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Abstract
This paper studies a systemof nonlinear fractional differential equations (FDEs)with deviated
arguments. Many linear and nonlinear problems are faced in the real-life. Generally, linear
problems are solved quickly, but some difficulties appear while solving nonlinear problems.
Our purpose is to approximate those solutions numerically via the Adomian decomposition
method (ADM). Here, our main goal is to apply the ADM to solve higher-order nonlinear
system of FDEs with deviated arguments. We prove the existence and uniqueness of the
solution using Banach contraction principle. Moreover, we plot the figures of ADM solutions
using MATLAB.

Keywords Fractional differential equations · Adomian decomposition method · Caputo
fractional derivative · Deviated arguments · Nonlinear system · Existence uniqueness

Introduction

“Science is a differential equation,” said Alan Turing, and Paul Ormerod “Baseball players or
cricketers do not need to be able to solve explicitly the nonlinear differential equations which
govern the flight of the ball. They just catch it.” Nonlinear differential equations describe
many real-world physical phenomena. To understand the nature of these phenomena, wemust
first solve differential equations. “In order to solve this differential equation, you look at it
until a solution occurs to you,” George Polya explained. In 1980, George Adomian proposed
a new iterative scheme known as ADM. This method provides analytical solutions to both
linear and nonlinear differential equations.

Classical differential equations cannot adequately describe more and more phenomena as
science and technology advance. Various physical processes, for example, have memory and
heritability properties that the classical local differential operators cannot adequately repre-
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sent. Many great mathematicians such as Euler, Liouville, Riemann, Caputo, and Letnikov
developed a new excellent tool to describe these nonlocal processes (fractional differential
equations described by nonlocal operators) [21, 23]. Fractional Calculus was born in 1695.
G.F.A. de L Hospital thought about what happens if the order is 1/2. And in 1697, G.W.
Leibniz used fractional derivatives of order 1/2 and made some remarks on it. However, in
1819, S.F. Lacroix mentioned the derivative of arbitrary order in his text on differential and
integral calculus. N.H. Abel gave the first application of fractional calculus in 1823.

Fractional calculus has been included in recent studies on CoViD-19 [3, 17, 20]. Many
studies have been conducted in the field ofmathematics, and it has been shown that differential
equations using fractional operators are effective in demonstrating epidemic models linked
to many infectious illnesses [7, 12]. Two leading implementations of fractional calculus are
in epidemiological and biomathematical models [6, 18, 19]. Ahmad et al. [2] performed
simulations of a fractional model for CoViD-19 transmission, taking into account various
values of the non-integer order derivative and came to the conclusion that the value of =
0.97 best matched the actual data. Furthermore, Zhang et al. [29] created a non-integer order
model for the dynamics of CoViD-19. The authors investigated the stability of the system
and reproduction number.

FDEswith deviated arguments havemany applications in science and engineering, includ-
ing fractals theory, chemistry, biology, physics, neural network, weather prediction model,
etc. [19, 26]. Brauer et al. [5] presented logistic equations, which are particularly applicable
to epidemic systems. Xu et al. [26] explored the effect of numerous time delays on fractional-
order neural network bifurcation. There are various methods to solve fractional differential
equations: the homotopy perturbation method [9, 13, 14, 22], the Adomian decomposition
method [1, 8, 15, 16, 25, 27], the polynomial least square method [4], and so on [24].

In [10], Duan et al. provided a review of ADM and its application to FDEs. Evans and
Raslan [11] applied theAdomianmethod to solve a particular ordinary delay differential equa-
tions in which the delay is located in the linear or nonlinear part, where the history function
is not necessary. In [16], Li and Pang provided an application of ADM to a nonlinear system.
In [25], Saeed and Rahman studied the ADM for solving the system of delay differential
equation. In [27], Ziada studied the nonlinear system of fractional differential equations via
ADM, and the fractional order rabies model was solved as an application. However, in [28]
Ziada studied the analytical and numerical solutions of a multi-term nonlinear differential
equation with deviated arguments.

Motivated by the works of Ziada [27, 28] as well as Saeed and Rahman [25], we construct
the system (1)–(2).We extend the work of [25] for higher order nonlinear FDEswith deviated
arguments.

Delay differential equations are far more complicated than traditional ordinary differential
equations, they explain many processes found in several fields such as biology, medicine,
chemistry, economics, engineering and physics. Systems of FDEs have many applications in
engineering and science, including electrical networks, control theory, fractals theory, vis-
coelasticity, optical and neural network systems. This paper aims to discuss the approximate
solution of a nonlinear system of FDEs with deviated arguments via ADM (an algorithm
that uses a decomposition technique). Here, our main goal is to apply the ADM to solve
higher-order nonlinear systems of FDEs with deviated arguments. This method has numer-
ous advantages. It is very simple to use and can solve a wide range of nonlinear systems, such
as ordinary and partial differential equations, fractional delay differential equations, and so
on. It avoids the Picard method’s time-consuming integrations. It decomposes the solution
into a series with easily computed components. It has the advantage of converging to the
exact solution.
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The remaining paper is designed as “Formulation of the Problem” section introduces the
formulation of the problem andADM’s iterative scheme. “BasicDefinitions” section contains
some useful basic definitions. In the next two sections, we prove the existence, uniqueness and
convergence of the solution of the system (1)–(2). Numerical examples have been provided
in “Numerical Examples” section. The conclusion is added in the last section.

Formulation of the Problem

Consider the following higher-order nonlinear system of FDEs with deviated arguments

CDqi
t yi (t) = Fi

(
t, y1(t), . . . , yn(t), y1(ν1(t)), . . . , yn(νn(t))

)
, t ∈ J0 = [0, T ], (1)

with initial conditions

y( j)
i (0) = ci j , νi (t) ≤ t, yi (t) = �i (t), t ≤ 0, (2)

where CDqi
t denote the Caputo derivative of order n − 1 < qi ≤ n, i = 1, 2, . . . , n, j =

0, 1, 2, . . . , n−1. Here, we use Caputo fractional derivative amongst a variety of definitions
for fractional order derivatives as it is suitable for describing various phenomena, since the
initial values of the function and its integer order derivatives have to be specified. Fi are
nonlinear operators that satisfy Lipschitz condition with Lipschitz constant Li , such as

∣∣(Fi yi
)
(t) − (Fi zi

)
(t)

∣∣ = Li

( n∑

i=1

|yi (t) − zi (t)| +
n∑

i=1

|yi (νi (t)) − zi (νi (t))|
)

. (3)

yi (t) ∈ C(J0) are unknown functions,�i (t) are given continuous functions and ci j are given
constants. In order to solve the problem (1) with (2) by using the ADM, performing the
fractional integral Iqi

t to both sides of (2), we have

yi (t) =
n−1∑

j=0

ci j
t j

j ! + Iqi
t Fi

(
t, y1(t), . . . , yn(t), y1(ν1(t)), . . . , yn(νn(t))

)
. (4)

Adomian’s method defines the solution by series

yi (t) =
∞∑

m=0

yi,m(t). (5)

So that, the components yi,m will be determined recursively. Moreover, the method defines
the nonlinear term Fi

(
t, y1(t), . . . , yn(t), y1(ν1(t)), . . . , yn(νn(t))

)
by the Adomian poly-

nomials

Fi
(
t, y1(t), . . . , yn(t), y1(ν1(t)), . . . , yn(νn(t))

) =
∞∑

m=0

Ai,m(yi,0, yi,1, . . . , yi,m), (6)

where Ai,m are Adomian polynomials that can be generated for all forms of nonlineraity as

Ai,m =
[
1

m!
dm

dλm
Fi

(
t,

∞∑

m=0

λm y1,m(t), . . . ,
∞∑

m=0

λm yn,m(t),

∞∑

m=0

λm y1,m(ν1(t)), . . . ,
∞∑

m=0

λm yn,m(νn(t))

)]

λ=0
, (7)
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where λ is a parameter.
In view of (5) and (6), (4) becomes

∞∑

m=0

yi,m(t) =
n−1∑

j=0

ci j
t j

j ! + Iqi
t

∞∑

m=0

Ai,m . (8)

To determine the components yi,m(t), m ≥ 0. First we identify the zero component yi,0

by the terms
n−1∑

j=0
ci j

t j
j ! and Iqi

t fi (t), where fi (t) represent the non-homogeneous parts of

Fi
(
t, y1(t), . . . , yn(t), y1(ν1(t)), . . . , yn(νn(t))

)
. Thus, the recurrence relation is

yi,0 =
n−1∑

j=0

ci j
t j

j ! + Iqi
t fi (t), (9)

yi,m+1 = Iqi
t Ai,m, m = 0, 1, 2, . . . . (10)

We can approximate the solution yi by the truncated series

Ni,k =
k−1∑

m=0
yi,m, lim

k→∞ Ni,k = yi (t).

Basic Definitions

Definition 3.1 [21, 23] (a) Caputo fractional derivative

(CDq
0+y

)
(t) = (In−q

0+ Dn y
)
(t),

where

(Iq
0+y

)
(t) = 1

�(q)

∫ t

0
(t − s)q−1y(s)ds.

(b)

Iq tμ = �(μ + 1)

�(μ + q + 1)
tμ+q , q > 0, μ > −1, t > 0.

(c)

Iq1Iq2 y = Iq1+q2 y, q1, q2 > 0.

Existence and Uniqueness of Solution

Define the operator P : Y → Y, where Y is the Banach space
(
C(J0), ‖ · ‖), the space of

all continuous functions on J0 equipped with the norm ‖y‖ = sup
t∈J0

|y(t)|.

Theorem 4.1 If Fi satisfy the Lipschitz condition (3) and 0 < γ < 1, where γ =
2nLT qi

�(qi+1) , L = sup{L1, L2, . . . , Ln}, then the system (1)–(2) has a unique solution yi ∈ Y
on J0.
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Proof Define the operator P : Y → Y as

(P yi
)
(t) =

n−1∑

j=0

ci j
t j

j ! + 1

�(qi )

∫ t

0
(t − s)qi−1Fi

(
t, y1(t), . . . , yn(t),

y1(ν1(t)), . . . , yn(νn(t))
)
ds. (11)

Let yi , zi ∈ Y, i = 1, 2, . . . , n, then

∣
∣(P yi

)
(t) − (Pzi

)
(t)

∣
∣

=
∣
∣
∣∣

1

�(qi )

∫ t

0
(t − s)qi−1

[
Fi

(
t, y1(t), . . . , yn(t), y1(ν1(t)), . . . , yn(νn(t))

)

−Fi
(
t, z1(t), . . . , zn(t), z1(ν1(t)), . . . , zn(νn(t))

)
]
ds

∣
∣
∣
∣

≤ 1

�(qi )

∫ t

0
(t − s)qi−1

∣
∣
∣
∣Fi

(
t, y1(t), . . . , yn(t), y1(ν1(t)), . . . , yn(νn(t))

)

−Fi
(
t, z1(t), . . . , zn(t), z1(ν1(t)), . . . , zn(νn(t))

)
∣∣∣∣ds

≤ 1

�(qi )

∫ t

0
(t − s)qi−1Li

( n∑

i=1

|yi (t) − zi (t)| +
n∑

i=1

|yi (νi (t)) − zi (νi (t))|
)
ds

⇒ sup
t∈J0

∣∣(P yi
)
(t) − (Pzi

)
(t)

∣∣

≤ L

�(qi )

n∑

i=1

sup
t∈J0

∫ t

0
(t − s)qi−1(|yi (t) − zi (t)|

+|yi (νi (t)) − zi (νi (t))|
)
ds

∥∥(P yi
)
(t) − (Pzi

)
(t)

∥∥ ≤ 2nL

�(qi )
‖yi − zi‖

∫ t

0
(t − s)qi−1ds

≤ 2nLT qi

qi�(qi )
‖yi − zi‖

≤ 2nLT qi

�(qi + 1)
‖yi − zi‖

≤ γ ‖yi − zi‖.
Since 0 < γ < 1, therefore the mapping P is contraction. By Banach contraction principle,
there exists a unique solution yi ∈ Y. This completes the proof. 	


Proof of Convergence

Theorem 5.1 The series solution (5) of the system (1)–(2) using ADM converges if |yi,1(t)| <

∞ and 0 < δ < 1, where δ = LT qi

�(qi+1) , L = sup{L1, L2, . . . , Ln}.
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Proof Define the sequence of partial sum {Si,p}, as Si,p =
p∑

m=0
yi,m(t).

Since,

Fi
(
t, y1(t), . . . , yn(t), y1(ν1(t)), . . . , yn(νn(t))

) =
∞∑

m=0

Ai,m .

So, we have

Fi
(
t, S1,p(t), . . . , Sn,p(t), S1,p(ν1(t)), . . . , Sn,p(νn(t))

) =
p∑

m=0

Ai,m .

Further, we prove that {Si,p} is a Cauchy sequence in Y. Let {Si,p}, {Si,q} be two arbitrary
partial sums such that p ≥ q, then

‖Si,p − Si,q‖ = sup
t∈J0

|Si,p − Si,q |

= sup
t∈J0

∣
∣
∣
∣

p∑

m=q+1

yi,m(t)

∣
∣
∣
∣

= sup
t∈J0

∣∣∣∣

p∑

m=q+1

1

�(qi )

∫ t

0
(t − s)qi−1Ai,m−1ds

∣∣∣∣

= sup
t∈J0

∣∣∣∣
1

�(qi )

∫ t

0
(t − s)qi−1

p∑

m=q+1

Ai,m−1ds

∣∣∣∣

= sup
t∈J0

∣∣∣∣
1

�(qi )

∫ t

0
(t − s)qi−1

p−1∑

m=q

Ai,mds

∣∣∣∣

= sup
t∈J0

∣∣∣∣
1

�(qi )

∫ t

0
(t − s)qi−1

[
Fi

(
Si,p−1

) − Fi
(
Si,q−1

)]
ds

∣∣∣∣

≤ 1

�(qi )
sup
t∈J0

∫ t

0
(t − s)qi−1

∣∣∣Fi
(
Si,p−1

) − Fi
(
Si,q−1

)∣∣∣ds

≤ Li

�(qi )

∥∥Si,p−1 − Si,q−1
∥∥

∫ t

0
(t − s)qi−1ds

≤ LT qi

�(qi + 1)

∥∥Si,p−1 − Si,q−1
∥∥

≤ δ
∥∥Si,p−1 − Si,q−1

∥∥.

Let p = q + 1, then∥∥Si,q+1 − Si,q
∥∥ ≤ δ

∥∥Si,q − Si,q−1
∥∥ ≤ δ2

∥∥Si,q−1 − Si,q−2
∥∥ ≤ . . . ≤ δq

∥∥Si,1 − Si,0
∥∥.

Using triangle inequality, we have

‖Si,p − Si,q‖ ≤ δq
[1 − δ p−q

1 − δ

]
‖yi,1‖.

Since 0 < δ < 1 and p ≥ q, then 1 − δ p−q ≤ 1. Hence,

‖Si,p − Si,q‖ ≤
[ δq

1 − δ

]
sup
t∈J0

|yi,1(t)|.
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Since |yi,1(t)| < ∞, therefore ‖Si,p − Si,q‖ → 0 as q → ∞. Hence, {Si,p} is a Cauchy
sequence in Y and thus the series (5) converges. The proof is completed. 	


Numerical Examples

Example 1 Consider the following nonlinear system
⎧
⎨

⎩

Dq y1(t) = y1
( t
3

) + 3y22
( t
2

)
,

Dq y2(t) = y2(t)y3(t),
Dq y3(t) = y21 (t) + t y3(t),

(12)

subject to the initial conditions

y1(0) = 0, y2(0) = 1, y3(0) = 1,

where q ∈ (0, 1], t ∈ [0, 2].
On applying ADM to system (12), we obtain the following scheme

y1,0(t) = 0, y1,m+1(t) = Iq
t

(
y1,m

( t

3

))
+ Iq

t
(
3A1,m(t)

)
, (13)

y2,0(t) = 1, y2,m+1(t) = Iq
t
(A2,m(t)

)
, (14)

y3,0(t) = 1, y3,m+1(t) = Iq
t
(A3,m(t)

) + Iq
t
(
t y3,m(t)

)
, (15)

whereA1,m(t), A2,m(t) andA3,m(t) represent the Adomian polynomials of nonlinear terms
y22

( t
2

)
, y2(t)y3(t) and y21 (t), respectively.

Using the relations (13)–(15), the first four terms of the series solutions are

y1(t) = 3

�(q + 1)
tq + 32−q21−q

[�(2q + 1)]2 t
4q + 3

22q�(3q + 1)

[
�(2q + 1)

[�(q + 1)]2 + 2

]
t3q

+ 32−5q21−q�(4q + 1)

[�(2q + 1)]2�(5q + 1)
t5q + . . . , (16)

y2(t) = 1 + 1

�(q + 1)
tq + 1

�(2q + 1)
t2q + 1

�(2q + 2)
t2q+1

+ 1

�(3q + 2)

[
�(2q + 2)

�(q + 1)�(q + 2)
+ 1

]
t3q+1 + (2 + q)

�(3q + 3)
t3q+2

+ 1

�(3q + 1)
t3q + . . . , (17)

y3(t) = 1 + 1

�(q + 2)
tq+1 + (2 + q)

�(2q + 3)
t2q+2 + 9�(2q + 1)

[�(q + 1)]2�(3q + 1)
t3q

+ (2 + q)�(2q + 4)

�(2q + 3)�(3q + 4)
t3q+3 + . . . . (18)

Figure 1A–C show ADM solution of y1, y2 and y3 at different values of q (q =
0.125, 0.33, 0.55, 0.70, 1), respectively.

Example 2 Consider the following system
⎧
⎨

⎩

D0.75y1(t) = y21 (t) + t3,
D1.25y2(t) = y41 (t) + y2

( t
7

)
,

D2.5y3(t) = y2
( t
5

) + y33 (t) − t,
(19)
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Fig. 1 A–C, ADM Sol. of
y1, y2, y3
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subject to the initial conditions

y1(0) = 0, y2(0) = 0, y′
2(0) = 0,

y3(0) = 0, y′
3(0) = 0, y′′

3 (0) = 0,

t ∈ [0, 2].
On applying ADM to system (19), we have the following recursive relations

y1,0(t) = �(4)

�(4.75)
t3.75, y1,m+1(t) = I0.75

t

(A1,m(t)
)
, (20)

y2,0(t) = 0, y2,m+1(t) = I1.25
t

(A2,m(t)
) + I1.25

t

(
y2,m

( t

7

))
, (21)

y3,0(t) = − 1

�(4.5)
t3.5, y3,m+1(t) = I2.5

t

(
y2,m

( t

5

))
+ I2.5

t

(A3,m(t)
)
, (22)

whereA1,m(t), A2,m(t) andA3,m(t) represent the Adomian polynomials of nonlinear terms
y21 (t), y

4
1 (t) and y33 (t), respectively.

Using the relations (20)–(22), the first few terms of the series solution are

y1(t) = �(4)

�(4.75)
t3.75 +

[
�(4)

�(4.75)

]2
· �(8.5)

�(9.25)
t8.25

+2

[
�(4)

�(4.75)

]3
· �(8.5)

�(9.25)
· �(13)

�(13.75)
t12.75

+
[

�(4)

�(4.75)

]4
· �(8.5)

�(9.25)
· �(17.5)

�(18.25)

[
�(8.5)

�(9.25)
+ 4�(13)

�(13.75)

]
t17.25

+ . . . , (23)

y2(t) =
[

�(4)

�(4.75)

]4
· �(16)

�(17.25)
t16.25 + 4

[
�(4)

�(4.75)

]5
· �(8.5)

�(9.25)
· �(20.5)

�(21.75)
t20.75

+
[

�(4)

�(4.75)

]4
· �(16)

�(18.5)
·
(1
7

)16.25
t17.5

+2

[
�(4)

�(4.75)

]6
· �(8.5)

�(9.25)
· �(25)

�(26.25)

[
3�(8.5)

�(9.25)
+ 4�(13)

�(13.75)

]
t25.25

+4

[
�(4)

�(4.75)

]5
· �(8.5)

�(9.25)
· �(20.5)

�(23)
·
(1
7

)20.75
t22

+
[

�(4)

�(4.75)

]4
· �(16)

�(19.75)
·
(1
7

)33.75
t18.75 + . . . , (24)

y3(t) = − 1

�(4.5)
t3.5 −

[
1

�(4.5)

]3
· �(11.5)

�(14)
t13

+
[

�(4)

�(4.75)

]4
· �(16)

�(17.25)
· 1

�(4.5)
·
(1
5

)16.25
t3.5

−3

[
1

�(4.5)

]5
· �(11.5)

�(14)
· �(21)

�(23.5)
t22.5 + . . . . (25)

Figure 2 shows the ADM solution of y1, y2, y3.
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Fig. 2 ADM Sol. of y1, y2, y3

Example 3 Consider the following system
{
D p y1(t) = y1

( t
3

) + y21 (t) − �(3+p)
�(3) t2,

Dq y2(t) = y2(t) sin(y1(t)) + t y1
( t
4

)
,

(26)

subject to the initial conditions

y1(0) = 0, y′
1(0) = 0, y2(0) = 0,

where p ∈ (1, 2], q ∈ (0, 1], t ∈ [0, 2].
Applying ADM to system (26), we get the following scheme

y1,0(t) = −t p+2, y1,m+1(t) = I p
t

(
y1,m

( t

3

))
+ I p

t
(A1,m(t)

)
, (27)

y2,0(t) = 0, y2,m+1(t) = Iq
t
(A2,m(t)

) + Iq
t

(
t y1,m

( t

4

))
, (28)

whereA1,m(t) andA2,m(t) represent the Adomian polynomials of nonlinear terms y22 (t) and
y2(t) sin(y1(t)), respectively.
Using the relations (27)–(28), the first few terms of the series solution are

y1(t) = −t p+2 − 1

3p+2 · �(p + 3)

�(2p + 3)
t2p+2 + �(2p + 5)

�(3p + 5)
t3p+4
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Fig. 3 A, B, ADM Sol. of y1, y2
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− 1

33p+4 · �(p + 3)

�(3p + 3)
t3p+2 + 1

33p+4 · �(2p + 5)

�(4p + 5)
t4p+4

+ 2

3p+2 · �(p + 3)

�(2p + 3)
· �(3p + 5)

�(4p + 5)
t4p+4

−2 · �(2p + 5)

�(3p + 5)
· �(4p + 7)

�(5p + 7)
t5p+6 + . . . , (29)

y2(t) = − 1

4p+2 · �(p + 4)

�(p + q + 4)
t p+q+3 + 1

43p+4 · �(2p + 5)

�(3p + 5)
· �(3p + 6)

�(3p + q + 6)
t3p+q+5

− 1

3p+2 · 1

42p+2 · �(p + 3)

�(2p + 3)
· �(2p + 4)

�(2p + q + 4)
t2p+q+3 + . . . . (30)

Figure 3A, B show the ADM solution of y1, y2.

Example 4 Consider the following nonlinear system
{D5/2y1(t) = y2

( t
3

) + y1(t)y2(t) + �(7/2) cos(�(9/2)),
D3/2y2(t) = t y1

( t
5

) + π2 tan(3)y22 (t),
(31)

subject to the initial conditions

y1(0) = 1, y′
1(0) = −1, y′′

1 (0) = −1,

y2(0) = 0, y′
2(0) = 1,

t ∈ [0, 4]. Applying ADM to system (31) leads to the following scheme

y1,0(t) = 1 − t − t2

2
+ cos(�(9/2))t5/2,

y1,m+1(t) = I5/2
t

(
y2,m

( t

3

))
+ I5/2

t
(A1,m(t)

)
, (32)

y2,0(t) = t, y2,m+1(t) = I3/2
t

(
t y1,m

( t

5

))
+ π2 tan(3)I3/2

t
(A2,m(t)

)
, (33)

whereA1,m(t) andA2,m(t) represent theAdomian polynomials of nonlinear terms y1(t)y2(t)
and y22 (t), respectively.

Using the relations (32)–(33), the first few terms of the series solution are

y1(t) = 1 − t − t2

2
+ cos(�(9/2))t5/2 + 4

3
· 1

�(9/2)
t7/2 − �(3)

�(11/2)
t9/2

−1

2
· �(4)

�(13/2)
t11/2 + cos(�(9/2)) · �(9/2)

�(7)
t6 + . . . , (34)

y2(t) = t + 1

�(7/2)
t5/2 + �(3)

�(9/2)

[
π2 tan(3) − 1

5

]
t7/2 − 1

50
· �(4)

�(11/2)
t9/2

+ �(9/2)

�(6)

[
cos(�(9/2)) ·

(
1

5

)5/2

+ 4

3
· 1

�(9/2)�(7/2)
+ 2π2 tan(3)

�(7/2)

]
t5

+4π2 tan(3)

�(9/2)

[
π2 tan(3) − 1

5

]
�(11/2)

�(7)
t6 + . . . . (35)

Figure 4 shows the ADM solution of y1, y2.
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In general, finding the exact solution of every differential equation is difficult, particularly
the higher-order non-linear fractional differential equations with deviated arguments. The
question is how one can check the accuracy of the method in the absence of the exact
solution. Therefore, we give the following example with the known exact solution and show
the accuracy of the proposed method.

Example 5 Consider the following nonlinear system
{D p y1(t) = −2y2

( t
2

)
y1

( t
2

)
,

D p y2(t) = 1 − 2y22
( t
2

)
,

(36)

subject to the initial conditions

y1(0) = 1, y2(0) = 0,

where 0 < p ≤ 1, t ∈ [0, 1], which has the exact solution y1(t) = cos t and y2(t) = sin t at
p = 1 (Fig. 5).

On applying ADM to system (36), we obtain the following scheme

y1,0(t) = 1, y1,m+1(t) = −2I p
t
(A1,m(t)

)
, (37)

y2,0(t) = 0, y2,m+1(t) = −2I p
t
(A2,m(t)

)
, (38)

Table 1 The exact and numerical
values of the solution y1 of
example 5

t Exact solution ADM solution Error

0 1.0000 1.0000 0

0.1 0.9950 0.9950 0.0000

0.2 0.9801 0.9801 0.0000

0.3 0.9553 0.9553 0.0000

0.4 0.9211 0.9211 0.0000

0.5 0.8776 0.8776 0.0000

0.6 0.8253 0.8254 0.0001

0.7 0.7648 0.7650 0.0002

0.8 0.6967 0.6971 0.0004

0.9 0.6216 0.6223 0.0007

1 0.5403 0.5417 0.0014

Table 2 The exact and numerical
values of the solution y2 of
example 5

t Exact solution ADM solution Error

0 0 0 0

0.1 0.0998 0.0998 0.0000

0.2 0.1987 0.1987 0.0000

0.3 0.2955 0.2955 0.0000

0.4 0.3894 0.3893 0.0001

0.5 0.4794 0.4792 0.0003

0.6 0.5646 0.5640 0.0006

0.7 0.6442 0.6428 0.0014

0.8 0.7174 0.7147 0.0027

0.9 0.7833 0.7785 0.0048

1 0.8415 0.8333 0.0081
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whereA1,m(t) andA2,m(t) represent theAdomianpolynomial of nonlinear terms y2
( t
2

)
y1

( t
2

)

and y22
( t
2

)
, respectively.Using the relations (37)–(38), the first few terms of the series solution

are

y1(t) = 1 − 1

2p−1�(2p + 1)
t2p + 2

[
1

24p−1�(p + 1)�(2p + 1)

+ �(2p + 1)

25p−1[�(p + 1)]2�(3p + 1)

]
�(3p + 1)

�(4p + 1)
t4p − 16

[24p�(p + 1)]2
[

�(3p + 1)

2p�(2p + 1)�(4p + 1)
+ �(2p + 1)

22p�(p + 1)�(4p + 1)

+ �(2p + 1)�(4p + 1)

23p�(p + 1)�(3p + 1)�(5p + 1)

]
�(5p + 1)

�(6p + 1)
t6p + . . . , (39)

y2(t) = 1

�(p + 1)
t p − 2

[2p�(p + 1)]2 · �(2p + 1)

�(3p + 1)
t3p

+ 8

26p[�(p + 1)]3 · �(2p + 1)

�(3p + 1)
· �(4p + 1)

�(5p + 1)
t5p

− 8

24p[�(p + 1)]4 · �(2p + 1)

�(3p + 1)

[
�(2p + 1)

�(3p + 1)
+ 4�(4p + 1)

28p�(5p + 1)

]
�(6p + 1)

�(7p + 1)
t7p

+ . . . . (40)
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Fig. 5 A, B, ADM and exact sol. of y1, y2
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Tables 1 and 2 show the exact and numerical values of y1 and y2. Figure 5 A, B show
the solutions of y1 and y2, respectively.

Conclusion

The focus of this paper is to approximate the solution of a nonlinear system of FDEs with
deviated arguments using a simple method. Using Banach contraction principle, we prove
the existence and uniqueness of the solution. As we know that in real-life, many linear and
nonlinear problems occur in the form of a differential equation. Some difficulties occur while
solving nonlinear FDEs. Therefore, we apply the ADM method to solve the higher-order
nonlinear system of FDEs with deviated arguments and provide some numerical examples to
show the effectuality of the method. We plot the figures of ADM solutions using MATLAB.
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