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Atherosclerosis, as a chronic inflammatory response, is one of the main causes of
cardiovascular diseases. Atherosclerosis is induced by endothelial cell dysfunction,
migration and proliferation of smooth muscle cells, accumulation of foam cells and
inflammatory response, resulting in plaque accumulation, narrowing and hardening of
the artery wall, and ultimately leading to myocardial infarction or sudden death and
other serious consequences. Flavonoid is a kind of natural polyphenol compound widely
existing in fruits with various structures, mainly including flavonols, flavones, flavanones,
flavanols, anthocyanins, isoflavones, and chalcone, etc. Because of its potential health
benefits, it is now used in supplements, cosmetics and medicines, and researchers are
increasingly paying attention to its role in atherosclerosis. In this paper, we will focus
on several important nodes in the development of atherosclerotic disease, including
endothelial cell dysfunction, smooth muscle cell migration and proliferation, foam cell
accumulation and inflammatory response. At the same time, through the classification of
flavonoids from fruits, the role and potential mechanism of flavonoids in atherosclerosis
were reviewed, providing a certain direction for the development of fruit flavonoids in the
treatment of atherosclerosis drugs.

Keywords: natural flavonoids, fruits, atherosclerosis, cardiovascular diseases, potential mechanism

INTRODUCTION

Cardiovascular disease (CVD) is a kind of disease with extremely high morbidity and mortality.
According to relevant investigations, CVD deaths accounted for about 31% of global deaths in
2016, among which atherosclerosis is the main cause of CVD (1). Atherosclerosis is a chronic
inflammatory disease, mostly affecting adults and the elderly. It is characterized by plaque
accumulation, narrowing and hardening of coronary artery walls, which will directly affect the
completion of blood oxygen supply to various organs in the body, resulting in serious consequences
such as myocardial infarction, angina pectoris and sudden death (2, 3). The pathogenesis of
atherosclerosis is diverse. In current studies, the factors that affect atherosclerosis are mainly
hyperlipidemia, diabetes, smoking, high blood pressure, genetic, and other cardiovascular risk
factors. These factors can induce dysfunction of endothelial cells through mediating oxidative
stress, and then leads to the beginning of the atherosclerotic disease process (4).
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At present, pharmacologic treatment with medications, stent-
based therapy or coronary artery bypass surgery are commonly
used in clinical treatment of atherosclerosis to relieve symptoms,
but three methods have certain limitations (5, 6). For example,
statin is a widely used drug in clinical practice, which can inhibit
the occurrence and development of atherosclerosis by inhibiting
cholesterol synthesis. However, due to its poor targeting, oral or
intravenous administration can also attack normal tissues and
cells, resulting in strong side effects. In addition, when the disease
develops to an advanced stage, drug treatment is less effective (7).
Although coronary artery bypass surgery can significantly reduce
the mortality of patients with atherosclerosis, its prognosis is poor
and it is easy to cause various complications (6). Stent-based
therapy can also help relieve patients’ related symptoms and have
a low incidence of disease complications in the advanced stage
of the disease when drugs fail to play a role. But it’s a pity that
problems such as artery stenosis, inflammation and thrombosis
in patients with stent treatment have not been solved, so the
treatment can only relieve their symptoms but not solve their
causes (5). Therefore, it is urgent to find new compounds for the
treatment of atherosclerosis.

Flavonoids are a kind of natural organic compounds widely
present in fruits, which are composed of two aromatic rings
and have typical C6-C3-C6 skeleton (8). Previous studies have
found that a diet rich in flavonoids can significantly reduce CVD
mortality, which is directly related to atherosclerosis. At the same
time, the effect is related to the source, dose and bioavailability
of flavonoids (9). The current pharmacological studies have
showed that a variety of flavonoids from fruits could not only
reduce cholesterol transport, but also enhanced the immune
function by regulating the level of intracellular inflammatory
factors (10). In addition, hydroxyl radicals, which are widely
present in flavonoids, also play a role in protecting blood
vessels by mediating antioxidant effects (11). Epidemiological
studies linking flavonoid intake to a reduced risk of death from
CVD have generated considerable interest in this preventive
mechanism (12). As fruit is the most important component in
the source of flavonoids, the treatment of atherosclerosis by
flavonoids derived from fruit will be reviewed in this paper.

ATHEROSCLEROSIS

Due to the different components, the arteries can be classified
as elastic arteries, muscular arteries, and transitional regions
between the two kinds of arteries. The artery wall has three
layers of tissue structure, of which the most inward layer
is composed of endothelial cells, known as the intima. The
outermost layer is composed of connective tissues, collagen,
and elastic fibers, while the medial membrane is composed
of vascular smooth muscle cells (VSMCs) (13). As a chronic
inflammatory response, atherosclerosis is at increased risk
for environmental and genetic factors. In the early stage of
atherosclerotic disease, hypercholesterolemia induces the entry
of low-density lipoprotein (LDL) into the subcutaneous space of
intima and promotes the oxidation of LDL under enzymatic or
non-enzymatic modification, thereby activating endothelial cells

and causing endothelial dysfunction (14). In particular, activated
endothelial cells attract monocytes and other white blood cells by
upregulation of adhesion molecules and secretion of chemokines,
which ultimately lead to chronic inflammatory responses (15,
16). During the development of atherosclerosis, monocytes
differentiate into macrophages and phagocytose oxidized low-
density lipoprotein (ox-LDL) to form foam cells. Subsequently,
foam cells can attract VSMCs to migrate to the subcutaneous
space and proliferate, resulting in the formation of new intima
in the arterial lumen and leading to arterial narrowing (17).
As the inflammatory response within the arterial vasculature
continues to occur and the lumen becomes progressively
narrower, the arterial vasculature is highly susceptible to rupture
and subsequent thrombosis, which can lead to more serious
clinical complications. Therefore, in this section, we will focus
on an overview of several important points in the development
of atherosclerotic disease, namely, endothelial dysfunction, foam
cell formation, migration, and proliferation of VSMCs and
inflammatory response.

Endothelial Dysfunction
Vascular endothelial cells are epithelial cells arranged in a single
layer on the inner side of blood vessels with a large surface area
and at a critical location where blood circulation and tissue
intersection (18). They have multiple physiological functions.
Functioning endothelial cells can effectively regulate vascular
permeability and vascular tension, and also be used as active
signal transducers for circulating influences that modify the vessel
wall phenotype (19). However, when endothelial cells encounter
shear stress, dyslipidemia, hyperglycemia, aging and other
factors, endothelial cell dysfunction and vascular homeostasis
disorders, which then lead to a series of consequences such as
vasoconstriction, leukocyte adherence, platelet activation, and
promotion of oxidation, and ultimately lead to atherosclerosis
(20). Continuous DNA replication, oxidative stress, and
mitochondrial dysfunction may exert pressure on cells to
permanently inhibit proliferation and lead to cell senescence
(21). In response to this stress, cells secrete a variety of
proteins named senescence-associated secretory phenotype
(SASP), including pro-inflammatory cytokines (interleukin-
6, interleukin-8, macrophage inflammatory proteins, etc.),
chemokines, growth factors, matrix metalloproteinases, and
other signaling molecules. There is no doubt that the transient
expression of these proteins will repair the damaged tissue,
but when the body is exposed to this environment for a long
time, it will accelerate endothelial dysfunction (22–24). In
addition to aging, dyslipidemia is another important cause of
endothelial cell dysfunction. When the level of serum high-
density lipoprotein (HDL) decreases and the level of total
cholesterol (TC), triglyceride (TG), and low-density lipoprotein
cholesterol (LDL-C) increases, LDLs will accumulate in the
subcutaneous space of the artery wall and oxidize to form oxLDL
under enzymatic or non-enzymatic modification (25). It further
promoted the expression of monocyte chemotactic protein
1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1),
endothelial leukocyte adhesion molecule (E-selectin), and finally
induced inflammatory response (26, 27).
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Endothelial dysfunction is characterized by endothelium-
dependent vasodilation injury and endothelial activation marked
by proinflammatory, proliferative, and procoagulant states, in
which disruption of nitric oxide (NO) bioavailability is central
(28). NO is a major vasodilator. Due to its small molecular weight,
NO can diffuse to VSMC to activate guanylate cyclase, leading to
cGMP-mediated vasodilation. At the same time, it can also spread
to vascular lumen to inhibit platelet aggregation and adhesion,
thus achieving anti-thrombotic effect (29, 30). In addition, as
shown in Figure 1, NO can inhibit vascular smooth muscle
proliferation by inhibiting platelet and leukocyte activation.
However, when endothelial cells are activated, the production
of endothelial NO synthase (eNOS) from L-arginine is reduced
and tetrahydrobiopterin is absent, leading to NOS uncoupling
and the generation of reactive oxygen species (ROS) such as
superoxide and hydrogen peroxide (31, 32). Thus, endothelial
cells switch from NO signal to ROS-mediated oxidative stress
signal, activating the nuclear transcription factor kappaB (NF-
κB) and other signaling pathways (33). In atherosclerosis,
ROS production is associated with NADPH oxidase (NOX),
myeloperoxidase (MPO), eNOS, and lipoxygenase. Of course,
in addition to NO, prostacyclin prostacyclin (PGI2) and
endothelium-derived hyperpolarizing factor (EDHF) and other
vasodilators maintain vascular motility together with endothelin-
1 (ET-1) and angiotensin II (AngII) (34–36).

Formation of Foam Cells
Foam cells are a group of cells with multiple lipid inclusions in
the cytoplasm. Most of them exist in the lipid rich endothelial
space beneath the arteries. The appearance of foam cells is often

regarded as one of the early manifestations of atherosclerosis (37).
In the current study, it is generally believed that foam cells are
mainly derived from macrophages, endothelial cells and VSMCs,
and are mostly combined with modified LDL and cholesteryl
ester (CE) after macrophages pass through the endothelial barrier
(38). According to relevant data, 90% of macrophages in the
artery are located in the adventitial layer, only 10% are located
in the intima. Besides this, macrophages in the intima are
almost formed only after birth (39, 40). Hypercholesterolemia
is often accompanied by persistent inflammation, endothelial
cell activation and secretion of chemokines such as CCL2/MCP-
1, CX3CL1, and CCL5. This phenomenon will cause a large
number of monocytes recruit to the area of LDL modification
and promote the differentiation of monocytes into macrophages,
which can quickly recognize and absorb modified LDL into
foam cells (41–43). Foam cell formation is a complex process
which is affected by many factors. Although the accumulation
of lipid in macrophages is mainly derived from modified LDL,
unmodified LDL in blood does not induce foam cell formation
under normal physiological conditions. During the development
of atherosclerosis, LDL will undergo a variety of modifications
such as oxidation, carbamylation, and glycosylation to change
its characteristics, so that it can be recognized and absorbed by
macrophages (44).

Besides the modified LDL, the disorder of lipid metabolism
in macrophages is another important factor of foam cell
production (45). As shown in Figure 2, the homeostasis of
lipid metabolism in macrophages is mainly coordinated by
three main processes, including cholesterol uptake, cholesterol
esterification, and cholesterol efflux (45). The imbalance of

FIGURE 1 | Development of endothelial dysfunction in atherosclerosis. Sheer stress, hyperlipidemia, and hyperglycemia leads to endothelial dysfunction. LDLs will
accumulate in the subcutaneous space of the artery wall and oxidize to form oxLDL. It further decreases the activity of eNOS, which in turn reduce the content of
NO. The nuclear transcription factor kappa B (NF-κB), NADPH oxidase (NOX), and myeloperoxidase (MPO) are related to its process.
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FIGURE 2 | Development of foam cells in atherosclerosis. Monocytes recruit to the area of LDL modification and differentiate into macrophages, which can quickly
recognize and absorb modified LDL into foam cells. Besides the modified LDL, the disorder of lipid metabolism in macrophages is another important factor of foam
cell production, and the homeostasis of lipid metabolism in macrophages is mainly coordinated by three main processes, including cholesterol uptake, cholesterol
esterification, and cholesterol efflux.

any of the three processes may lead to the increase of foam
cells. Cholesterol uptake in macrophages mainly recognizes and
absorbs modified LDL through a variety of scavenging receptors.
CD36 is a glycoprotein that can promote cholesterol uptake. Its
high expression often follows the emergence of ox-LDL (46, 47).
Therefore, CD36 is often used as a biomarker of atherosclerosis in
modern diagnosis and treatment. In macrophages, the expression
of CD36 is often activated by peroxisome proliferator-activated
receptors-γ (PPAR γ), nuclear erythroid-related factor 2 (Nrf2),
signal transducer and activator of transcription (STAT) 1,
and activator protein-1 (AP-1) are regulated (48, 49). When
the expression of CD36 was inhibited, cholesterol uptake was

significantly reduced and the symptoms of atherosclerosis were
alleviated. In addition to CD36, scavenging receptor A1 (SR-A1)
and lectin like ox-LDL receptor-1 (LOX-1) can also promote
the recognition and absorption of modified LDL, while LOX-
1 is the main receptor for endothelial cells to bind ox-LDL
(50). What’s more, in macrophages, the expression of SR-A1 is
regulated by NF-κB, AP-1, and PPAR γ, while the expression of
LOX-1 is mainly regulated by NF- κB, AP-1, and POU-domain
transcription factors (45, 51).

After the modified LDL was recognized and absorbed by
macrophages, it was first transformed into free cholesterol by
lysosomal acid lipase (LAL) in lysosome. When cholesterol
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accumulates excessively, cholesterol acyltransferases-1 (ACAT1)
and –2 (ACAT2) in the endoplasmic reticulum will esterificate
free cholesterol again. Subsequently, cholesteryl ester hydrolases
(CEH) such as hormone sensitive lipase (HSL), carboxyl ester
lipase (CEL), and neutral cholesterol ester hydrolase 1 (NCEH1)
can hydrolyze esterified cholesterol again (52–54). During this
process, the esterification and hydrolysis of cholesterol should be
balanced. If the balance is broken, the generation rate of foam
cells will be accelerated. The re-esterification of cholesterol in
macrophages can prevent the accumulation of free cholesterol
from damaging cells, but this process has a certain limit. When
the cholesterol exceeds a certain range after re-esterification, a
large number of lipid droplets will be generated in cells (55).

Of course, the content of free cholesterol in macrophages
should not exceed the limit. In addition to the re-esterification
mentioned above, free cholesterol can also maintain intracellular
metabolic balance through cholesterol efflux process. ATP-
binding cassette transporter A1 (ABCA1), ATP-binding cassette
transporter G1 (ABCG1), and scavenger receptor class B type 1
(SR-BI) are mainly involved in the process of cholesterol efflux,
which can bind to free cholesterol and transport out of cells (56).
Subsequently, ABCA1 carrying cholesterol preferentially bind to
apolipoprotein A1 (apoA1) to produce HDL particles, ABCG1
preferentially interacts with mature HDL particles, and SR-BI
interacts with a variety of lipoproteins (45, 57). PPAR γ, liver
X receptor (LXR), retinoid X receptor, and some miRNAs can
regulate the expression of ABCA1, ABCG1, and SR-BI (58, 59).

Migration and Proliferation of Vascular
Smooth Muscle
Vascular smooth muscle cells are the most abundant cell type in
the arterial wall, and have phenotypic plasticity. They can show
different phenotypes in different arteries or different diseases
(60). In healthy blood vessels, VSMCs can maintain homeostasis
by adjusting their phenotypes to adapt to changes in blood
flow when hemodynamics changes. Conversely, when arteries
become diseased, this ability was reduced and homeostasis
was broken, which could exacerbate the disease (61). Mature
VSMCs, for example, have a low proliferation rate and can
respond to changes of NO and ET-1 from endothelium and
regulate blood flow by regulating blood vessel diameter through
contraction (62). Unfortunately, because VSMCs are not in a final
differentiation state, when atherosclerosis occurs, the expression
of specific markers of mature VSMCs under biochemical and
biomechanical stimulation is inhibited, a large number of VSMCs
differentiate into synthetic phenotypes and migrate to the intima
of arterial wall under the guidance of platelet-derived growth
factor B (PDGF-B) (63). On the one hand, activated VSMCs
proliferate in the intima and narrow the arterial lumen, which
are regarded as the main features of atherosclerosis. On the
other hand, VSMCs produce collagen fibers and elastic fibers
under the stimulation of transformational growth factor-β (TGF-
β), change the composition of extracellular matrix and envelops
lipids by fiber caps to form typical atherosclerotic plaques (64).
In addition, the latest research also shows that fibro-myocytes
differentiated by VSMC can stabilize the plaque, and when they

differentiate into cartilage, osteoblasts or inflammatory cells,
they can aggravate the development of atherosclerosis (65, 66).
Thus, the phenotypic transformation of VSMCs is crucial in
atherosclerosis.

In the past few decades, increasing experiments have focused
on the process of controlling VSMC phenotypic conversion,
but the key molecular mechanism has not been clearly
clarified (67). Subsequently, there are growing evidences that
epigenetic mechanisms provide transcriptional control that
can directly cause phenotypic switch in VSMC, which is
shown in Figure 3 (68). Theoretically, epigenetic mechanism
is to change gene expression through three main epigenetic
modifications, DNA methylation, histone modification, and
non-coding RNA (ncRNA) modification without changing the
genome (69, 70). In atherosclerosis, DNA methylation can
regulate a variety of genes that define VSMC phenotypic
transformation, such as serum response factor (SRF), PDGF-
B, and TAGLN (64). DNA methyltransferase 1 (DMNT1) and
Ten-eleven translocated methylcytosine deoxygenase 2 (TET2),
two major enzymes that control DNA methylation, also play
an important role (71). It was found that knockdown of
TET2 suppressed the expression of key VSMC genes such as
MYOCD and SRF, while transcriptional upregulation of KLF4
initiated VSMC phenotypic transition (72). When TET2 was
overexpressed, VSMC phenotype conversion was inhibited and
intimal hyperplasia was significantly improved. In contrast,
when DNMT1 was repressed, MYOCD expression was increased
and VSMC phenotypic conversion was inhibited (73). Histone
modification mainly includes methylation, acetylation, and
ubiquitination. The role of histone methylation and acetylation
in atherosclerosis and VSMC phenotype transformation cannot
be ignored, and most of them appear in a combination form
(74). For example, a significant decrease in H3K9 and H3K27
methylation and a significant increase in H3K9 and H3K27
acetylation levels were observed in atherosclerotic plaques (75,
76). Besides, VSMC phenotypic transition can be regulated
by microRNAs (miRNAs) and long-stranded non-coding RNA
(lncRNAs) (77).

Inflammation
As we all know, atherosclerosis is a chronic inflammatory
disease. Inflammation is accompanied by the initiation and
development of the whole disease. After decades of extensive
research, we have preliminarily elucidated that the related
inflammatory response in atherosclerosis is mediated by
proinflammatory cytokines, adhesion molecules, inflammatory
signaling pathways and bioactive lipids (78). In general,
healthy endothelial cells are able to effectively resist leukocyte
adhesion, and acute inflammation can restore normal tissue
structure through leukocyte infiltration and subsequent clearance
mechanism (79). However, when related events such as
hypertension and hyperglycemia occur, endothelial cells activate
and consequently express monocyte chemoattractant protein-1,
interleukin (IL)-8, intercellular adhesion molecule-1 (ICAM-1),
vascular adhesion molecule-1 (VCAM-1), E-selectin, P-selectin,
and other inflammatory factors, resulting in monocyte retention
and triggering chronic inflammatory injury (80). This view
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FIGURE 3 | Vascular smooth muscle cell phenotypic conversion in atherosclerosis.

was further proved in vitro experiments. Pro-inflammatory
monocytes with high expression of Ly6C preferentially adhere to
cytokine-stimulated endothelial cells, and dendritic cells, T cells
and neutrophils are also involved in this inflammatory response
(81). With the development of atherosclerosis, macrophages,
VSMC, and endothelial cells in arteries can secrete a variety
of matrix metalloproteinases (MMPs). MMP-9 can increase
macrophage infiltration and collagen deposition, while MMP-
2 can promote extracellular matrix degradation and VSMC
migration (82, 83). Both of them work together to form an arterial
pro-inflammatory environment and aggravate the inflammatory
reaction in atherosclerosis.

In fact, although inflammatory response is involved in all
processes of atherosclerosis, there is no practical evidence to
support the inflammatory hypothesis in early studies until
the discovery of inflammatory markers (84). In addition to
MMPs, IL-6, C-Reactive protein (CRP), and adhesion molecules
are inflammatory markers. When the inflammatory response
is turned on in arteries, macrophages and adipocytes release
large amounts of IL-6 and TNF- α,inducing a downstream
inflammatory cascade to occur (85). In another experiment,

it was also found that the risk of coronary heart disease
increased with the upregulating of IL-6 level in plasma and
was positively correlated with the severity of the disease (86).
At the same time, the release of IL-6, IL-1β, and TNF-α
stimulated the synthesis of CRP in the liver and adipose tissue,
prevents the proliferation and repair of vascular endothelial
cells (87). Selectin family, immunoglobulin superfamily (IgSF)
and integrin family of adhesion molecules are involved
in the development of atherosclerosis (88). Among them,
vascular cell adhesion molecule-1 (VCAM-1) and ICAM-1
play an important role. As shown in Figure 4, VCAM-1 can
activate endothelial cells by upregulating the transcription
factor nuclear factor-κB (NF-κB), which causes endothelial
cells to release various pro-inflammatory cytokines such
as IL-1, TNF-a, IL-6, and IL-8 (89). The high expression
of VCAM-1 and ICAM-1 can promote the proliferation
of macrophages, lead to the excessive accumulation of
macrophages in the plaque and reduce the stability of the
plaque (90). At the same time, VCAM-1 and ICAM-1 can
also promote the formation of high permeability and fragile
neovascularization (91).
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FIGURE 4 | Inflammation in atherosclerosis.

As researchers have progressively studied atherosclerosis, the
inflammatory signaling pathways associated with the disease
continue to attract more attention. From the known studies,
toll like receptor 4 (TLR4), NF- κB, Janus kinase (JAK) signal
transducers and activators of transcription (STAT) have been
identified as major signaling pathways. ABCG1, a key gene
linking lipid accumulation and inflammation, can be regulated
by TLR4 in the organism (92). After the onset of atherosclerotic
process, TLR4 activates the peroxisome proliferator-activated
receptor γ (PPAR-γ)/liver X receptor α (LXRα) signaling
pathway, which in turn downregulates ABCG1 expression (93).
Meanwhile, TLR4 can also promote the release of MCP-1, IL-1α,
and IL-6 by activating NF-κB, which induces lipid accumulation
in the arterial vasculature and the development of inflammation
(94). In atherosclerotic, JAK/ STAT is mainly activated by
cytokines of JAK kinases (JAK1, JAK2, JAK3) and tyrosine kinase
(Tyk)2. In experiments, it was found that activation of p-STAT3
was often accompanied by elevated levels of IL-6 and TNF-α,
while activation of STAT4 similarly caused secretion of IFN-γ and
TNF-α, which activated macrophages and made arterial plaques
larger (95, 96).

FLAVONOIDS DERIVED FROM FRUITS
ARE USED TO TREAT
ATHEROSCLEROSIS

Flavones
Flavones are a kind of compounds existing in nature and fruits,
which play an important role in fruit growth, development,

and antibacterial activities. In modern pharmacological research,
it is found that the flavones are inseparable from the anti-
atherosclerotic effect of fruits (97). Apigenin is a kind of typical
flavones named 4′,5,7,-trihydroxyflavone. It is widely found
in oranges, grapefruit, and other fruits. Apigenin has high
biological activity, can play neuroprotection, antioxidant, anti-
tumor, and other effects (98). In addition, it has been found
in recent studies that apigenin could participate in all stages of
atherosclerosis through a variety of mechanisms, so as to play
an anti-atherosclerotic role. As mentioned earlier, hyperlipidemia
caused by high-fat diet may be an important factor in inducing
atherosclerosis. In SD rats fed with high-fat diet, 8.0 g/kg
apigenin was given by gavage for 2 weeks. The results showed
that after apigenin treatment, the thickening of aortic intima
was alleviated, the contents of TC, TG, and LDL-C decreased,
and the content of HDL-C increased, indicating that apigenin
could reduce the possibility of atherosclerosis by improving
hyperlipidemia (99). However, when hyperlipidemia occurred
in vivo, the expression of LOX-1 in endothelial cells increased,
which promoted the binding of endothelial cells to oxLDL,
resulting in endothelial dysfunction. Surprisingly, in HUVECs
activated by oxLDL, apigenin could alleviate endothelial cell
dysfunction by reducing the expression of LOX-1, VCAM-1,
and E-selectin (100). Subsequently, glucose-induced HUVECs
and HAECs and trimethylamine-N-oxide-induced has cells were
used to study the underlying mechanism (101–103). The results
showed that apigenin could protect endothelial cells through
a variety of signal pathways. For example, apigenin could
inhibit endothelial cell apoptosis by decreasing the expression of
PKCβII and phosphorylation of NF-κB through ROS/caspase-3
and NO signaling pathway (101). Furthermore, apigenin could
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also improve the uncontrolled vasodilation and enhance the
antioxidant activity of endothelial cells by up-regulating the
activity of eNOS and the content of NO and SOD (102, 103).
Apigenin also plays an important role in the formation of foam
cells. For example, in vitro experiments, apigenin could enhance
the expression of ABCA1 by inhibiting miR-33, promote the
cholesterol efflux in macrophages, and effectively reduce the
content of TC, FC and CE in foam cells (104). In vivo, apigenin
was used to treat LPS-induced ApoE−/− mice, and the same
results were obtained. That is, apigenin affected the expression of
miR-33, ABCA1, NF-κB p65, and TLR-4, promoting cholesterol
efflux and reducing the number of macrophages and smooth
muscle cells in atherogenesis, which leads to the decrease in
foam cells as well (104). Of course, in addition to affecting lipid
metabolism, apigenin could also down-regulate the expression of
PAI-2 by inhibiting the phosphorylation of Akt at ser473 site,
increase the expression of Bax and cleaved caspase-3 in oxLDL-
induced macrophages, and promote macrophage apoptosis (105).
In further studies, it was also found that after apigenin treatment,
autophagy mediated by ATG5/Atg7 was enhanced in oxLDL-
induced macrophages. The role of apoptosis and autophagy
accelerates the attenuation of macrophages and relieves the
formation of foam cells (106). Simultaneously, apigenin not
only inhibited the activation of Caspase-1 by destroying NLRP3
inflammasome assembly, but also reduced mRNA stability
by inhibiting ERK1/2 activation in response to inflammation
throughout the development of atherosclerosis. The combination
of two effects inhibited the secretion of IL-6, IL-1β, and TNF-
α, thereby inhibiting the activation of NF-κB in LPS-induced
macrophages (107). In addition to apigenin, a variety of flavones
derived from fruits in Supplementary Table 1, such as luteolin,
tangeretin and chrysoeriol, can inhibit the development of
atherosclerosis.

Flavonols
Flavonols refer to a class of compounds containing 2-phenyl-
3-hydroxy (or oxygen-substituted) benzo-γ-pyrone (2-phenyl-
3-hydroxy-chromone). They are the most abundant flavonoids,
and there are more than 1,700 kinds of flavonols have been
found. Quercetin, one of the most abundant flavonols in fruits,
has been widely shown to be useful in the prevention and
treatment of atherosclerosis. First, quercetin was used to treat
Caco-2 cells and human embryonic kidney 293T cells who
expressing NPC1L1, and it was found that quercetin inhibited
cellular cholesterol uptake by reducing NPC1L1 mRNA levels
(132). Subsequently, quercetin was administered to ApoE−/−

mice induced by high-fat diet. The results showed that quercetin
regulated lipid metabolism by up-regulating the expressions of
PPARγ, LXR-α, ABCA1, and down-regulating the expressions
of PCSK9 and CD36, reducing the content of TC, LDL-C,
oxLDL, and lipid droplets in the cytoplasm, and alleviated
the symptoms of atherosclerosis (133). At the same time,
quercetin could also reduce the content of TNF-α and IL-
6 in the serum of mice, increase the content of IL-10 (133).
In another oxLDL-induced RAW264.7 macrophage, quercetin
promoted the expression of LC3-II/I and Beclin 1 by reducing
the expression of MST1. Simultaneously, quercetin also inhibited

the expression of Bcl-2, P21, and P16, which ultimately triggered
autophagy in macrophages and reduced foam cell formation
(134). Without doubt, quercetin also has excellent efficacy in
inhibiting inflammation. In high-glucose-induced human THP-
1 monocytic cells, quercetin inhibited the expression of pro-
inflammatory genes and related proteins, including TNF-α, IL-
1β, COX-2, etc., through the MAPK signaling pathway (115).
Correspondingly, in ApoE−/− mice fed on a high-fat diet,
quercetin reduced inflammatory by up-regulating Sirt1 and
down-regulating Slcam-1 and VCAM-1 expression. All the above
results suggest that quercetin is a potential natural compound for
the treatment of atherosclerosis (135).

Kaempferol is another flavonol with broad bioactivity
that has been shown to reduce the risk of atherosclerosis.
Kaempferol was initially confirmed to play a synergistic role
with urate in plasma to jointly exert antioxidant effect and
reduce oxidative modification of LDL, which preliminarily
suggested that kaempferol may have an anti-atherosclerosis
effect (136). Subsequently, kaempferol was applied to rabbits
fed with a high cholesterol diet. The results showed that
after kaempferol treatment, the levels of TNF-α, IL-1β, and
MDA in aorta decreased significantly, and the activity of
SOD in serum increased. Meanwhile, the expression of
genes and proteins related to inflammation, such as E-sel,
ICAM-1, VCAM-1, and MCP-1, decreased significantly, which
inhibited the occurrence of inflammation (137). In ox-LDL-
induced endothelial cells, kaempferol not only inhibited the
PI3K/Akt/mTOR pathway, but also upregulated LC3-II /I
and Beclin-1, which reduced endothelial cell apoptosis (138).
Nevertheless, in a recent study, researchers applied kaempferol
to atherosclerotic mice. It was a surprise to everyone that
kaempferol inhibited inflammation and apoptosis by activating
the membrane G-protein conjugated estrogen receptor (GPER),
thereby activating the PI3K/AKT/Nrf2 signaling pathway (139).
It’s revealed that when kaempferol acts on different models,
its mechanism of action is different, but its preventive and
therapeutic effects on atherosclerosis cannot be neglected.
Besides, there are a variety of flavonols in fruit that have the same
effect, as shown in Table 1.

Flavone Glycosides
As an important component of flavonoids, the role of flavone
glycoside in atherosclerosis has been gradually concerned. Rutin,
a typical flavonoid glycoside found in apples, green tea and other
sources, has antioxidant and anti-inflammatory activities and
multiple therapeutic effects in atherosclerosis. In HUVEC cells
induced by H2O2, rutin could enhance the expression and activity
of eNOS by up-regulating the expression of basic fibroblast
growth factor (bFGF), thereby increasing the production of
NO and improving endothelial function (150). In high glucose
induced VSMCs, rutin inhibited the migration and proliferation
of VSMCs by inhibiting the MAPK (ERK1/2), BMK1, PI3K,
and NF-κB signaling pathways (151). In vivo, when rutin
was applied to streptozotocin (STZ)-induced ApoE−/− mice,
a significant reduction of atherosclerotic plaque in aorta was
observed, accompanied by an increased proportion of VSMCs
and enhanced plaque stability (152).
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TABLE 1 | Flavonols derived from fruits are potential agents against Atherosclerosis.

Monomers Source Models Mechanisms or effects Chemical structure References

Quercetin Blueberry Cholesterol induced Caco-2 cells and
human embryonic kidney 293T cells

Male Wistar rats fed with high
cholesterol

↓ NPC1L1, total serum
cholesterol

132

ApoE−/− mice with high-fat diet ↑ IL-10, PPARγ, LXRα, ABCA1
↓ TC, LDL-C, oxLDL, TNF-α,

IL-6, PCSK9, CD36

133

ox-LDL-Induced RAW264.7 Cells ↑ LC3-II/I, Beclin 1
↓ MST1, Bcl-2, P21, P16

134

High glucose induced human THP-1
monocytic cells

↑ Bcl-2
↓ TNF-α, IL-1β, COX-2, CML,

ROS, PKC, p47phox, p38,
MAPK, PERK1/2, MAPK,

NF-κB, RAGE

115

ApoE−/− mice fed with high-fat diet ↑ Sirt1
↓ Slcam-1, IL-6, VCAM-1

135

Kaempferol Filbert, grapes,
strawberries,

tomatoes, citrus fruits,
apples, grapefruit

Copper-induced diluted plasma ↓ TBARS, MDA 136

High-cholesterol-induced rabbits ↑ SOD
↓ TNF-α, IL-1β, MDA, E-sel,
ICAM-1, VCAM-1, MCP-1,

137

ox-LDL-induced HUVECs ↑ LC3-II/I, Beclin 1
↓ p-Akt, p-mTOR

138

HFD-OVX-induced APOE−/− mice ↑ GPER, PI3K, Akt, Nrf2, SOD,
GSH

↓ TCH-O, TG, LDL-C, HDL-C,
MDA, TNF-α, IL-6, ICAM,

VCAM

139

Ox-LDL-induced HAECs ↑ GPER
↓ ROS

Myricetin Guava ox-LDL-induced macrophages ↓ CD36-mediated ox-LDL
uptake

140

HASMCs and A7R5 cells ↓ CDK4, cyclin D3, MMP2,
MMP9, TGFBR1, Smad2,

Smad3

141

ox-LDL-induced HUVECs ↑ miR-29a-3p
↓ GAS5, p-p65, p-IkBa, TLR4

142

Isorhamnetin Sea buckthorn Urotensin-II-induced primary VSMCs ↑ IL-10, MIF
↓ TNF-α, IL-1β, RhoA, ROCK II,

ROCK I

143

Ox-LDL-induced THP-1-derived
macrophages

↑ MTP, AKT, HO-1
↓ ROS, caspase 3, caspase 9,

MPO, GSH-px, NOX

144

Galangin Plantain TNFα-induced HAECs ↓ E-selectin, intercellular
adhesion molecule 1

145

Morin Mulberry ox-LDL-induced HUVECs ↑ p-AMPK
↓ ROS, MDA, SOD, IL-1β, IL-6,

ICAM-1, VCAM-1, p-mTOR

146

PDGF-induced VSMCs ↑ p27KIP1
↓ CDK2, CDK4, cyclin D1,
cyclin E, AKT, MMP, NF-κB,

AP-1, Sp-1

147

Fisetin Apple, persimmon,
grape, strawberry

ApoE−/− mice with high-fat diet ↑ SOD
↓ PCSK9, LOX-1, p53, p21,
p16, ALT, AST, TC, LDL-C,

VLDL-C, ox-LDL, MDA

148

LPS-induced macrophages ↓ MCP-1, IL-1β, iNOS, NO,
p-ERK, p-JNK, uPA, uPAR,

MMP2, MMP9

149
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TABLE 2 | Other flavonoids derived from fruits are potential agents against Atherosclerosis.

Classification Monomers Source Models Mechanisms or effects Chemical
structure

References

Flavanones Dihydromyricetin Actinidia
arguta

HFD-induced
atherosclerosis
LDLr−/− mice

↑ PPARα, LXRα, ABCA1
↓ ox-LDL, IL-6, NOX2,

TNF-α

173

Palmitic acid-induced
HUVECs

↑ Nrf2
↓ LDH, IL-1β, caspase-1,

ROS, mtROS

174

Ox-LDL induced
HUVECs and THP-1

cells

↑ NO, HDL,
DDAH1-ADMA-eNOS
↓ VCAM-1, ICAM-1,
E-Selectin, TG, LDL,

TNF-α, IL-1β, IL-6, miR-21

175

Flavanol Catechin Peach, apple High-glucose-induced
human THP-1 cells

↑ Bcl-2
↓ TNF-α, IL-1β, COX-2,

CML, ROS, PKC, p47phox,
p38, MAPK, p-ERK1/2,

MAPK, NF-κB

115

Epicatechin Apple Cholesterol-containing
atherogenic diet fed
ApoE*3-Leiden mice

↓ SAA, human-CRP, NF-κB 176

Anthocyanidin Pelargonidin Acerola PDGF-BB induced
HASMCs

↑ F-actin
↓ FAK

177

Delphinidin Pitayas OxLDL-induced
HUVECs

↑ NO, Bcl-2
↓ ROS, Bax

178

Serum and
VEGF-induced BAECs

↑ ERK-1/-2, caveolin-1,
p21WAF1/Cip1

↓ RAS, cycoin D1

179

Petunidin Chokeberries PDGF-BB-induced
HASMC

↓ FAK, Akt, Src 180

Chalcone Phloretin Apple High-glucose-induced
HUVECs

High-cholesterol diet
and streptozotocin

induced Apoe−/− mice

↑ eNOS, KLF2
↓ TG

181

Thrombin-induced
Human endothelial cells

↑ PAI-1
↓ PAR-1, CD40, endothelial

integrinβ3, P-selectin,
CD40L, MCP-1, IL-6, IL-8,

COX-2, PGE2

182

PDGF-BB–induced
RASMCs

↑ p27kip1
↓ Akt, p38, CDK2, CDK4,
p-Rb, VCAM-1, ICAM-1,

MMP9, ROS

183

Xanthohumol Citrus Western-type diet-fed
ApoE−/− mice

↑ AMP, CPT-1a, ABCG1
↓ MCP-1, TC, FC, CE,

SREBP-2

184
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Naringin is the main compound of tomato, grapefruit, and
related citrus. It is a flavanone glycoside with a disaccharide
neohesperidose linked at C7 of the C6 (A ring)-C3 (C ring)-C6
(B ring) flavanone skeleton. It was first found in mice on a high-
fat/high-cholesterol diet that treatment with naringin reduced
plasma non-HDL cholesterol concentrations and ICAM-1, a
biomarker of endothelial dysfunction. Transcriptome analysis
of potential molecular targets suggested that the therapeutic
effect of naringin may be related to its ability to reduce the
adhesion of monocytes to endothelial cells and the proliferation
of smooth muscle cells (153). In the following experiments,
TNF-α-induced HUVECs were used as an in vitro model to
further study the anti-atherosclerosis effect of naringin. The
results showed that naringin inhibited the expression of adhesion
molecules and chemokines, including VCAM-1, ICAM-1, and
E-selectin, by inhibiting the activation of IKK/NF-κB signaling
pathway (154). In addition, ox-LDL was used as a model
drug to induce HUVECs. After naringin administration, VE-
cadherin decomposition and F-actin remodeling were inhibited,
and endothelial function was protected. At the same time, IL-1β,
IL-6, IL-18, and other pro-inflammatory factors were decreased,
and this protective effect was directly related to the YAP
signaling pathway (155). In addition to these effects, naringin
also has an ideal effect on regulating atherosclerosis through
gut microbiota. Previous reports have found that naringin is
highly hydrophilic and lacks the corresponding hydrolase in
the body. This property protects naringin against digestion and
absorption in the small intestine. Therefore, naringin can reach
the colon and affect the composition of the gut microbiota
after oral intake. The results showed that after naringin
reached the colon, the relative abundance of g_Bacteroides,
g_Bifidobacterium, and g_Lactococcus in the colon was decreased,
and the content of bile salt hydrolyase was decreased. In
contrast, the abundance of 7α-dehydroxylase producing bacteria-
Eubacterium_fissicatena, Eubacterium_coprostanoligenes, and
Eubacterium_brachy increased. The changes of the gut microbial
community structure could directly promote the degradation
of free bile acid, regulate the metabolism of cholesterol in the
body, and increase the excretion of bile acid and neutral sterol
by 1.6-fold and 4.3-fold, respectively. Cholesterol levels in serum
and liver were also decreased to different degrees. These results
suggested that naringin could alleviate atherosclerosis through
the gut microbiome–liver–cholesterol axis (156). Other flavonoid
glycosides are shown in Supplementary Table 2.

Others
In addition to the above classification, there are many other
classes of natural flavonoid compounds in fruits that can be
used to treat atherosclerosis. For example, dihydromyricetin,
derived from actinidia arguta, is structurally classified as a
flavanones. In recent years, previous studies have found that
dihydromyricetin can significantly improve hyperlipidemia in
mice, reduce the levels of ox-LDL, IL-6, and TNF-α in serum,
and restore inflammation to normal levels (173). Meanwhile, the
protein expression of PPARα, LXRα, and ABCA1 was increased
to promote lipid efflux and prevent lipid accumulation (173).
In addition, in vitro cell models, dihydromyricetin could protect

endothelial cell function, inhibit endothelial cell apoptosis,
and prevent monocyte adhesion by activating Nrf2 or mir-21
signaling pathways (174, 175). Catechins derived from apples
and peaches are flavanols that could reduce high glucose
induced inflammation in human THP-1 cells through MAPK
signaling pathway, reduce the expression of pro-inflammatory
genes and proteins, including TNF-α, IL-1β, and COX-2,
and reduce monocyte adhesion (115). Epicatechin, which also
belongs to flavanols, is also distributed in apples, and has a
good effect on severe atherosclerosis. Epicatechin attenuates the
inflammatory process of atherosclerosis by inhibiting NF-κB
signaling, reducing neutrophils and chemokines, and slowing
stromal remodeling (176). In addition to these, anthocyanins
such as pelargonidin, delphinidin, petunidin, xanthohumol, and
phloretin in chalcone can also be used for the treatment of
atherosclerosis, see Table 2 for details.

CONCLUSION AND PERSPECTIVES

In recent years, atherosclerosis is increasingly threatening
to human life, and the existing drugs or surgical treatments
have certain limitations, so it is urgent to develop new drugs
or treatment methods. Flavonoids are important bioactive
components in fruits and are widely used in various nutritional
products, cosmetics and medicines. At the same time, flavonoids
from fruit have been shown to be effective in various stages
of atherosclerosis development in recent studies. Based on
our conclusion, current evidence suggests that fruit flavones
have therapeutic effects on atherosclerosis by protecting
endothelial cells, inhibiting foam cell formation, regulating
lipid metabolism, and anti-inflammation, and the underlying
molecular mechanisms are gradually being elucidated in
more specific ways.

However, there are limitations and controversies that prevent
the generalization of these results. It can be seen from Tables 1, 2
and Supplementary Tables 1, 2 that there are multiple in vivo
and in vitro models to choose from in the study of flavonoids
against atherosclerosis. When a compound acts on the same
cell or animal stimulated by different modeling agents, its
efficacy and mechanism of action will also be different, and
an appropriate research model is an important prerequisite
to ensure the accuracy of mechanism exploration and the
reliability of results. At present, human or mouse cell lines are
mostly used in vitro studies. For example, when studying the
effect of flavonoids on inflammation in atherosclerosis, mouse
leukemia cell lines RAW264.7 and J774 and human leukemia
monocyte cell line THP-1 are mostly used, and THP-1 can
differentiate into macrophages after the intervention of a variety
of factors. However, in modern studies, it is generally believed
that the atherosclerotic lesions in mice have been affected by
microenvironmental factors, and the results of immortal cell
lines do not reflect the in vivo process. Therefore, primary
macrophages and peritoneal macrophages derived directly from
animals have been applied in the study of flavonoid anti-
atherosclerosis. In vivo models, researchers mostly use mouse and
rabbit models as the main experimental platform. However, the
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major sites of atherosclerosis in humans are the coronary and
carotid arteries, whereas in mice, the major sinus and innominate
arteries are predominant. The in vivo model is also limited by the
difference of lesion location.

All flavones from fruits have been studied in many
aspects in clinical trials, but there is still a lack of clinical
trials on atherosclerosis. At present, the research trend of
flavonoids in fruits still remains to study their mechanism of
action and molecular target, so as to explore their medicinal
potential in atherosclerosis. However, whether a compound
is suitable for development into a drug is also related to
its bioavailability, metabolism, distribution, etc. As mentioned
earlier, quercetin is an excellent potential drug with multiple
therapeutic effects on atherosclerosis. When the solubility of
quercetin was studied, it was found that the solubility of
quercetin was 2.1 mg/L in water and 2 g/L in ethanol. This
physical property directly limits the absorption of quercetin
in the body (185). Pharmacokinetic results in human showed
that the bioavailability of quercetin was very poor after a
single oral administration. In addition, dietary quercetin is
usually present in the form of glycosylation, which can be
hydrolyzed by β-glucosidase in the digestive system and absorbed
in the intestinal mucosa. Subsequently, quercetin can be
transported to the liver via the portal vein and metabolized by
glucuronidation, methylation, or sulfonylation (186). However,
in recent studies, it was found that quercetin glucuronides,
a major circulating metabolite, was rapidly eliminated in the
human body, and the short elimination half-life was also an
important reason for limiting the development of quercetin
drugs (187). To solve the existing problems, the preparation
of different delivery systems using nanotechnology has been
widely accepted. For example, quercetin was encapsulated in
nano-polymeric micelles, and then relevant pharmacokinetic
experiments were performed in beagle dogs. The results showed
that compared with free quercetin, the half-life of nano-
quercetin was prolonged by 2.19 times after the application
of nanotechnology, and its relative oral bioavailability was
increased by 286%. Therefore, nanotechnology also has high
potential in the treatment of atherosclerosis (188). In addition
to polymer nanomaterials, inorganic nanomaterials, lipid-
based nanomaterials, and biomimetic nanomaterials have been
involved in the development of effective drugs for the treatment
of atherosclerosis. Unfortunately, most drug development is still
in the pre-clinical stage and has not been widely studied. In
addition, the design of nanomaterials for dual therapy is also an
important direction in future research.

Interest in the interaction of gut microbiota with flavonoids
has increased in recent years. Under the action of intestinal
flora, flavonoids can be hydrolyzed into aglycones in intestinal
tract, and then reduced by hydrogenation of C ring. Finally,

O-C2 bonds on C-ring are cleaved to form phenolic ketones
and phenolic acids. In this process, the metabolic transformation
of flavonoids enables them to be better absorbed by the small
intestine and improve the bioavailability of flavonoids through
systemic and local anti-atherosclerosis effects (189). At the same
time, flavonoids in the intestinal tract can also affect the structure
and function of gut microbiota, affecting the balance of gut
microbiota (190). The interaction between flavonoids and gut
microbiota provides a new perspective for understanding the
effect mechanism of flavonoids on atherosclerosis. It is worth
noting that up to now, the study on absorption, distribution
and metabolism of flavonoids in the gut microbiota is still in
its infancy. The therapeutic effect of flavonoid on atherosclerosis
under the action of gut microbiota is not stable, and the
underlying mechanism needs to be further explored.

Therefore, in future experiments, based on existing studies,
we should increase the study of its pharmacokinetic, metabolic
and pharmacodynamic characteristics in vivo, and find better
flavonoid compounds and nanomaterials for the treatment
of atherosclerosis, so as to find more reliable drugs for the
treatment of disease.
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