Primer 3.0 Plus [61] and are shown in Table S1. RIP1 was used as

a reference gene [62]. The results shown are an average of

triplicates from two independent biological samples. The PCR

amplification efficiencies of the primers for all target genes were

optimized prior to analysis. The relative gene expression was

calculated by the Pfaffl method using the REST 2009 software

provided by Qiagen [63]. The gene expression results were

compiled to a heatmap using Microsoft Excel 2010 ver. 14.0.

Scanning electron microscopy of in vitro biofilms
Biofilms were grown in RPMI as previously described for 24 h

and then exposed to 5% (w/v) HICA or RPMI #6504 (control)

for 24 h at pH 5.2 or pH 7.4. The biofilms were washed once with

PBS before being placed in fixative (2% (v/v) paraformaldehyde,

2% (v/v) glutaraldehyde, 0.15 mM sodium cacodylate and 0.15%

(w/v) Alcian blue in PBS) overnight as previously described [64].

Biofilms were then rinsed in 0.1 M phosphate buffer and air-dried

in desiccators. Notably, harsh dehydration steps were not

performed to minimize the damage to the original biofilm

structure. The samples were coated with gold/palladium (40%/

60%) and observed under a scanning electron microscope (Leo

435 VP) in high vacuum mode at 10 kV.

Statistical analysis
Statistical analyses for XTT, PicoGreen and ACH measure-

ments were carried out using GraphPad Prism ver. 5.0 (GraphPad

Software Inc., La Jolla, CA, USA) and SPSS ver. 18.0 (SPSS Inc.,

Chicago, IL, USA). A generalised estimating equations (GEE)

model was used for comparisons of XTT, PicoGreen and ACH

results. Statistical comparisons for gene expression analyses were

performed using a pair-wise fixed reallocation test within REST

2009 software (Qiagen, CA, USA). P,0.05 was considered

statistically significant. Basal transcription of genes in each

condition was calculated relative to the reference gene, RIP1,

using equation 22DCt (DCt = CtTreatment-CtReference). A 2-tailed

Spearman’s rho (rs) with a 95% confidence interval was used for

the analyses of correlations. Basal expression levels were used for

the analyses of correlations. The results are expressed as means

(6SEM).

Results

HICA has a significant inhibitory effect on biofilm
formation at acidic pH

At acidic pH, the metabolic activity (MA) of all pre-grown

biofilms was significantly reduced by HICA exposure (Fig. 3A; 4,

24 and 48 h, p,0.001): MA was reduced by 59–81% compared to

RPMI at pH 5.2. A maximum drop of 81% in MA was measured

in 4 h biofilms post-exposure to HICA (OD492; 0.4360.01 vs.

2.2460.06 in RPMI). MA was reduced in all pre-formed biofilms

under all treatment conditions except for exposure to cysteine,

which had no effect on the MA of 48 h biofilms. Similar levels of

MA were measured for 4, 24, and 48 h biofilms in the control

condition, RPMI (Fig. 3A, B).

At neutral pH, MA was reduced in all pre-formed biofilms

compared to RPMI, except after exposure to cysteine and leucine

where an increase was observed in 24 and 48 h biofilms (Fig. 3B).

Caspofungin exposure had the greatest negative impact on MA of

all conditions in 4 h biofilms (OD492 0.5660.06 vs. 2.0960.03 in

RPMI, p,0.001), but a much lower reduction was seen in 24 and

48 h biofilms. MA was lower by 12–32% and the reduction was

highly significant in all pre-formed biofilms after exposure to

HICA (p,0.001).

Biofilm biomass was significantly decreased after all treatments

in all biofilms pre-grown for 4, 24 and 48 h at pH 5.2, except after

exposure to caspofungin (Fig. 3C; 0.001,p,0.05). Leucine

exposure increased the biomass of 48 h biofilms, but this change

was not statistically significant (p = ns). Biomass was greatly

affected by HICA and cysteine exposure at acidic pH (overall

reduction was by 62% and 63%, respectively). The greatest

reduction in biomass (80%) was observed in 4 h biofilms after

exposure to HICA (dsDNA conc. 33.465.6 ng/ml vs.

169.165.7 ng/ml in RPMI). Caspofungin had no significant effect

on biomass at pH 5.2, with the highest reduction being only 2%

measured in 24 h pre-formed biofilms (221.5639.8 ng/ml vs.

226.168.2 ng/ml in RPMI). Biomass of pre-grown biofilms was

reduced by 42% post-exposure to PBS.

Upon exposure to PBS, HICA, cysteine or ethanol at neutral

pH, biofilm biomass was reduced significantly in 4 and 24 h pre-

formed biofilms (Fig. 3D, 0.001,p,0.05). Exposure to caspofun-

gin or leucine had no discernable effect on biomass of any pre-

grown biofilms. The biomass of 4 h and 24 h pre-formed biofilms

was reduced by 27% and 19% respectively after exposure to

HICA when compared to RPMI (Fig. 3D; 127.668.9 ng/ml and

146.2611.9 ng/ml vs. 174.967.1 ng/ml and 181.567.7 ng/ml

respectively). Leucine exposure had a significant effect only on

48 h biofilm biomass, which was increased by 53% (p,0.001;

306.1617.0 ng/ml vs. 200.1617.7 ng/ml respectively).

HICA Inhibits C. albicans Biofilms
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Acetaldehyde catabolism was induced in biofilms
exposed to HICA at acidic pH

High basal expression (relative to the reference gene, RIP1) of

ADH1, ADH2 and ALD5 in pre-formed biofilms exposed to pH 5.2

suggested that expression of these genes was indicative of

significant biological function in the biofilm. ALD4, ALD6, ACS1

and ACS2 were expressed at very low basal level, therefore changes

in expressions of these genes should be treated with caution. ALD5

was highly expressed in all pre-formed biofilms after all exposures

including the RPMI control. ADH1 was also highly expressed with

respect to the reference gene in 4 and 48 h biofilms, but not to the

same extent in 24 h biofilms. High ADH1 expression was

correlated with high ADH2 expression in the following conditions:

4 h biofilms exposed to cysteine, leucine or PBS and 48 h biofilms

exposed to cysteine or HICA.

When relative gene expression was compared, between

treatment and control conditions, ADH1 was found to be up-

regulated 1.8–2.1 fold after HICA exposure and down-regulated

by 0.2–0.3 fold after caspofungin exposure in 4 and 48 h pre-

formed biofilms (Fig. 1B). In addition, ALD5 was significantly

down-regulated in all pre-formed biofilms after caspofungin and

ethanol exposure (0.3–0.8 fold), but not affected by exposure to

HICA. Generally, ACS1 was down-regulated (0.02 to 0.4 fold) in 4

and 48 h pre-formed biofilms after caspofungin exposure but up-

regulated (2 to 4 fold) after HICA exposure. Cysteine exposure

resulted in induced expression of all genes in 48 h pre-formed

biofilms.

Acetaldehyde catabolism was also induced in biofilms
exposed to HICA at neutral pH

The high basal expression of ALD5 observed in biofilms at

pH 5.2 was also observed in all pre-formed biofilms grown at

pH 7.4, for all exposures including RPMI control biofilms. Overall

a decrease in transcription rates in biofilms at later stages of

development was observed at neutral pH compared to transcrip-

tion rates at acidic pH. Unlike basal transcription at pH 5.2,

ADH1 and ADH2 were generally poorly expressed at pH 7.4.

When biofilm gene expression was compared relative to the

biofilm controls (RPMI), more up-regulation was observed in

biofilms exposed to HICA than in biofilms exposed to caspofungin

(pH 7.4, Fig. 1B). In general, heatmaps for biofilms exposed to

leucine, ethanol and cysteine showed a similar pattern to that of

HICA, except for expression of ALD5 and ACS1. Cysteine and

leucine exposure led to higher expression of ALD5 and ACS1 in

later biofilms compared to HICA and caspofungin.

Mutagenic potential of C. albicans biofilms is reduced by
HICA at acidic and neutral pH

Generally, the highest ACH production was observed in control

biofilms (RPMI); this was evident after incubation in 0.05%

ethanol (Fig. 4C, D; 135.265.7 mM at 24 h, pH 5.2 and

130.3612.3 mM at 48 h, pH 7.4). In D-glucose, ACH levels for

biofilms exposed to RPMI were markedly lower but still above the

mutagenic level of 40 mM at neutral pH (Fig. 4B; 53.861.9 mM at

48 h). No ACH was detected in any condition or pH when

biofilms were incubated with PBS.

Figure 3. Changes in metabolic activity and biomass of C. albicans biofilms. Metabolic activities measured by XTT-assay (panel A, B) and
dsDNA levels (panel C, D) reflecting the biomass of C. albicans biofilms at pH 5.2 and 7.4. Biofilms were grown for 4, 24 or 48 h in RPMI at pH 7.4 and
then exposed to PBS, caspofungin, HICA, leucine, cysteine or ethanol for another 24 h. Values were measured twice in triplicate and expressed as
mean (6SEM). Means were compared to the control treatment (RPMI). Statistically significant differences were calculated using a GEE-model and
were marked (**p,0.001,* 0.001,p,0.05).
doi:10.1371/journal.pone.0097864.g003
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ACH was not detected in biofilms exposed to HICA at acidic

pH after incubation with D-glucose (Fig. 4A). However, under the

same conditions, ACH levels increased significantly compared to

RPMI in 24 h and 48 h pre-grown biofilms after caspofungin

exposure (p = 0.021 and p = 0.01, respectively), with the highest

ACH production detected in 48 h biofilms (Fig. 4A;

41.367.5 mM). Generally, low production of ACH from D-

glucose was observed in pre-grown biofilms exposed to ethanol at

both pHs, compared to control biofilms (Fig. 4A, B).

At neutral pH no ACH was produced during incubation with

D-glucose by biofilms pre-grown for 4 h and exposed to

caspofungin compared to all other exposures, including the

control (RPMI). However, ACH production among 24 h and

48 h pre-formed biofilms exposed to caspofungin, HICA or

ethanol was similar but significantly lower than in control biofilms

(p,0.001, Fig. 4B). Equivalent levels of ACH were produced from

ethanol by biofilms exposed to RPMI and ethanol at acidic pH

(Fig. 4C). HICA or caspofungin exposure reduced the ACH

production from ethanol in 4 and 24 h but not 48 h pre-formed

biofilms at pH 5.2 (Fig. 4C, p,0.05). At neutral pH, HICA or

caspofungin exposure led to significantly lower ACH production

from ethanol in 24 and 48 h pre-formed biofilms (Fig. 4D; p,

0.001). Although caspofungin exposure also decreased ACH

production in 4 h pre-formed biofilms under these conditions,

this was not the case after HICA exposure. In ethanol incubation

ACH levels were generally above the mutagenic level (40 mM) at

both pHs, although reductions close to this level were seen with

HICA and caspofungin.

Gene expression reflected the changes in ACH levels
Correlations were calculated for genes that exhibited a high

basal level of expression (ADH1, ADH2, ALD5). ALD5 expression

correlated with pH in all pre-formed biofilms exposed to HICA

(rs = 0.7257, p,0.001), caspofungin (rs = 0.695, p = 0.0014) and

PBS (rs = 0.501, p = 0.034). In addition, in biofilms exposed to

PBS, expression of both ADH1 and ADH2 correlated significantly

with pH, similar to ALD5 (rs = 0.685, p = 0.0017 for ADH1 and

rs = 0.769, p,0.001 for ADH2, respectively). This implies that

downstream ACH metabolism is controlled similarly at both pHs.

No correlations were observed between gene expression and pH

for other exposure conditions. ADH1 expression correlated

positively with ADH2 expression (rs = 0.703, p,0.001).

Changes in gene expression mirrored the ACH levels at neutral

pH. A negative correlation between ACH levels and ALD5

expression was observed in RPMI biofilms incubated with D-

glucose (rs = 20.763, p,0.001). Similar negative correlations were

observed in biofilms exposed to all conditions tested for ACH

production from ethanol (20.769,rs,20.661, 0.001,p,0.003).

In contrast to neutral pH, most of the correlations between gene

expression and ACH levels were not significant at acidic pH. In

RPMI biofilms the ALD5 expression correlated positively with

ACH values after ethanol incubation (rs = 0.746, p,0.001) while

expression of both ADH1 and ADH2 correlated negatively with

ACH values (rs = 20.558, p = 0.016 and rs = 20.636, p = 0.005

respectively). This suggests a strong induction of pyruvate bypass

towards acetate in RPMI biofilms at acidic pH as expected and

control of pyruvate bypass by downstream metabolism genes, such

as ALD5.

Figure 4. ACH production by C. albicans biofilms. Mean (6SEM) ACH production by C. albicans biofilms. Biofilms at three different stages of
growth (4 h, 24 h and 48 h), were incubated for 30 min at 37uC with 100 mM D-glucose (A,B) or 0.05% ethanol (C,D) after 24 h exposure to RPMI,
ethanol, caspofungin or HICA at pH 5.2 or 7.4. Values were measured twice in triplicate and means were compared at each time point to the control
treatment (RPMI). Statistically significant differences were calculated using a GEE-model and were marked (**p,0.001, * 0.001,p,0.05).
doi:10.1371/journal.pone.0097864.g004
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HICA treatment caused structural defects to intact C.
albicans biofilms

Major defects were observed in biofilm ultrastructure after

exposure to HICA particularly at acidic pH. Hyphal networks had

collapsed and hyphae appeared fractured (Fig. 5A). A similarly

sparse hyphal network was observed at neutral pH (Fig. 5B). In

control images, hyphae appeared intact and unaffected by acidic

pH (Fig. 5C, D). On exposure to HICA, more yeast cells were

observed at neutral pH while hyphal tips showed signs of damage

at acidic pH. Interestingly, when the HICA concentration was

increased, more damaged hyphae were observed at acidic pH and

the yeast cell phenotype was pronounced at neutral pH (figures not

shown).

Discussion

Our study demonstrates a robust efficacy of HICA against C.

albicans biofilms in vitro. Biofilm metabolic activity and biomass

were significantly reduced by HICA especially under acidic

conditions. The effect was visualized by SEM, which showed

collapsing and aberrant hyphal structures in the pre-formed

biofilms after exposure to HICA at both acidic and neutral pH

conditions. There were signs of cell lysis in acidic conditions. A

similar effect has been noted in Aspergillus fumigatus microcolonies in

response to echinocandins [65]. In the present study there was no

reduction of biomass when C. albicans biofilms were exposed to

caspofungin, and the metabolic activity was reduced in early (4 h)

biofilms only. In older biofilms, caspofungin exposure moderately

increased the biofilm biomass thus supporting findings on the

paradoxical effect on growth [41]. The effect of leucine on

biomass, metabolic activity and ACH metabolism was opposite to

that of HICA, and non-inhibitory at neutral pH, suggesting a

different metabolic action. In contrast, cysteine exposure reduced

the biofilm biomass as effectively as HICA at acidic pH, although

no reduction in metabolic activity was observed. Cysteine is vital

for cellular function, but high levels cause accumulation of toxic

sulfite [66]. This is known to be toxic to bacteria and fungi but its

impact on biofilms has not been studied [67–69]. Although a very

low concentration of ethanol (0.05%) was used in this study a

reduction in biofilm biomass of 33% at pH 5.2 and 22% at pH 7.4

was observed. This is of clinical interest as ethanol is used in

antifungal lock therapy against Candida spp. biofilms [70].

In the human body ACH is metabolized into acetate mainly by

the mitochondrial Ald enzyme (ALDH2; [71]). In our study, ALD5

was the only Ald enzyme encoding gene highly expressed in C.

albicans biofilms in all conditions tested. C. albicans ALD5 is an

ortholog of S. cerevisiae ALD5, which encodes the mitochondrial Ald

enzyme [20,72]. Previously our group showed that ALD6,

encoding the cytosolic counterpart, is highly expressed in hypoxic

conditions in planktonically grown cells and the expression

correlated well with ACH levels [25]. In early biofilms exposed

to cysteine and PBS, a mild increase in the basal expression of

ALD6 relative to the reference gene was observed thus supporting

the finding of planktonic cultures (data not shown). There was a

correlation between ACH production and ALD5 expression in our

study. Impairment of pyruvate bypass downstream metabolism by

down-regulation of ALD5 was observed together with high ACH

levels in caspofungin biofilms. ADH1 was also highly expressed but

Figure 5. Microscopic examination of C. albicans biofilms exposed to HICA. SEM images were taken of biofilms which were grown for 24 h in
RPMI at pH 7.4 and then exposed to 5% HICA for another 24 h at pH 5.2 (A) or pH 7.4 (B). Control images were taken of biofilms grown in RPMI-
medium without HICA at pH 5.2 (C) or pH 7.4 (D). Insets show hyphal structures in detail. Scale bars indicate 10 mm in main images and 5 mm in
insets.
doi:10.1371/journal.pone.0097864.g005
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not in all conditions. On exposure to caspofungin, both ADH1 and

ADH2 were down-regulated potentially resulting in ACH accu-

mulation. This down-regulation correlates with the results of a

previous study on 30 h C. albicans biofilms [73]. The positive

correlation between expression of ADH1 and ADH2 seen in this

study implies a functional role of Adh2p alongside Adh1p. This

finding is in line with previous work on planktonic cultures in

hypoxia [25]. The highest levels of ADH1 expression were

observed after exposure to PBS, HICA and cysteine and mainly

at acidic pH. Gene expression from PBS biofilms reflected an

induction of fermentation and pyruvate bypass as many genes in

the pathway were highly expressed. Considering the toxicity of

HICA and cysteine particularly at acidic pH, the up-regulation of

ADH1 and ALD5 could be a response to oxidative stress and

impairment of other respiratory functions. Interestingly, up-

regulation of ADH1 has been noted in apoptosis [74]. The

significantly high basal expression of ADH1 and ALD5 in this study

highlights their role in biofilms and supports the findings by others

in vitro and in vivo [30,31,36].

Alcohol abuse is the main etiologic agent in upper digestive tract

carcinogenesis and multiple studies by our group and others have

shown that the carcinogenic effect of alcohol is a result of

microbial metabolism of ethanol to ACH in vitro and in vivo [18,75–

77]. Also, marked production of ACH by Candida spp. from D-

glucose has been shown in vitro [15,18]. Considering that infections

are mostly biofilm-related and to support our hypothesis of the

carcinogenicity of Candida infection, it was important to elucidate

the mutagenic potential of C. albicans biofilms and the expression of

genes related to ACH and ethanol. Mutagenic levels of ACH were

produced by control biofilms during incubation in D-glucose at

neutral pH (up to 54 mM). No ACH was produced by biofilms

exposed to HICA during D-glucose incubation at acidic pH. At

neutral pH, the ACH levels were significantly lower compared to

control (RPMI) conditions and below the mutagenic level (,

40 mM). At neutral pH, ACH production from ethanol or D-

glucose by mature biofilms was decreased similarly by both HICA

and caspofungin. Interestingly, although caspofungin inhibited

ACH production by early biofilms more than HICA, it resulted in

the highest ACH levels at acidic pH during D-glucose incubation.

This is relevant as a normal western diet is often rich in D-glucose

and the 100 mM concentration used in this study is equivalent to

18 g/l found commonly in food and beverages. In the presence of

ethanol, ACH levels produced by all biofilms exposed to HICA or

caspofungin were generally lower than in control biofilms. The

ethanol concentration of 11 mM used in this study is found in

saliva after drinking 0.5 g of alcohol per kg body weight, which is

equivalent to 3 glasses of wine for an 80 kg male and thus can be

considered clinically relevant. Our results on biofilms support

earlier studies on planktonic cell cultures [12,15,18,77]. Biofilms

exposed to RPMI and ethanol produced high levels of ACH from

ethanol (up to 135 mM), well above the mutagenic level, and

approaching the results obtained with planktonic cultures. It is

relevant to point out that the highest ACH levels were produced at

later stages of biofilm growth, as would be established in niches of

the human body.

HICA was most active against C. albicans biofilms at acidic pH,

in line with previous studies where planktonic cultures were used

[43,44]. The main focus of the present study was to investigate the

anti-biofilm efficacy of HICA against various comparators

whereby it was critical to grow the biofilms under standardised

conditions before treatment at acidic and neutral conditions.

Therefore, the biofilms were not pre-grown at acidic conditions,

which can be considered a limitation: there are multiple sites that

are physiologically acidic and pH can have an effect on C. albicans

morphology [78]. On the other hand, acidic pH may favour

fungal over bacterial growth as seen in Candida esophagitis,

vulvovaginal candidosis and chronic wounds [79–83]. Interesting-

ly, the final metabolic activity and biomass of untreated (RPMI)

control biofilms after 24 h exposure to pH 5.2 and 7.4 were

comparable in the present study.

A recent report suggested that composition of the medium has a

major effect on biofilm architecture, expression profiles and

antifungal susceptibility [84]. In RPMI medium, the D-glucose

concentration of 2.0 g/l is higher than the physiological concen-

tration normally found in the human body (0.7–1.0 g/l; [85]).

Thus adjustment of the D-glucose concentration could bring the in

vitro models closer to physiological conditions in the human body

and allow for the discovery of the effects that may be masked by

the artificially high D-glucose concentrations used in vitro. Also a

major disadvantage of our study and multiple others is the use of

only one strain. There are major differences between clinical and

reference strains with respect to metabolic activity, susceptibility

profiles and the ability to form biofilms which suggests this analysis

would benefit by confirmation with clinical isolates [86]. It is

important to note that ACH levels were not standardised to cell

count or biomass but per biofilm unit. This was in order to avoid

potential artifacts that would arise through biofilm killing by

antifungal agents.

The mode of action for HICA is still unknown, and broader

transcriptional and proteomic studies are warranted to elucidate

the specific factors underlying its anti-microbial activity. Consid-

ering the similar expression of ACH catabolism genes after

cysteine and HICA exposure, cysteine may provide clues in the

quest to understand the mode of action of HICA. A few

Lactobacillus-fungus co-culture studies with a transcriptomic

approach have already shed light on this inhibitory mechanism

and they indicate a global metabolic shutdown in fungal cells in

response to Lactobacillus metabolites [50,52]. Considering the

urgent need for effective treatment strategies against fungal

infections, HICA could provide an alternative and effective

approach in the fight against superficial Candida biofilm infections

in concentrations relevant to topical treatment or lock therapies.

Together with its broadly antibacterial activity it could also be a

good choice for mixed bacterial-fungal infections. The decreased

mutagenic potential observed in biofilms exposed to HICA would

suggest that long-term therapy would not cause harmful exposure

of adjacent mucosa and surrounding bacteria to mutagenic ACH

although more studies are required to confirm this.
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