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Aging is a major risk factor contributing to neurodegeneration and dementia. However,
it remains unclarified how aging promotes these diseases. Here, we use machine
learning and weighted gene co-expression network (WGCNA) to explore the relationship
between aging and gene expression in the human frontal cortex and reveal potential
biomarkers and therapeutic targets of neurodegeneration and dementia related to
aging. The transcriptional profiling data of the human frontal cortex from individuals
ranging from 26 to 106 years old was obtained from the GEO database in NCBI.
Self-Organizing Feature Map (SOM) was conducted to find the clusters in which gene
expressions downregulate with aging. For WGCNA analysis, first, co-expressed genes
were clustered into different modules, and modules of interest were identified through
calculating the correlation coefficient between the module and phenotypic trait (age).
Next, the overlapping genes between differentially expressed genes (DEG, between
young and aged group) and genes in the module of interest were discovered. Random
Forest classifier was performed to obtain the most significant genes in the overlapping
genes. The disclosed significant genes were further identified through network analysis.
Through WGCNA analysis, the greenyellow module is found to be highly negatively
correlated with age, and functions mainly in long-term potentiation and calcium signaling
pathways. Through step-by-step filtering of the module genes by overlapping with
downregulated DEGs in aged group and Random Forest classifier analysis, we found
that MAPT, KLHDC3, RAP2A, RAP2B, ELAVL2, and SYN1 were co-expressed and
highly correlated with aging.

Keywords: WGCNA (weighted gene co-expression network analyses), SOM (self-organization map), aging brain,
random forest, machine learning
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INTRODUCTION

The brain is highly sensitive to aging and lots of neurological
diseases are aging-promoted processes. An important issue is
how normal brain aging transitions to pathological aging, giving
rise to neurodegenerative disorders (Wyss-Coray, 2016; Hou
et al., 2019; Juan and Adlard, 2019). Despite this central role in
disease pathogenesis and morbidity, the aging of the brain has
not been well understood at a molecular level. Several hypotheses,
such as DNA damage, loss of neural circuits and synapses,
and mitochondrial dysfunction theories, were established (Lu
et al., 2004; Yankner et al., 2008; Stern, 2012; Hou et al.,
2019). Exploring molecular changes in the aging brain can
provide a basis for a better understanding of neurodegenerative
diseases and dementia.

SOM is a clustering and classification method based on neural
network (Furukawa, 2009). Similar to other types of center point
clustering algorithms such as K-means, SOM also finds a set
of centroids (also called codebook vector), and then maps each
object in the data set to the corresponding centroids according
to the principle of most similarity. In neural network terms, each
neuron corresponds to a center point. In our study, we performed
SOM on gene expression matrix to cluster genes with highly
similar expression patterns and find the pattern in which gene
expression decreases with aging.

Weighted gene co-expression network analysis (WGCNA)
is a biology algorithm used to describe the correlation of
gene expression based on the microarray data (Langfelder and
Horvath, 2008). WGCNA can be used for clustering genes
with highly correlated expression, for relating the modules to
phenotypes to get the most phenotypic trait-related module,
and for summarizing these co-expressed gene clusters by
identification of the module eigengene or hub genes. Random
forest (RF) is a more advanced machine learning algorithm based
on decision tree. Like other decision trees, random forests can
be used for both regression and classification. In this study,
we conducted RF classifier to classify the different age groups
based on the gene expression matrix, then we selected the
most significant genes for further analysis. Further Topological
network analysis can identify the key players within modules,
and thus facilitate the discovery of candidate biomarkers or
therapeutic targets.

In this study, we performed machine learning and WGCNA
analysis on publicly accessible transcriptome data obtained
from human frontal cortex of individuals at different ages. We
identified 17 co-expression modules. Through calculating the
correlation coefficient between the module and age phenotype,
we obtained a module of interest. Next, we disclosed the
overlapping genes between differentially expressed genes (DEGs
of aged group compared to young group) and genes in the
module of interest. Using these overlapping genes, we conducted
GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis and further identify the central
players within the module through network analysis. We
concluded that ELAVL2, RAP2A, RAP2B, KLHDC3, and CALM1
genes are significantly associated with aging, and may be novel
biomarkers involved in neurodegeneration and dementia.

RESULTS

Self-Organizing Feature Map
Construction and Cluster Identification
The expression matrix of GSE1572 was used as input dataset. In
this dataset, after removing one abnormal sample, 30 samples
were detected and used as SOM input features (Figure 1A).
The expression data of each gene (in total more than 11,000
genes) in all samples was used as input data. We set the number
of output neurons of the network to 100, and obtained the
neural network after training (Figure 1C and Supplementary
Figure 1). The weight matrix (30 × 100 size) corresponding to
each feature was used as the input data of hierarchical clustering
to cluster 100 neurons again. 100 neurons were clustered into six
categories (Figures 1B,C). SOM clustering data showed that the
gene expression of neuron 100, 99, and 89 gradually decreased
with age. Next, we checked the expression levels of genes in
these three clusters (Figures 1B,D). It was revealed that 240
genes, including MAPT, MAP2, MAPK3, SYN2, RAP2A, RAP2B,
KLHDC3, and CALM1, gradually downregulated with aging.

Weight Gene Co-expression Network
Construction and Module Identification
Before WGCNA, the genes detected in GSE1572 were filtered
according to the filtering procedure described in “Materials and
Methods” section, and 5,000 genes were obtained. Then the
30 samples’ microarray data were read by R for Hierarchical
clustering (Supplementary Figure 2A). Finally, 30 sets of data
were obtained and matched to age (Supplementary Figure 2B).
WGCNA was performed to identify gene co-expression networks
associated with age. In the co-expression network, the degree
of association between a module and other modules can
be evaluated by the average connection degree and scale
independence. Specifically, the closer the mean connectivity is
to 0 and the closer the scale independence is to 1, the lower the
correlation between modules. In the study, we set the threshold of
scale independence to 0.9. We found that when the power value
reaches 12, the scale independence can reach 0.9, and the mean
connectivity is close to 0 (Supplementary Figure 3). Through the
calculation of the correlation coefficient between genes, the genes
were clustered according to the expression pattern theoretically,
and the patterned genes are clustered into the same module.
Seventeen co-expressed modules, ranging in size from 37 to
1,524 genes (assigning each module a color for reference), were
identified (Supplementary Table 1 and Figure 2).

Finding the Module of Interest,
Functional Annotation, and Identification
of the Overlapping Genes Between
Differentially Expressed Genes in
Young/Old Individuals and Genes in the
Module of Interest Verified in Weighted
Gene Co-expression Network Analysis
To identify modules most significantly associated with age, the
Pearson’s correlation coefficient between the module and age was
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FIGURE 1 | SOM clustering of genes based on microarray data. (A) Flow chart of SOM clustering, xjn refers to the gene j expression level in nth sample, neuron i
refers to the i cluster. (B) Hierarchical clustering on SOM clustering results; each 100 sub-clusters were divided into six major clusters. (C) The expression trend of
genes in each neuron in the samples (Neuron 1–100, from bottom to top, from left to right). (D) The heatmap of gene expression in neuron 89, 99, and 100.

calculated. The highest negative association in the module trait
relationship was found between yellowgreen module and age
score (cor = −0.83, p < 0.001, Figure 2B). Thus, yellowgreen
module was selected as the module of interest in subsequent
analyses. To confirm the correlation between module of interest
and age, labeleHeatmap function was used to calculate the
correlation values of module membership with gene significance
(age) in the greenyellow module. The results showed significant
correlation of module membership with gene significance in age
(cor = 0.81, p < 0.0001) in greenyellow module (Figure 2C).
To find the DEGs between young and aged individuals, the
frontal cortical samples were grouped into individuals ≤42 and
≥73 years old and Limma packages were performed (see section
“Materials and Methods” for age grouping criteria). About 4% of

the genes analyzed were significantly changed (1.5-fold change or
more, Figure 3A). Next, we performed overlap analysis between
downregulated DEGs and genes in greenyellow module using
the online veen tool; we found 45 genes in greenyellow module
were also down-regulated DEGs (Figures 3B–D). These genes
highly related to aging, and showed decreased expression during
aging, suggesting that they might play important roles in age-
related degeneration.

Identifying Hub Genes and Gene
Functional Annotation
The above identified overlapping genes were subjected to GO
functional and KEGG pathway enrichment analyses. Biological
processes of overlapping genes were found to focus on
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FIGURE 2 | WGCNA analysis of the microarray data. (A) Network analysis of gene expression in aging identifies distinct modules of co-expression data. (B) Pearson
correlation coefficient between the age and module eigengene, numbers in brackets indicate the corresponding p-values. (C) Correlation between gene significance
(GS) and module membership (MM) for the clinical trait of age of genes in yellowgreen module. Cor represents absolute correlation coefficient between MM and GS.

modulation of chemical synaptic transmission and regulation
of trans-synaptic signaling. Cell components of overlapping
genes were found to focus on postsynaptic density and axon
part; molecule functions of overlapping genes were found to
focus on primary active transmembrane transporter activity and
P-P-bond-hydrolysis-driven transmembrane transporter activity
(Figure 4). In KEGG pathway analysis, calcium signaling
pathway (p = 1.1498E-06; Table 1) and MAPK signaling
pathway (p = 0.000027; Table 1) were the most significant
pathways involved in overlapping genes.

Identification of the Most Significant
Genes and Network Construction
To identify the most important genes related to aging, the
overlapping genes were further filtered by RF classification. Gene
counts were input into RF classifier model, the unimportant
genes, such as ABI2, YWHAZ, MAPK9, RAN and others were
removed, and the 21 retained genes were used for the subsequent
analysis (Figure 5A). To ascertain the significance of genes and
analyze the network in the corresponding modules, the PPI maps
were constructed via genemania and String (Figures 5B,C). Hub
genes in the network, including MAPT, PAK1, RAP2A, RAP2B,
KLHDC3, TPPP, and ELAVL2, were constructed. In the single-
cell sequencing database Tubula, we found that the distribution
of KLHDC3 and RAP2A in brain cells is very similar, mainly in
oligodendrocytes and neurons.

DISCUSSION

In this study, the dataset GSE1572 includes samples from
individuals of varying age from 26 years old to 106 years

old; such data from multiple samples based on age is a good
candidate for SOM clustering and WGCNA analysis. First, we
performed the SOM on the whole genome expression data.
The SOM algorithm is usually used for data feature extraction,
clustering, and classification (Furukawa, 2009). In this study,
we used SOM to cluster genes in the expression matrix. In the
clustering results of SOM, neurons 100, 89, and 99 are found
to be related with aging. The genes in these neurons, such
as MAPT, MAP2, MAPK3, SYN2, RAP2A, RAP2B, KLHDC3,
and CALM1, were gradually down-regulated with age. Although
SOM can identify some clusters of genes related to aging, this
method has certain shortcomings, such as the large number
of genes found, which makes it hard to screen key genes, and
genes clusters having poor biological interpretation. In order
to more accurately find the most relevant genes with aging,
weight gene co-expression network was constructed, and we
identified 17 co-expressed modules. The expression changes of
genes in the same module in different samples are highly similar,
indicating consistent effects and potential interaction of these
gene-coded proteins in the same pathways during the aging
process. Through Pearson’s correlation coefficient between the
module and age, we obtained the interest module. In order to
identify the significant genes, we took the intersection of the
genes in the greenyellow module and the differentially expressed
genes which were downregulated in aged group, and obtained
45 genes. Furthermore, we found that these overlapping genes
of greenyellow module and DEGs also exist in the gene cluster
found in SOM, which further confirms that these genes may
be related to aging. Further KEGG pathway and GO functional
enrichment analyses indicated calcium signaling pathway, long-
term potentiation, and MAPK signaling pathway as the most
significant pathways in the module. In order to identify genes that
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FIGURE 3 | Identifying the overlapping genes between downregulated DEGs in aged group and genes in greenyellow module. (A) Heatmap of the expression of
DEGs. (B) Heatmap of the gene expression in greenyellow module. (C) Using veen tools to find the overlap genes between downregulated genes in DEGs and
genes in greenyellow module. (D) Heatmap showing the expression of the overlapping genes in the different samples.

are most intensively related with aging, we further used one of
the machine learning algorithms, Random Forest, and input the
expression of the above 45 genes as feature values into the model
for training, and finally screened out 21 key genes.

In another study by us (Liang et al., 2018; Chai et al., 2021),
we took samples of different brain regions from different Braak
stages (GSE131617) and found that microglia-mediated immune
system activation plays a crucial role in the early stages of
Alzheimer’s disease. The samples we used in this study are
only samples of the frontal cortex of different ages, and do not
contain any clinical diagnosis and pathological changes, which is
more conducive to discovering the changes in the brain during
the aging process.

Analysis of hub genes showed that SYN2 might play an
important role in aging. In the Cell Component (CC) enrichment
analyses, postsynaptic density and distal axon were identified
as the most significant CC in the network. In the Biological
Process (BP) enrichment analysis, synaptic vesicle localization
was revealed to be a significant BP in the network. SYN2 is
a multigene family coding synaptic vesicle (SV) phosphoproteins
implicated in the regulation of synaptic transmission and

plasticity (Luk et al., 2012). In previous studies, it was shown that
SYN2 knockdown mice display emotional and spatial memory
deficits that aggravated during aging (Corradi et al., 2008; Boido
et al., 2010). In the co-expression network constructed in the
present study, the expression of SYN2 decreases with the increase
of age. We suspected that the decreased expression of SYN2 is
either a result of synapse impairment/loss during aging, or an
upstream factor that induces synaptic dysfunction.

In the co-expression network, MAPT and MAP2 were
identified as hub genes. MAPT encodes microtubule-associated
protein tau, which promotes the stability and assembly of
microtubules in axon of neurons (Dehmelt and Halpain, 2005;
Irwin et al., 2013; Wang and Mandelkow, 2016; Saha and Sen,
2019; Vogels et al., 2019). This was in accordance with the fact
that distal axon is a significant CC in the GO enrichment analysis.
In age-related tauopathy, tau pathology has been considered as
a significant marker in neurodegeneration. MAP2 gene encodes
dendritic marker MAP-2, which is also a microtubule-associated
protein (Friedrich and Aszódi, 1991; Dehmelt and Halpain,
2005). Microtubule is a key player in neuronal activities and
axoplasmic flow under physiological conditions. In our study, we
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FIGURE 4 | GO enrichment analysis of the overlapping genes. X-axis shows the terms of GO pathway and Y-axis shows the number of genes.

found that with the increase of age, the expression of MAPT and
MAP2 decreases, which may be a result of neurite degeneration
during aging. However, genes that code other skeletal proteins
such as tubulin were not identified as hub genes in aging. This
result indicates that microtubule-associated proteins tau and
MAP-2 may participate in aging-related pathogenesis through
mechanisms other than cell skeletal stability.

Analysis of hub genes also showed that RAP2A and RAP2B
were hub genes in the co-expression network. RAP2A and
RAP2B belong to the small GTPase superfamily (Emery et al.,
2017). Most studies about RAP2A and RAP2B focus on their
functions in tumor (Zheng et al., 2017; Zhang et al., 2020).
RAP2A is overexpressed in a multitude of human cancers
and plays an important role in cytoskeleton rearrangement,
arteriogenesis, and cell migration. In neurons, it was found that
RAP2 stimulated dendritic pruning, reduced synaptic density,
and caused removal of synaptic AMPA receptors, suggesting that
RAP2 plays a role in regulating synaptic functions (Kawabe et al.,
2010; Hu et al., 2019). In our study, we found that RAP2A and
RAP2B were interacted and co-localized with MAP2 in the co-
expression network and string network. Therefore, RAP2A and
RAP2B may have a similar function or cooperate with MAP2. We
speculate that the main function of RAP2A in the brain is also
involved in regulation of dendritic development and plasticity.

To our surprise, KLDHC3 was found mainly co-expressed
with RAP2A and RAP2B in the co-expression network. Its
related pathways are Unfolded Protein Response (UPR) and
metabolism of proteins, and a few studies report its function in
the brain (Niculescu et al., 2015). In our study, KLHDC3 and
RAP2A are consistently distributed in different cells in the brain
(Figures 5D–F), so we speculate they may also participate in
similar functions in the brain. The decrease of the expression
of KLHDC3 with age may also play a role in the impairment

of dendritic and synaptic plasticity during aging. Further studies
needed to reveal the function of KLDHC3 in neurons.

At last, ELAVL2 was characterized as a hub gene with PAK1,
MAPT, RAP2A, and RAP2B in the same module. Some studies
report that ELAVL2-regulated pathways are involved in normal
human brain function and their disruption may play a role in
neurodevelopmental disorders such as autism spectrum disorder
(ASD) (Berto et al., 2016; Ohi et al., 2017; Kato et al., 2019).
However, the function of ELAVL2 in the aging brain has not
been reported yet. In our study, ELAVL2 was found to be
co-localized with PAK1, and co-expressed and interacted with
tau. Both tau and PAK1 are involved in axonal guidance and
neuronal migration (Dehmelt and Halpain, 2005; Koth et al.,
2014). Therefore, we speculate that ELAVL2 may play a consistent
role with tau and PAK1 in neurons.

In summary, through machine learning and WGCNA on
microarray data from human frontal cortex, we uncovered that
RAP2A, RAP2B, KLHDC3, and ELAVL2 may be associated

TABLE 1 | KEGG pathway analysis of the overlapping genes.

geneSet Description C O P-Value

hsa04020 Calcium signaling pathway 183 7 1.15E-06

hsa04014 Ras signaling pathway 232 7 5.62E-06

hsa04010 MAPK signaling pathway 295 7 2.71E-05

hsa04024 cAMP signaling pathway 199 6 2.99E-05

hsa04728 Dopaminergic synapse 131 5 5.00E-05

hsa04720 Long-term potentiation 67 4 5.49E-05

hsa05031 Amphetamine addiction 68 4 5.82E-05

hsa05161 Hepatitis B 144 5 7.86E-05

hsa04723 Retrograde endocannabinoid signaling 148 5 8.95E-05

hsa04012 ErbB signaling pathway 85 4 1.40E-04
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with aging. The proteins encoded by these genes may play a
coordinated role in the brain with the proteins tau, MAP-2, SYN,
and CALM family in neurodegenerative diseases, which may be
novel biomarkers of neurodegenerative diseases caused by aging.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The data used in this paper was obtained from the GEO database
in NCBI1 (Gene Expression Omnibus), and the data entry
number is GSE1572 (Lu et al., 2004). The platform is Affymetrix
Human Genome U95 Version 2 Array [HG_U95Av2]. Gene
expression in the frontal cortex of 18 normal males and 12
normal females at 26–106 years old was detected. The normalized
data was downloaded and the expression matrix was obtained,
and data filtering was performed before WGCNA analysis. For
data filtering, the standard deviation of the gene expression was
calculated to obtain a list with decreasing standard deviations, the
first 5,000 genes with large standard deviations were obtained,
and the probe without corresponding annotation information
were removed. There were about 11,000 genes in the dataset; after
the data preprocessing, we kept 5,000 genes for further analysis.

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1572

Finding Genes With Highly Similar
Expression Pattern Through
Self-Organizing Feature Map Algorithm
The SOM clustering was constructed by kohonen package based
on R 3.4.2 (Furukawa, 2009). The 31 frontal cortical samples were
treated as 31 input features. The expression counts of each gene in
31 samples are used as input data. Through inputting the data to
SOM cluster model to cluster the genes, we can obtain the cluster
to show which gene expression decreases with aging.

Construction of Weighted Gene
Co-expression Network and
Identification of Significant Modules
Data was processed using R 3.4.2 software. To ensure that
the results of network construction are reliable, abnormal
samples were removed. Then, the weighted gene co-expression
network was constructed by WGCNA package based on R
3.4.2. First, the Pearson correlation coefficient was calculated
to assess the similarity of the gene expression profiles.
Second, the correlation coefficients between genes were
weighted by a power function to obtain a scale-free network.
A gene module is a cluster of densely interconnected genes
in terms of co-expression. Then, hierarchical cluster was
used to identify gene modules and different modules were

FIGURE 5 | Identifying the most important genes via RF and the cellular distribution of the important genes in the brain. (A) Random Forest algorithm result. The blue
box plot corresponds to the minimum, average, and maximum Z scores of a color attribute. The red, yellow, and green boxes represent the Z scores of rejected,
tentative, and confirmed genes, respectively. (B) The PPI network of important genes via genemalia. (C) The PPI network of important genes via String. (D) The
scatterplot shows the distribution of different kinds of cells in TSNE. (E,F) KLHDC3 and RAP2A expression in different cell types.
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represented by different colors. Dynamic treecut method
was used to identify different modules, the adjacency
matrix was converted to a topology overlay matrix (TOM),
and modules were detected by cluster analysis during
module selection.

Correlation Analysis of Gene Modules
With Clinical Phenotype
To detect the associations of modules to clinical phenotype (age),
first, the age data and gene expression data were correlated
using the match function. Secondly, the associations of the
module eigengene (ME) to the age were calculated by Pearson’s
correlation analysis. Modules showing significant association to
age were obtained. At last, to further confirm the modules
with significant correlation to age, the correlation coefficient
between the module membership (gene expression level) with
gene significance (GS, for assessing the association of genes with
phenotypes) was calculated using the labeleHeatmap function,
and the p-values were obtained.

Finding the Overlapping Genes Between
the Differentially Expressed Genes
(DEGs in Aged Compared to Young
Group) and Genes in the Module of
Interest Verified by Weighted Gene
Co-expression Network Analysis
The frontal cortical samples were grouped into individuals
≤42 (young group) and ≥73 years (aged group) and Limma
packages were performed to find the DEGs; the group of
individuals ≤42 years old showed the most homogeneous pattern
of gene expression, and the group ≥73 years old was also
relatively homogeneous. Moreover, these two age groups were
negatively correlated with each other. In contrast, the middle
age group ranging in age from 45 to 71 exhibited much greater
heterogeneity, with some cases resembling the young group and
others resembling the aged group (Lu et al., 2004; Ritchie et al.,
2015). Next, the overlapping genes between downregulated DEGs
and genes in the module of interest were discovered by using
online veen tools.2

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analyses, Identification of
Hub Genes, and Protein-Protein
Interaction Analysis
For the obtained overlapping genes, functional enrichment
of Gene Ontology (GO) and KEGG pathways analyses were
performed using GSAT (Zhang et al., 2005)3 and GOplot
packages based on R3.4.2. P-value < 0.05 was considered to be
significant enrichment. These genes were also analyzed using
cytoHubba in Cytoscape for identification of hub genes. The
identified hub genes were further confirmed and analyzed using

2http://bioinformatics.psb.ugent.be/webtools/Venn/
3http://www.webgestalt.org/option.php

genemania (Warde-Farley et al., 2010).4 String network was
constructed by the online tools String.5

Application of Random Forest Algorithm
to Find the Most Important Genes
Related to Aging
The frontal cortical samples were grouped into individuals ≤42
(young) and ≥73 years (old). Through inputting the overlapping
genes counts into random forest classifier model to predict which
group the samples belong to, the most important overlapping
genes for the most accurate model for grouping were identified.

Exploring the Cellular Distribution of the
Identified Genes
By using the single cell RNA-seq database Tubula6 (Tabula Muris
Consortium et al., 2018), the cellular distribution of the identified
important genes were further explored.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE1572.

AUTHOR CONTRIBUTIONS

KC contributed to the study design, performed the experiments,
and contributed to the writing of the manuscript. JL contributed
to the study design and the writing of the manuscript. XZ, PC, SC,
WY, HG, RL, and WH conducted the experiments. CP, GL, and
DS provided critical devices and contributed to the study design.
All authors read and approved the final manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 31970964) and the Natural Science
Foundation of Hubei Province, China (No. 2019CFB436).

ACKNOWLEDGMENTS

We acknowledge GEO database for providing their platforms and
contributors for uploading their meaningful datasets.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnagi.2021.
707165/full#supplementary-material

4http://genemania.org
5http://string-db.org
6https://tabula-muris.ds.czbiohub.org

Frontiers in Aging Neuroscience | www.frontiersin.org 8 October 2021 | Volume 13 | Article 707165

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://www.webgestalt.org/option.php
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1572
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1572
https://www.frontiersin.org/articles/10.3389/fnagi.2021.707165/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2021.707165/full#supplementary-material
http://genemania.org
http://string-db.org
https://tabula-muris.ds.czbiohub.org
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-707165 October 12, 2021 Time: 14:28 # 9

Chai et al. Machine Learning, WGCNA, Aging Brain

REFERENCES
Berto, S., Usui, N., Konopka, G., and Fogel, B. L. (2016). ELAVL2-

regulated transcriptional and splicing networks in human neurons
link neurodevelopment and autism. Hum. Mol. Genet. 25, 2451–2464.
doi: 10.1093/hmg/ddw110

Boido, D., Farisello, P., Cesca, F., Ferrea, E., Valtorta, F., Benfenati, F., et al. (2010).
Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-
dependency and response to the antiepileptic drug levetiracetam. Neuroscience
171, 268–283. doi: 10.1016/j.neuroscience.2010.08.046

Chai, K., Liang, J., Zhang, X., Gu, H., Cao, P., Ye, W., et al. (2021). ARHGDIB
Plays a Novel Role in the Braak Stages of Alzheimer’s Diseases via the Immune
Response Mediated by Microglia. bioRxiv [Preprint] doi: 10.21203/rs.3.rs-
474315/v1

Corradi, A., Zanardi, A., Giacomini, C., Onofri, F., Valtorta, F., Zoli, M.,
et al. (2008). Synapsin-I- and synapsin-II-null mice display an increased age-
dependent cognitive impairment. J. Cell Sci. 121, 3042–3051. doi: 10.1242/jcs.
035063

Dehmelt, L., and Halpain, S. (2005). The MAP2/Tau family of microtubule-
associated proteins. Genome Biol. 6:204. doi: 10.1186/gb-2004-6-1-204

Emery, A. C., Xu, W., Eiden, M. V., and Eiden, L. E. (2017). Guanine nucleotide
exchange factor Epac2-dependent activation of the GTP-binding protein Rap2A
mediates cAMP-dependent growth arrest in neuroendocrine cells. J. Biol. Chem.
292, 12220–12231. doi: 10.1074/jbc.M117.790329

Friedrich, P., and Aszódi, A. (1991). MAP2: a sensitive cross-linker and adjustable
spacer in dendritic architecture. FEBS Lett. 295, 5–9. doi: 10.1016/0014-
5793(91)81371-e

Furukawa, T. (2009). SOM of SOMs. Neural. Netw. 22, 463–478. doi: 10.1016/j.
neunet.2009.01.012

Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., et al.
(2019). Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol.
15, 565–581. doi: 10.1038/s41582-019-0244-7

Hu, Y., Hong, X.-Y., Yang, X.-F., Ma, R.-H., Wang, X., Zhang, J.-F., et al. (2019).
Inflammation-dependent ISG15 upregulation mediates MIA-induced dendrite
damages and depression by disrupting NEDD4/Rap2A signaling. Biochim.
Biophys. Acta Mol. Basis Dis. 1865, 1477–1489. doi: 10.1016/j.bbadis.2019.02.
020

Irwin, D. J., Lee, V. M.-Y., and Trojanowski, J. Q. (2013). Parkinson’s disease
dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat. Rev.
Neurosci. 14, 626–636. doi: 10.1038/nrn3549

Juan, S. M. A., and Adlard, P. A. (2019). Ageing and cognition. Subcell. Biochem.
91, 107–122. doi: 10.1007/978-981-13-3681-2_5

Kato, Y., Iwamori, T., Ninomiya, Y., Kohda, T., Miyashita, J., Sato, M., et al. (2019).
ELAVL2-directed RNA regulatory network drives the formation of quiescent
primordial follicles. EMBO Rep. 20:e48251. doi: 10.15252/embr.201948251

Kawabe, H., Neeb, A., Dimova, K., Young, S. M., Takeda, M., Katsurabayashi, S.,
et al. (2010). Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls
neurite development. Neuron 65, 358–372. doi: 10.1016/j.neuron.2010.01.007

Koth, A. P., Oliveira, B. R., Parfitt, G. M., Buonocore, J., de, Q., and Barros,
D. M. (2014). Participation of group I p21-activated kinases in neuroplasticity.
J. Physiol. Paris 108, 270–277. doi: 10.1016/j.jphysparis.2014.08.007

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 9:559. doi: 10.1186/1471-
2105-9-559

Liang, J.-W., Fang, Z.-Y., Huang, Y., Liuyang, Z.-Y., Zhang, X.-L., Wang, J.-L.,
et al. (2018). Application of weighted gene co-expression network analysis to
explore the key genes in Alzheimer’s disease. J. Alzheimers Dis. 65, 1353–1364.
doi: 10.3233/JAD-180400

Lu, T., Pan, Y., Kao, S.-Y., Li, C., Kohane, I., Chan, J., et al. (2004). Gene regulation
and DNA damage in the ageing human brain. Nature 429, 883–891. doi: 10.
1038/nature02661

Luk, K. C., Kehm, V., Carroll, J., Zhang, B., O’Brien, P., Trojanowski, J. Q.,
et al. (2012). Pathological -synuclein transmission initiates parkinson-like

neurodegeneration in nontransgenic mice. Science 338, 949–953. doi: 10.1126/
science.1227157

Niculescu, A. B., Levey, D. F., Phalen, P. L., Le-Niculescu, H., Dainton, H. D., Jain,
N., et al. (2015). Understanding and predicting suicidality using a combined
genomic and clinical risk assessment approach. Mol. Psychiatry 20, 1266–1285.
doi: 10.1038/mp.2015.112

Ohi, K., Shimada, T., Yasuyama, T., Kimura, K., Uehara, T., and Kawasaki,
Y. (2017). Spatial and temporal expression patterns of genes around nine
neuroticism-associated loci. Prog. Neuropsychopharmacol. Biol. Psychiatry 77,
164–171. doi: 10.1016/j.pnpbp.2017.04.019

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 43, e47. doi: 10.1093/nar/gkv007

Saha, P., and Sen, N. (2019). Tauopathy: a common mechanism for
neurodegeneration and brain aging. Mechan. Ageing Dev. 178, 72–79.
doi: 10.1016/j.mad.2019.01.007

Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet
Neurol. 11, 1006–1012. doi: 10.1016/S1474-4422(12)70191-6

Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ
collection and processing, Library preparation and sequencing, Computational
data analysis, et al. (2018). Single-cell transcriptomics of 20 mouse organs
creates a Tabula Muris. Nature 562, 367–372. doi: 10.1038/s41586-018-0
590-4

Vogels, T., Murgoci, A.-N., and Hromádka, T. (2019). Intersection of pathological
tau and microglia at the synapse. Acta Neuropathol. Commun. 7:109. doi: 10.
1186/s40478-019-0754-y

Wang, Y., and Mandelkow, E. (2016). Tau in physiology and pathology. Nat. Rev.
Neurosci. 17, 5–21. doi: 10.1038/nrn.2015.1

Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao,
P., et al. (2010). The GeneMANIA prediction server: biological network
integration for gene prioritization and predicting gene function. Nucleic Acids
Res. 38, W214–W220. doi: 10.1093/nar/gkq537

Wyss-Coray, T. (2016). Ageing, neurodegeneration and brain rejuvenation. Nature
539, 180–186. doi: 10.1038/nature20411

Yankner, B. A., Lu, T., and Loerch, P. (2008). The aging brain. Annu. Rev. Pathol.
Mech. Dis. 3, 41–66. doi: 10.1146/annurev.pathmechdis.2.010506.092044

Zhang, B., Kirov, S., and Snoddy, J. (2005). WebGestalt: an integrated system
for exploring gene sets in various biological contexts. Nucleic Acids Res. 33,
W741–W748. doi: 10.1093/nar/gki475

Zhang, J., Wei, Y., Min, J., Wang, Y., Yin, L., Cao, G., et al. (2020). Knockdown of
RAP2A gene expression suppresses cisplatin resistance in gastric cancer cells.
Oncol. Lett. 19, 350–358. doi: 10.3892/ol.2019.11086

Zheng, X., Zhao, W., Ji, P., Zhang, K., Jin, J., Feng, M., et al. (2017). High expression
of Rap2A is associated with poor prognosis of patients with hepatocellular
carcinoma. Int. J. Clin. Exp. Pathol. 10, 9607–9613.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Chai, Liang, Zhang, Cao, Chen, Gu, Ye, Liu, Hu, Peng, Liu and
Shen. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 October 2021 | Volume 13 | Article 707165

https://doi.org/10.1093/hmg/ddw110
https://doi.org/10.1016/j.neuroscience.2010.08.046
https://doi.org/10.21203/rs.3.rs-474315/v1
https://doi.org/10.21203/rs.3.rs-474315/v1
https://doi.org/10.1242/jcs.035063
https://doi.org/10.1242/jcs.035063
https://doi.org/10.1186/gb-2004-6-1-204
https://doi.org/10.1074/jbc.M117.790329
https://doi.org/10.1016/0014-5793(91)81371-e
https://doi.org/10.1016/0014-5793(91)81371-e
https://doi.org/10.1016/j.neunet.2009.01.012
https://doi.org/10.1016/j.neunet.2009.01.012
https://doi.org/10.1038/s41582-019-0244-7
https://doi.org/10.1016/j.bbadis.2019.02.020
https://doi.org/10.1016/j.bbadis.2019.02.020
https://doi.org/10.1038/nrn3549
https://doi.org/10.1007/978-981-13-3681-2_5
https://doi.org/10.15252/embr.201948251
https://doi.org/10.1016/j.neuron.2010.01.007
https://doi.org/10.1016/j.jphysparis.2014.08.007
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3233/JAD-180400
https://doi.org/10.1038/nature02661
https://doi.org/10.1038/nature02661
https://doi.org/10.1126/science.1227157
https://doi.org/10.1126/science.1227157
https://doi.org/10.1038/mp.2015.112
https://doi.org/10.1016/j.pnpbp.2017.04.019
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.mad.2019.01.007
https://doi.org/10.1016/S1474-4422(12)70191-6
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1186/s40478-019-0754-y
https://doi.org/10.1186/s40478-019-0754-y
https://doi.org/10.1038/nrn.2015.1
https://doi.org/10.1093/nar/gkq537
https://doi.org/10.1038/nature20411
https://doi.org/10.1146/annurev.pathmechdis.2.010506.092044
https://doi.org/10.1093/nar/gki475
https://doi.org/10.3892/ol.2019.11086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Application of Machine Learning and Weighted Gene Co-expression Network Algorithm to Explore the Hub Genes in the Aging Brain
	Introduction
	Results
	Self-Organizing Feature Map Construction and Cluster Identification
	Weight Gene Co-expression Network Construction and Module Identification
	Finding the Module of Interest, Functional Annotation, and Identification of the Overlapping Genes Between Differentially Expressed Genes in Young/Old Individuals and Genes in the Module of Interest Verified in Weighted Gene Co-expression Network Analysis
	Identifying Hub Genes and Gene Functional Annotation
	Identification of the Most Significant Genes and Network Construction

	Discussion
	Materials and Methods
	Data Acquisition and Preprocessing
	Finding Genes With Highly Similar Expression Pattern Through Self-Organizing Feature Map Algorithm
	Construction of Weighted Gene Co-expression Network and Identification of Significant Modules
	Correlation Analysis of Gene Modules With Clinical Phenotype
	Finding the Overlapping Genes Between the Differentially Expressed Genes (DEGs in Aged Compared to Young Group) and Genes in the Module of Interest Verified by Weighted Gene Co-expression Network Analysis
	Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Analyses, Identification of Hub Genes, and Protein-Protein Interaction Analysis
	Application of Random Forest Algorithm to Find the Most Important Genes Related to Aging
	Exploring the Cellular Distribution of the Identified Genes

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


