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Wound repair is a key step in the treatment of skin injury caused by burn, surgery,
and trauma. Various stem cells have been proven to promote wound healing and skin
regeneration as candidate seed cells. Therefore, exosomes derived from stem cells
are emerging as a promising method for wound repair. However, the mechanism by
which exosomes promote wound repair is still unclear. In this study, we reported that
exosomes derived from umbilical cord mesenchymal stem cells (UC-MSCs) promote
wound healing and skin regeneration by treating cutaneous nerve damage. The results
revealed that UC-MSCs exosomes (UC-MSC-Exo) promote the growth and migration
of dermal fibroblast cells. In in vitro culture, dermal fibroblasts could promote to nerve
cells and secrete nerve growth factors when stimulated by exosomes. During the
repair process UC-MSC-Exo accelerated the recruitment of fibroblasts at the site of
trauma and significantly enhanced cutaneous nerve regeneration in vivo. Interestingly,
it was found that UC-MSC-Exo could promote wound healing and skin regeneration
by recruiting fibroblasts, stimulating them to secrete nerve growth factors (NGFs)
and promoting skin nerve regeneration. Therefore, we concluded that UC-MSC-Exo
promote cutaneous nerve repair, which may play an important role in wound repair and
skin regeneration.

Keywords: wound repair, regeneration, exosome, umbilical cord mesenchymal stem cells, cutaneous nerve
regeneration, nerve growth factor

INTRODUCTION

The skin is the largest organ of the human body and has an important role in resisting the invasion
of external bacteria, regulating body temperature, sensation, and other aspects (Woodby et al.,
2020). Skin trauma and its consequences are one of the major public health concerns worldwide and
lead to substantial medical expenses every year (Sen et al., 2009). Wound repair is a complex and
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orderly biological process governed by multifaceted,
multifactorial regulation, which is a key step in the treatment
of skin injury caused by burns, surgery, and trauma. Although
the skin tissue has a certain self-repair ability (Singer and
Clark, 1999), but poor wound healing, in addition to affecting
appearance, especially in the exposed site, not only leads to
impaired skin function, such as altered perceptions of pain,
temperature, and touch (Oualla-Bachiri et al., 2020; Torre et al.,
2020) but also results in tissue infection and necrosis and even
serious local or systemic dysfunction (Roh et al., 2017). Due
to the loss or incomplete recovery of the subcutaneous nerves
and nerve endings, the patient may exhibit symptoms such as
hyperesthesia (including itching) and dysesthesia, leading to
decreased sensory and motor function and ultimately affecting
the patient’s quality of life.

Skin wound healing is the focus and hotspot of clinical
research. With the development of molecular biology, the
understanding of skin wound healing mechanisms has gradually
deepened. Skin wound healing includes the hemostasis stage,
inflammatory response, proliferation, and remodeling phases
(Shaw and Martin, 2009; Gonzalez et al., 2016; Tottoli et al.,
2020). Based on accumulating evidence, the migration and
proliferation of keratinocytes, fibroblasts, endothelial cells, and
leukocytes increase in the wound during wound repair, further
promoting wound healing (Woodley, 2017; Dorschner et al.,
2020; Piipponen and Li, 2020). The concomitant inflammatory
response during skin wound healing stimulates the abundant
sensory and motor nerves in the dermis and releases signals
such as neuropeptides (Pradhan et al., 2009). Moreover, skin
regeneration and scar healing both involve nerve repair. The
growth of nerve axons is also affected by cells, extracellular matrix
(ECM), and various regulatory factors in granulation tissue and
scar tissue, and nerves and various regulatory healing factors
form a complex network of interactions (Chéret et al., 2014).
For example, during the wound healing process, cellular growth
factors secreted by related cells, such as transforming growth
factor-1 (TGF-β1), platelet-derived growth factors (PDGFs),
vascular endothelial growth factors (VEGFs), epidermal growth
factors (EGFs), fibroblast growth factors (FGFs), and insulin-
like growth factors (IGFs) can promote cell growth and
differentiation and have a decisive role in wound healing (Borena
et al., 2015). The fact that impaired or delayed wound healing
is classically observed in patients with diabetes, congenital,
or other neuropathies suggests that nerve regeneration is a
factor promoting skin wound healing (Falanga, 2005). Moreover,
evidence indicates that cutaneous innervation is an important
modulator of the normal wound healing process, and denervated
skin could result in impaired wound healing (Smith and Liu,
2002; Buckley et al., 2012).

In recent years, many emerging skin regeneration techniques
have been rapidly developed. Stem cells, biomaterial scaffolds,
bioactive factors, etc. have been used to promote the regeneration
of skin (Chen et al., 2020; Niimi et al., 2020; Tottoli et al., 2020).
Extracellular vesicle-based therapeutics have shown promise in
preclinical and clinical studies. Exosomes are cystic vesicles that
are generated through the endosomal pathway and released
outside the cell (Robbins and Morelli, 2014). These vesicles carry

various biologically active substances, such as lipids, proteins,
and nucleic acids, and play an important role in intercellular
transport and information transmission (Aheget et al., 2020). Due
to the regenerative ability and immunosuppressive properties
of MSCs, they have been well used in clinical trials for the
treatment of various diseases. At present, the study of stem
cell exosomes mainly focuses on the regeneration and repair of
multiple organs and systems, such as the cardiovascular system
(Ibrahim et al., 2014), liver (Ying et al., 2017), and nerves
(Ching and Kingham, 2015). Moreover, studies have shown that
MSC-Exo are capable of acting on nearly all stages of wound
healing, including controlling immune responses, inhibiting
inflammation, promoting cell proliferation and angiogenesis,
and reducing scarring during wound healing (Farinazzo et al.,
2015; Su et al., 2017; Vesna et al., 2018; Dong et al., 2019;
Vu et al., 2021). MSC-Exo participate in this process by
activating multiple signaling pathways (Whyte et al., 2012;
Wang X. et al., 2019; Yu et al., 2019), such as the PI3K/AKT
pathway, Wnt/β-catenin signaling pathway, and Notch signaling
pathway. Among them, the Wnt signaling pathway is involved
in every process of wound healing from inflammation control
to apoptosis after being activated by skin injury. Studies have
shown that exosomes are involved in the regulation of Wnt
signaling in wound healing (Houschyar et al., 2015; Zhang
et al., 2015). Accumulating evidence has suggested that MSC-
Exo treatment is emerging as a promising method of skin
nerve repair and skin regeneration (Ferreira and Gomes, 2018;
Wu et al., 2018; Casado-Díaz et al., 2020). Nevertheless, the
underlying mechanism by which MSC-Exo promotes wound
healing remains unclear.

Exosomes from adipose-derived stem cells (ADSC-Exo) can
promote the proliferation of Schwann cells (SCs) through the
regulation of related protein mRNA expression to promote
nerve regeneration (Liu et al., 2020). Bone marrow stromal
cell-derived exosomes (BMSC-Exo) can promote peripheral
nerve regeneration through miRNA-mediated regeneration-
related genes (Zhao et al., 2020). Umbilical cord mesenchymal
stem cells (UC-MSCs) have the advantages of easy availability,
greater proliferative capacity, and low immunogenicity (Wang
et al., 2018). Studies have shown that UC-MSCs can differentiate
into key cell types in the three germ layers, inhibit inflammation
(Lee et al., 2017), and have the ability to repair tissue damage and
modulate immune responses (Liu et al., 2018; Tsai et al., 2021).
UC-MSCs have potential applications in regenerative medicine
and have been demonstrated to repair tissue damage in many
inflammatory and degenerative diseases (Shiue et al., 2019; Tsai
et al., 2021). Notably, in the field of regenerative medicine,
UC-MSC-Exo also show great therapeutic potential.

In this study, we explored the related mechanism by observing
the effect of UC-MSC-Exo on the proliferation ability of
fibroblasts and whether UC-MSC-Exo could improve the wound
healing rate by promoting nerve repair. During wound healing,
the MSC-Exo-treated wounds demonstrated a stronger ability
to recruit fibroblasts, stimulate them to secrete neurotropic
factors, and regenerate nerve fibers than the control-treated
wounds. These results suggest that UC-MSC-Exo have promising
functions in nerve regeneration in cutaneous wounds.
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MATERIALS AND METHODS

Animals and Ethical Approval
Six-week-old C57BL/6 male mice were purchased from the
Beijing Vital River Laboratory Animal Technology Company. All
animals were treated strictly in accordance with international
ethical guidelines and the National Institutes of Health Guide
concerning the Care and Use of Laboratory Animals. All animal
experiments were carried out with the approval of the Animal
Ethical and Welfare Committee (AEWC).

Culture, Expansion, and Identification of
Umbilical Cord Mesenchymal Stem Cells
Umbilical cord mesenchymal stem cells (UC-MSCs) were
obtained from ScienCell (Carlsbad, CA, United States). Cells
were plated at 5 × 106 cells per 60 mm dish and were cultured
in Dulbecco’s modified Eagle medium (DMEM, Invitrogen,
United States) with 10% fetal bovine serum (FBS, Gibco,
United States) and 1% penicillin-streptomycin (PS, Gibco,
United States) and maintained at 37◦C in a humidified
atmosphere containing 5% CO2 with the medium changed every
24 h. The fifth-passage MSCs were cultured to approximately
90% and replaced with a serum-free medium (APPLIED CELL,
China), and the medium was changed every 24 h. The cell
culture supernatant was collected at each medium change
and centrifuged, and the supernatant was collected to extract
exosomes. For MSCs identification, when grown as adherent
cultures in monolayers, cells were incubated with anti-CD79a-
fluorescein isothiocyanate (FITC), anti-CD14-FITC, anti-CD45-
FITC, anti-Thy1-FITC, CD73-PE, anti-CD105-PE (Biolegend,
San Diego, CA, United States). A flow cytometric analysis was
conducted on an FACS Calibur cytometer (BD FACS CaliburTM,
Becton-Dickinson, San Jose, CA, United States) and analyzed by
using the Flowing Software analysis program.

Isolation, Purification, and Identification
of UC-MSC-Exo
Umbilical cord mesenchymal stem cells were grown to the
logarithmic phase, at which time supernatants were collected,
after which exosomes were collected by ultracentrifugation. The
first step was performed at 2,000× g for 30 min to eliminate cells
and large cell debris. The following step was centrifugation again
at 10,000× g for 45 min and then passed through a 0.45 µm filter
(Merck Millipore, Germany) to remove small cell debris. At each
of these steps, the pellet was discarded, and the supernatant was
used for the following steps.

For the purification of exosomes, the supernatant obtained
above was then ultracentrifuged at 100,000 × g for 70 min at
4◦C. Then, the supernatant was removed, and the pellet was
washed in a large volume of phosphate-buffered saline (PBS,
HyClone, United States) to eliminate contaminating proteins and
centrifuged last time at the same high speed. After isolation of
these exosomes, they were resuspended in PBS, and the protein
content of the exosome suspension was determined using a BCA
quantitation kit (Beyotime, Shanghai, China).

The morphology and marker (Bioss, CD63 and CD81)
expression of MSC-Exo were analyzed by transmission electron
microscopy (TEM) (JEOL JEM-F200 200 kV, Japan) and western
blotting, respectively. The size and concentration of exosomes
were determined through Nanosight Tracking Analysis (NTA)
by utilizing a ZetaView PMX 110 system (Particle Metrix,
Meerbusch, Germany).

Human Dermal Fibroblasts Migration
Assay
Human dermal fibroblasts (HDFs) were obtained from ScienCell
(Carlsbad, CA, United States). For the cell migration assay,
human dermal fibroblasts (HDFs) were seeded at a density of
3.5 × 104 cells/well in a two-well Ibidi silicone culture insert
(Ibidi, Martinsried, Germany). After sufficient time for cell
attachment (>24 h), the silicone insert was carefully removed.
After two PBS washes, MSC-Exo prepared with DMEM were
added, and a blank group was treated with DMEM as a control.
Cell migration in the scratched area was observed at 0, 12,
and 24 h under an inverted microscope (Olympus, Japan). The
migration distance was analyzed using the ImageJ software, and
the average value of the cell migration rate was calculated.

Immunofluorescence
Human dermal fibroblasts were cultured in a 24-well plate,
then washed with PBS and fixed in 4% paraformaldehyde for
30 min, permeabilized with 0.1% Triton-X100 for 30 min,
followed by blocking with 5% bovine serum albumin (BSA)
for 30 min, incubated with vimentin (1:100, Abcam) primary
antibodies overnight at 4◦C, and followed by incubation
with a FITC-conjugated goat anti-rabbit Alexa 488 (1:500,
Thermo Scientific) or goat anti-rabbit Alexa 647 (1:500,
Thermo Scientific) for 1 h at room temperature. Nuclei
were counterstained with 4′,6-diamidino-2-phenylindole (DAPI)
(DAPI) (1:1,000, Thermo Scientific). Images were taken using a
confocal microscope (Nikon, Japan).

Quantitative Real-Time PCR
Dorsal skin total RNA was isolated using a total RNA
extraction reagent (TRIzol, Invitrogen, United States), RNA
was reverse-transcribed using a ReverTra Ace qPCR RT Kit
(TOYOBO, Japan), cDNA was synthesized, and real-time PCR
was conducted. The primer sequences used in these experiments
are listed in Table 1. The data from real-time PCR experiments
were analyzed by the comparative CT method as described in the
manufacturer’s manual. The expression of nerve growth factors
was assayed, and all results were confirmed by repeating the
experiment 3 times.

Western Blot
Western blot analysis was performed as previously described.
Equal amounts of cell protein were size fractionated by sodium
dodecyl sulfate/polyacrylamide (SDS-PAGE) gel electrophoresis
and transferred onto polyvinylidene difluoride membranes. After
transfer, the membranes were blocked with 5% BCA in Tris-
buffered saline with Tween-20 (TBST)(Beyotime, Shanghai,
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China) for 1 h at room temperature with gentle shaking and
incubated overnight at 4◦C the following primary antibodies:
CD63 (Bioss, bs-1523R), CD81 (Bioss, bs-6934R). All primary
antibodies were diluted 1:1000. After TBST washes, the blots
were incubated in goat anti-rabbit IgG H&L/HRP antibody
(Bioss, bs-0295G-HRP) for 1 h at room temperature. The
membranes were then washed 3 times, and the signals were
visualized with enhanced chemiluminescence reagents (BeyoECL
Star, Beyotime, China).

Wound Closure Assay
C57BL/6 mice were randomly divided into a model control group
and a treatment group. Then, the mice were housed in cages and
kept adaptively for 7 days. Preexperimental animals were fasted
for 12 h, and after anesthesia, the dorsum was shaved and cleaned.
A circular full-thickness skin defect wound, 1 cm in diameter, was
created by using surgical scissors on the back, and the wound
was deep in the subcutaneous surface, forming an animal model
of mechanical injury. After modeling, the mice were kept in a
single cage, and the day of model establishment was recorded as
day 0. Then, the mice were randomly divided into the control
and MSC-Exo groups. Control group: the wound was treated
with 100 µl of PBS (n = 8), dripped in the wounds; MSC-Exo
group: the wound was treated with 100 µl of PBS containing
100 µg exosomes added externally (n = 10). Wound healing was
evaluated on the basis of gross observation at days 0, 3, 7, and
14. The wound healing rate was calculated as follows: (primary
wound size—residual wound size)/original wound size× 100%.

Histological and Immunofluorescence
Analysis
The wounded skin was excised and fixed with 4%
paraformaldehyde (Solarbio, Beijing, China) for 24 h to prevent
cell autolysis after death. Then, the sections were hydrated with
running water for a certain period of time, followed by gradual
dehydration with alcohol at different concentrations, embedding
in paraffin and cutting into 5 µm sections. The sections were
stained with hematoxylin-eosin (HE), and the histological
changes of the wounds were visualized under a microscope.

Skin tissues were sectioned into 5 µm sections as above. For
immunofluorescence double staining, sections were incubated
overnight at 4◦C with a mix of primary anti-PGP9.5 (GB11159-
1, 1:1,000, Servicebio) and anti-GAP43 (bs-0154R, 1:4,000,
Bioss) antibodies. Sections were incubated in Cy3 conjugated
Goat Anti-Rabbit IgG (H+L) (GB21303, 1: 300, Servicebio) or
HRP conjugated Goat Anti-Rabbit IgG (H+L) (GB23303, 1:500,

TABLE 1 | Sequences of primers used for quantitative RT-PCR analysis.

Primer Forward Reverse

VIPR1 TCATCCGAATCCTGCTTCAGA AGGCGAACATGATGTAGTGTACT

CALCB CACCTGTGTGACTCATCGGC GGGCACGAAGTTGCTCTTCA

TACR1 TTGGCGTAGTTGTCGCGTTG CGCGAATTAACTACGCACGA

TAC2 AGGGAGGGAGGCTCAGTAAG GGCGGCTGTAGAGTC

TAC4 GAAGACGCTGCATGTATTG CATATGCCATGACACATGCAG

Servicebio) secondary antibody for 1 h at room temperature.
Images were captured by laser scanning confocal microscope
(Olympus, Japan), and the confocal software was used for
acquisition of the data and merging of the digital images.
Each antibody was validated separately prior to use in double
immunofluorescence.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 9
(GraphPad Software). All data were evaluated using analysis of
variance (ANOVA) followed by Bonferroni post-hoc testing. Data
are presented as the mean with a standard error of the mean
(SEM), and P < 0.05 was considered statistically significant.

RESULTS

Origin and Identification of Exosomes
Stem cells have been used to treat skin damage, and stem cell-
derived exosomes also have skin repair effects. Cell morphology
can directly reflect the physiological state of the cells. After
inoculation, the morphology of UC-MSCs incubated in serum-
free medium showed a typical spindle shape (Figure 1A), with a
uniform shape, clear outline, and ideal cell adhesion effect. Then,
UC-MSCs surface markers were analyzed, and the expression
of the cell surface antigens CD79a, CD45, CD14, CD105, Thy1,
and CD73 on UC-MSCs was determined by flow cytometry.
The results showed that CD105, Thy1, and CD73 expression
was positive, and CD79a, CD45, and CD14 expression was
negative (see Figure 1B). Through preliminary experiments,
stable MSCs were obtained.

We isolated MSC-Exo from the supernatants of UC-MSCs
and analyzed them via TEM, particle size measurement, and
western blot assays. The exosome markers CD9 and TSG101 were
detected in exosome samples by western blot assays (Figure 2A).
TEM showed that the UC-MSC-Exo had a typical cup-shaped
morphology of MSC-Exo (Figure 2B). Samples of the UC-MSC-
Exo were analyzed with a NanoSight LM 10 system, the picture
presents particles moving under Brownian motion (Figure 2C),
and 95.94% of the particles were within the size range of
56.07–115.71 nm (Figure 2D). The cup-shaped morphology and
size distribution of isolated samples corresponded to the TEM
images. Together, these findings confirmed that MSC-Exo were
successfully isolated, and that the UC-MSC-Exo in this study
were similar to exosomes from other cell sources with respect to
their morphology and properties.

Umbilical Cord Mesenchymal Stem
Cells-Exo Promoted the Proliferation of
Skin Fibroblasts
To explore the ability of these exosomes to modulate fibroblast
migration, we further conducted a scratch assay using HDFs
to evaluate the wound healing capacity of the MSC-Exo. As
shown in Figures 3A,B, the MSC-Exo group showed greater
cell migration than the control group, as confirmed by optical
microscopy. The distance of the migrated cells and the number
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FIGURE 1 | Culture and identification of UC-MSCs. (A) Culture of UC-MSCs. Scale bar = 100 µm. (B) Flow cytometry analysis showed that UC-MSCs were positive
for CD105, Thy1 and CD73, but negative for CD79a, CD45 and CD14.
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FIGURE 2 | Extraction and identification of UC-MSC-Exo. (A) Expression of exosome markers (CD63 and CD81) examined by western blot analysis. (B)
Representative images showing the morphology of UC-MSC-Exo by transmission electron microscopy. Scale bar = 100 nm. (C) The Brownian movement of the
UC-MSC-Exo. (D) NTA analysis demonstrating the diameter of exosomes which ranged from 56.07 to 115.71 nm, with a mean diameter of 75.66 nm.

of HDFs cocultured with MSC-Exo in the scratch area were
significantly higher than those incubated in normal culture media
(non-treated condition), with a statistically significant difference
(P < 0.05). Fibroblasts are spindle-shaped or flattened star-
shaped (Figure 3C), with vigorous functions and obvious protein
synthesis and secretion activities. Vimentin is a marker protein
of skin fibroblasts. β-Tubulin is the basic structural unit of
intracellular microtubules and plays an indispensable role in
maintaining cell shape, movement, and intracellular material
transport. In fibroblasts, both vimentin (green), and β-tubulin
(red) were well expressed (Figure 3D). Exosomes promote
fibroblast proliferation and may have a positive effect on skin
wound repair (Zhu et al., 2019).

Umbilical Cord Mesenchymal Stem
Cells-Exo Promoted the Secretion of
Nerve Growth Factors by Skin
Fibroblasts During Healing
To further define the relationship between exosomes and nerves,
we investigated the effect of MSC-Exo on the secretion of nerve
growth factors involved in the wound healing process. The level
of nerve factors was determined by the expression of related

mRNAs. In the control group, the expression of nerve growth
factors was lower. Under MSC-Exo treatment, the content of
nerve growth factors changed significantly, and the mRNA
expression of TAC4 reached the highest level at 48 h (Figure 4A).
The expression of TAC2 gradually increased with time, and
compared with that in the control group, the mRNA expression of
TAC2 was significantly increased at 24 and 48 h (Figure 4B). The
expression of CALCB and VIPR1 reached the highest level at 24 h
after treatment (Figures 4C,D). The highest expression level of
TACR1 was found at 24 h (Figure 4E). The results indicated that
MSC−Exo significantly promoted NGF secretion compared with
the control, with a statistically significant difference (P < 0.05).
This finding further verifies that exosomes may play a role in
enhancing wound healing by promoting nerve repair.

Umbilical Cord Mesenchymal Stem
Cells-Exo Accelerated Cutaneous
Wound Repair and Skin Regeneration
During Wound Healing in vivo
To verify the experimental results in vitro, we carried out
in vivo experiments. To determine the effects of UC-MSC-
Exo on wound healing and their role in this process, we
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FIGURE 3 | UC-MSC-Exo promote the growth of skin fibroblasts. (A) Scratch wound assay for HDFs treated with UC-MSC-Exo in three time points. (B) Statistical
analysis of migration rates. ****p < 0.0001. Error bars indicate SDs of triplicate samples in a single representative experiment. SD, standard deviation. (C) The
morphology of HDFs. Scale bar = 100 µm. (D) The immunofluorescence images of vimentin and β-tubulin. HDFs were immunolabeled for vimentin (green) and
β-tubulin (red), and nucleic acid was signed with DAPI (blue). Scale bar = 50 µm.
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FIGURE 4 | UC-MSC-Exo promote skin fibroblasts to secrete neural factors. The mRNA expression levels of TAC4 (A), TAC2 (B), CALCB (C), VIPR1 (D), TACR1
(E), which were quantified by quantitative real-time RT-PCR. **p < 0.01, ****p < 0.0001. Error bars indicate SDs of triplicate samples in a single representative
experiment.

generated full-thickness cutaneous wounds on the backs of each
mouse. Full-thickness skin wounds on the backs of mice were
treated with UC-MSC-Exo or PBS. The histological structure
of the regenerated dermis was analyzed on day 14, including
a 5 mm margin of intact skin, which was embedded in
paraffin and serially sectioned from the border to the center
point. Representative images of wound areas for each group
on days 0, 3, 7, and 14 after wound treatment are shown in
Figures 5A,B. The results of the in vivo experiment showed
that the wounds in the control group were significantly red
and swollen on the third day, and the inflammatory symptoms
were stronger than those in the treatment group. There are
4 periods in the wound-healing process, namely, hemostasis,
inflammatory response, proliferation, and remodeling. As shown
in the figure, due to the effect of exosomes, the skin had
passed the inflammatory phase, and the wound surface began
to shrink. On the seventh day, the wounds in the control group
showed some inflammatory reactions, while the experimental

group showed scabbing. The wounds treated by UC-MSC-Exo
recovered much more quickly compared with the control group
(Figures 5C,D). HE staining showed that compared with the
control group, the treatment group displayed enhanced growth
of the epidermal tongue and a shortened repair time of the
wound surface (Figures 5E–H), which was consistent with
the in vitro results. These results demonstrate that MSC-Exo
treatment accelerated wound healing.

Umbilical Cord Mesenchymal Stem
Cells-Exo Promoted Skin Nerve Fiber
Regeneration
We performed systematic assessments of nerve regeneration by
using immunofluorescence. Skin nerve fiber regeneration was
analyzed by immunostaining for PGP9.5 and GAP43. As shown
by immunofluorescence analysis (Figure 6), the skin nerve tissue
specifically stained with an antibody against PGP9.5 exhibited an
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FIGURE 5 | UC-MSC-Exo accelerates wound healing. (A) Representative images of the wound healing process in mice treated with control and MSC-Exo. (B)
Wound healing situation in mice at 7 days. (C) Wound healing rate of experimental and control group. ***p < 0.0001, ****p < 0.0001. (D) Comparing of wound
healing time after treatment with or without MSC-Exo. ****p < 0.0001. Histological features during healing of full-thickness skin wounds from normal mouse skin (E),
control mouse (F) and MSC-Exo mouse (G). (H) Quantitative analysis of crawling distance after 14 days post-wounding. ****p < 0.0001, compared with the control
group. Error bars indicate SDs of triplicate samples in a single representative experiment.
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intense staining along the nerve fibers. PGP9.5 was found in skin
fibers. In contrast, no such results were observed in the control
groups, and control staining without antibody showed only
background (Figures 6A,B). In vitro, UC-MSC-Exo promoted
wound healing through cell proliferation and nerve damage
repair. Skin cells are also involved in the process of wound repair
and play a role through the expression of nerve-related markers
and the regulation of nerve factors to promote nerve regeneration
(Figure 7). This finding suggests that in the process of skin
nerve injury, repairing nerves by improving the surrounding
environment of skin nerves is a good strategy.

DISCUSSION

Wound healing is a complex process involving various cells,
including keratinocytes, endothelial cells, and fibroblasts,
as well as various cytokines (Singer and Clark, 1999;
Broughton et al., 2006). In this study, we used UC-MSC-
Exo to study the effect of stem cell exosomes on skin nerves
during skin wound healing and applied them to a mouse skin
injury model to verify their ability to promote skin nerve
repair and regeneration. This treatment had a positive effect on
damage repair. The main results of the study can be summarized
as follows: (1) In vitro, UC-MSC-Exo stimulated fibroblast
proliferation; (2) UC-MSC-Exo promoted the secretion of neural
growth factors; and (3) UC-MSC-Exo accelerated wound healing
in a full-thickness skin excision model. In this article, we showed
evidence that UC-MSC-Exo are promising for the treatment of
skin and nerve regeneration.

In recent years, biotechnology research on stem cell therapy
and wound repair has gradually deepened (Tottoli et al., 2020).
As an important part of stem cell paracrine signaling, exosomes
play an important role in tissue regeneration. Exosomes are
microvesicles, and many studies have shown that MSC-Exo
have functions similar to those of MSCs, including repairing
and regenerating tissues, inhibiting inflammatory responses, and
regulating immunity (Ferreira and Gomes, 2018). In previous
studies, a large number of studies have shown that stem cell
exosomes have regeneration and repair effects on damaged skin,
and MSCs from the umbilical cord, bone marrow, and adipose
tissue are the most common sources (Peng et al., 2013; Chen et al.,
2018; Wu et al., 2018), MSC-Exo have increasingly been explored
as a valuable tool for mediating the healing of skin wounds (Hur
et al., 2017; Guo et al., 2020). UC-MSCs have received extensive
attention in the field of cell therapy and regenerative medicine
and have been applied in different clinical fields (Mebarki et al.,
2021). UC-MSC-Exo were also shown to effectively promote
tissue repair and regeneration (Li et al., 2013; Zhang et al., 2015).

The human skin dermis includes multiple fibroblast subtypes,
which are primarily responsible for the synthesis, deposition,
and remodeling of dermal ECM, supporting the structural
integrity of the skin, and are involved in the regulation of
normal skin homeostasis, inflammation, and wound healing
(Stunova and Vistejnova, 2018). Under the regulation of
cytokines, fibroblasts proliferate, migrate, promote the synthesis
and secretion of collagen and elastic fibers (Eming et al.,

2017; Rodrigues et al., 2019), participate in the process of
granulation tissue formation, wound contraction, scar formation,
and tissue reconstruction (Reinke and Sorg, 2012; Driskell
et al., 2013; Lynch and Watt, 2018), play an important role
in the process of wound healing, and contribute to diverse
healing outcomes, including non-healing chronic wounds or
excessive scarring, such as hypertrophic scars (HTSs) and keloids
(Meilang et al., 2022). Fibroblasts release signaling molecules in
an autocrine or paracrine manner and mediate communication
between surrounding cells, such as keratinocytes, endothelial
cells, and macrophages, and participate in the process of
wound healing together (Driskell and Watt, 2015; Lynch and
Watt, 2018). In the proliferative period, fibroblasts greatly
proliferate, migrate, and form granulation tissue and are mainly
involved in resisting infection and replenishing wounds (Rognoni
et al., 2018). Moreover, keratinocytes around the wound are
induced to migrate to the wound to form new epidermal
tissue. In the remodeling phase, myofibroblasts, endothelial cells,
and macrophages differentiate from fibroblasts. Myofibroblasts
synthesize and deposit ECM components that are the main
source, generating strong contraction forces and bringing
together the edges of the open wound, eventually forming
collagen-rich scars (Rodero and Khosrotehrani, 2010; Meilang
et al., 2022). Furthermore, recent studies have shown that
the origin and phenotype of fibroblasts are important factors
influencing the outcome of dermal repair, and dermal fibroblast
heterogeneity can make wounds heal faster, with fewer scars,
and has great potential for cell therapy (Meilang et al., 2022).
Accelerating wound repair of the skin is of great clinical
significance, both in difficult wound disease and in postoperative
repair (Jinnin, 2010).

Orchestrated skin development can be achieved through data
exchange and interference between intracellular and intercellular
structures of the ectoderm and mesoderm (Itin, 2014). This
complex process requires a highly coordinated interaction of
several genetic signaling pathways (Deshmukh and Prashanth,
2012). The epidermis of the skin and its accessory structures
develop from the ectoderm, which is also a key initiating
participant in embryogenesis of the peripheral nervous system.
Skin nerve repair and regeneration occur in two ways, namely,
local stem cell proliferation and differentiation and the extension
of healthy axons. Skin-derived precursor cells (SKPs) are
pluripotent adult stem cells found in the dermis of human skin
with good potential for multidirectional differentiation (Weng
et al., 2020). They can proliferate and differentiate into nerve cells
and glial cells in vitro and can effectively induce regeneration of
skin sensory nerves (Toma et al., 2005; McKenzie et al., 2006).
SKPs are involved in wound repair, and the possible mechanism is
that in addition to directly participating in epidermal and dermal
reconstruction, they may also participate in the nerve repair of
wounds, suggesting that SKPs may become seed cells for the
treatment of nervous system damage.

In the skin, there is a sophisticated network connecting
cutaneous nerves and the local neuroendocrine and immune
systems. The skin’s function and ability to respond to external
stressors are regulated by the neuroendocrine system, including
the regulated and coordinated production of neuropeptides
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FIGURE 6 | Nerve regeneration was analyzed by immunofluorescence staining. The full-thickness skin wounds of control group (A) and experimental group (B) were
immunostained for PGP9.5 (red), GAP43 (green) and nucleic acid was signed with DAPI (blue). Scale bar = 50 µm.

FIGURE 7 | Schematic representation of UC-MSC-Exo promoting wound healing and nerve regeneration.

(especially opioid peptides), neurohormones, neurotransmitters,
and hormones, including steroids and secondary steroids. Skin
cells have their own neuroendocrine network, with specific and
well-functioning feedback regulatory circuits (Zmijewski and
Slominski, 2011; Zmijewski et al., 2012). The neuroendocrine
system has receptors for the expression of a variety of cytokines
(Table 2), and cytokines act as immunotransmitters to exert
their effects on the neuroendocrine system through their
receptors. These factors induce/stimulate downstream signaling
by activating the corresponding receptors. Many important
signaling pathways are activated during wound healing and
also play a role in embryonic skin development. The Wnt
pathway is an important regulatory signaling pathway in
growth and development. Research shows that Wnt signaling
can be involved in early embryonic neural induction through
interaction with bone morphogenetic proteins (BMPs) and
FGF genes (Muñoz-Sanjuán and Brivanlou, 2002). During
wound healing, Wnt signaling is activated by the wound

and is involved in every subsequent stage of the healing
process (Houschyar et al., 2020). Skin wounds express a
variety of Wnt proteins in the early stage of healing, and
the Wnt signaling pathway can regulate different proteins at
different stages of wound repair. During the hemostasis and
inflammation phases, local Wnt signaling begins to increase.
Inflammatory cells release proinflammatory cytokines, growth
factors, and vascular endothelial growth factors, increase
vascular permeability, and promote fibroblast activity (Li et al.,
2007). During the proliferative phase, β-catenin levels and
transcriptional activity are elevated and become important
regulators of fibroblast behavior in the proliferative phase of
skin wound repair (Poon et al., 2009). During the proliferative
phase, Wnt can activate stem cells, induce their self-renewal
and proliferation, and stimulate active wound repair. Meanwhile,
Wnt also plays an important role in angiogenesis, and
endogenous enhancement of Wnt can correct vascular defects
(Birdsey et al., 2015).
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TABLE 2 | The role of growth factors in cutaneous wound healing.

Growth
factors

Main function References

EGF Re-epithelialization
Enhances the production of fibronectin

Jiang et al., 1993;
Yamamoto et al., 2013

TGF-α Induces angiogenesis Schaffer and Nanney, 1996

TGF-β Inflammation
Granulation tissue formation
Re-epithelialization
Matrix formation and remodeling

Eppley et al., 2004;
Barrientos et al., 2008;
Varkey et al., 2015

VEGF Granulation tissue formation
Stimulates (lymph) angiogenesis
Enhances endothelial cell migration
and proliferation

Morbidelli et al., 1996; Losi
et al., 2013

PDGF Granulation tissue formation
Re-epithelialization
Matrix formation and remodeling
Activates macrophages to release
growth factors

Barrientos et al., 2008;
Borena et al., 2015

bFGF Re-epithelialization
Acts as a mitogen for fibroblasts
Induces angiogenesis

Zhang et al., 2006; Inoue
et al., 2009; Park et al.,
2017

IGF Re-epithelialization
Stimulates fibroblast proliferation

Provenzano et al., 2007;
Park et al., 2017

Neurotrophic factors are important bioactive molecules that
regulate the proliferation of non-neuronal cells, as well as sensory,
nerve axon sprouting/growth after injury (Terenghi, 1999),
including NGFs, brain-derived neurotrophic factors (BDNFs),
and glial cell-derived neurotrophic factors (GDNFs) (Madduri
et al., 2009; Fadia et al., 2020; Table 3). NGF is a neurotrophic
factor that is innervated by sensory and sympathetic neuronal
projections, is responsible for establishing sensory innervation
of the skin during development and maintaining the skin in
adulthood (Indo, 2010), and can stimulate neurite outgrowth and
nerve survival after injury (Hu et al., 2016; Zhao et al., 2016;
Önger et al., 2017). Moreover, the regeneration of wound micro
vessels is also related to innervation. The integrity of blood vessels
is crucial to maintaining the homeostasis of the nervous system
microenvironment, which is complementary to the regeneration
and development of nerves. Neurotrophic factors can induce
various effects on endothelial cells through autocrine and/or
paracrine mechanisms (Nico et al., 2008; Gostynska et al., 2020).
Studies have shown that NGF plays a role in angiogenesis,
promotes the synthesis and secretion of VEGF (Ahluwalia et al.,
2018), and can activate the PI3K/Akt and ERK/MAPK signaling
pathways and downstream mTOR to mediate various NGF effects
(Wang et al., 2016; Li et al., 2018). Topical administration of
growth factors can improve wound healing (Graiani et al., 2004).

The progress of wound healing is complex, continuous, and
dynamic. During the wound healing process, the wound site is
constantly changing, including processes such as epithelialization
and angiogenesis, in which various cells, cytokines, and growth
factors work together, ultimately promoting wound healing.
Cell proliferation is the key to tissue regeneration and repair,
and the cell scratch assay is a common method used in the
laboratory to analyze the ability of cells to migrate. Consistent

with previous studies (Bakhtyar et al., 2018; Zhu et al., 2019),
treatment with MSC-Exo significantly promoted the proliferation
of fibroblasts on the experimental side (Figure 3). Nerves and
various regulatory factors form a complex network of interactions
(Chéret et al., 2014), and neurotrophic factors are considered a
possible factor in skin wound healing. Subsequently, we detected
the expression of neural factors in fibroblasts by polymerase chain
reaction (Itoyama et al., 2020). To further test our hypothesis,
we used animal models to explore the role of MSC-Exo. Then,
we carried out an animal experiment with our materials to
investigate wound repair from the appearance, nerve, and healing
rates. Evidence obtained from mouse trauma models suggests
that MSC-Exo could promote nerve fiber regeneration, which
promotes skin wound healing. Skin regeneration repair and

TABLE 3 | The role of neurotrophic factors.

Neurotrophic
factors

Main function References

NGF Nerve regeneration
Regulator of neuronal differentiation
Promote of neurite outgrowth and
synaptic connection

Levi-Montalcini,
1987; Liu et al.,
2022

BDNF Re-epithelialization/keratinocyte
proliferation
Wound contraction
Nerve regeneration

Marconi et al.,
2003; Palazzo
et al., 2012

GDNF Schwann cell proliferation
Nerve regeneration

Krakora et al.,
2013; Itoyama
et al., 2020

Neurotrophin-3
(NT-3)

Growth, proliferation, and
maintenance of nerves
Nerve regeneration

Liang et al.,
1999

Substance P (SP) Vasodilatation
Polymorphonuclear cell infiltration
Release of pro-inflammatory cytokines
Re-epithelialization/keratinocyte
proliferation
Granulation tissue formation/fibroblast
proliferation
Angiogenesis
Collagen maturation and remodeling
Nerve regeneration

Liu et al., 2006;
Ashrafi et al.,
2016

Vasoactive
intestinal
peptide (VIP)

Vasodilatation
Re-epithelialization/keratinocyte
proliferation (−ve effect)
Angiogenesis
Collagen deposition
Nerve regeneration

Rayan et al.,
1995; Sternini,
1997

Cerebral dopamine
neurotrophic factor
(CDNF)

Nerve regeneration Lindahl et al.,
2017

Ciliary neurotrophic
factor (CNTF)

Nerve regeneration
Maturation, proliferation, and
survival of OLGs
Keep the maintenance of endoplasmic
reticulum homeostasis

Kang et al.,
2012

Mesencephalic
astrocyte-derived
neurotrophic factor
(MANF)

Nerve regeneration
Keep the maintenance of endoplasmic
reticulum homeostasis

Lindahl et al.,
2017
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scar healing both have the nerve itself to repair, which is a
crucial stage in the wound-healing process. Exosomes upregulate
neurotrophic factor expression to enhance nerve regeneration,
and stem cells and their exosomes show therapeutic advantages
for neurological diseases (Kubiak et al., 2019; Saffari et al.,
2021).

Physiological indicators in many in vivo experiments are
used to assess wound healing. In our research, the MSC-Exo
group exhibited greater regeneration of the epithelium and
dermis, as well as a faster healing rate (Figure 5A), as
evidenced by HE staining (Figure 5G). Moreover, many
markers have and continue to be evaluated for diagnostic
utility and are even beginning to be studied for prognostic
utility. The neuronal biomarker PGP9.5 has been regarded as
the most accurate for the visualization of epidermal nerves
(Wang et al., 1990). GAP43 is a membrane protein that is
involved in the process of nerve regeneration and is also a
marker of nerve fiber regeneration (Fantini and Johansson,
1992; Denny, 2006). Immunohistochemical analysis of wound
sites was performed to assess reinnervation using antibodies
against the panaxonal marker (PGP9.5) and axonal regenerative
marker (GAP43). PGP9.5 and GAP43 are appropriate markers
for nerve regeneration studies. Our research results show
that skin tissue was strongly GAP43/PGP9.5-positive after
exosomes treatment (Figure 6), while nerve fibers were visualized
primarily with PGP9.5, which is consistent with previous
research results. These results suggest that MSC-Exo play an
important role in the wound-healing process by repairing
skin nerve fibers.

Large-scale skin injuries often lead to damage to subcutaneous
nerve fibers, nerve endings, and receptors (Daly et al., 2012;
Pateman et al., 2015). In the repair process, nerve scarring,
or excessive extraneural fibrosis can affect nerve gliding, cause
nerve tethering or compression, and decrease normal nerve
conduction velocities, effectively limiting optimal functional
recovery (Atkins et al., 2006; Wang M. L. et al., 2019). The
disorganized conformation of fibroblasts is expressed in keloid
scars and fibrosis and impedes regeneration at sites of nerve
repair (Atkins et al., 2006). MSC-Exo provide new ideas for
wound healing promotion and HTS prevention and are rich in
protein, messenger RNA, and miRNAs as signaling molecules
that inhibit collagen expression and myofibroblast proliferation
and even remodel the ECM (Zhu et al., 2019).

Nerve repair is an important aspect of tissue repair that
provides an explanation for the slow repair of skin tissue
in many diseases, such as chronic skin wounds in diabetic
neuropathy (Han et al., 2016). In diabetic foot ulcer (DFU),
the main pathogenesis is related to peripheral neuropathy or
peripheral nerve blood vessel damage caused by peripheral
neuropathy, resulting in bone and joint damage in the
patient’s foot, causing ulcers and infections, etc., in which
a concomitant alteration of the nerve ending translates into
a skin lesion, and makes its healing complex (Everett and
Mathioudakis, 2018). The mechanisms underlying poor wound
healing in diabetes are not fully understood. At present,

there are various therapeutic strategies for DFU, and MSC-
Exo exhibit higher proangiogenic and growth factor secretion
activities, showing great application potential in clinical trials.
MSC-Exo have achieved remarkable curative effects in a
variety of diseases and have become an ideal solution for
cell-free therapy in the field of regenerative medicine. In
our study, we found that UC-MSC-Exo accelerated wound
healing and exhibit neuroprotective and regenerative potential.
Based on these findings, UC-MSC-Exo may show great
therapeutic potential in tissue repair/regeneration. We need
to further study the role of MSC-Exo in the surrounding
microenvironment to reveal their mechanism in promoting
nerve regeneration. In the future, the efficacy, safety, and
potential risks of MSC-Exo in different diseases need further
research and evaluation.

CONCLUSION

Taken together, our findings presented in this study suggest
that UC-MSC-Exo can produce therapeutic effects by promoting
skin and nerve regeneration, which may be realized in clinical
applications. However, further understanding of its molecular
mechanism is necessary, and further exploration of the field of
exosome biology is needed, which will ultimately contribute to
the clinical application of exosomes in neural repair.
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