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  Hypoxia involves neoplastic cells. Unlike normal tissue, solid tumors are composed of aberrant vasculature, 
leading to a hypoxic microenvironment. Hypoxia is also known to be involved in both metastasis initiation and 
therapy resistance. Radiotherapy is the appropriate treatment in about half of all cancers, but loco-regional 
control failure and a disease recurrence often occur due to clinical radioresistance. Hypoxia induces radioresis-
tance through a number of molecular pathways, and numerous strategies have been developed to overcome 
this. Nevertheless, these strategies have resulted in disappointing results, including adverse effects and lim-
ited efficacy. Additional clinical studies are needed to achieve a better understanding of the complex hypox-
ia pathways. This review presents an update on the mechanisms of hypoxia in radioresistance in solid tumors 
and the potential therapeutic solutions.
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Background

The tumor microenvironment is composed of extracellular ma-
trix, blood vessels, signaling molecules, and non-malignant cells 
such as stromal cells, fibroblasts, and immune cells [1]. Unlike 
normal tissue, solid tumors contain dysfunctional vasculature. 
Stroma composition, rate of tumor growth, and a patholog-
ical vasculature lead to a hypoxic environment and impede 
immune cell functions in tumors. Moreover, hypoxia causes a 
selection pressure promoting growth of cells with genetic ma-
chinery for malignant potential [2]. Therefore, hypoxia leads 
to epithelial-to-mesenchymal cell transition (EMT), resulting in 
cell mobility and thus metastasis [3]. Furthermore, hypoxia of-
ten alters tumor cell metabolism by inducing cell quiescence. 
It also induces an alteration in transport and/or distribution 
of chemotherapy, immunotherapy, and radiotherapy, leading 
to resistance to therapies [4]. While proliferating tumor cells 
in normoxic regions of the tumor respond to chemotherapy 
and radiotherapy, hypoxic cells manage to survive these anti-
neoplastic therapies; thus, they multiply, which leads to treat-
ment failure [5]. In addition, tumor cell sensitivity to X-rays is 
about 3 times greater when irradiated in a well-oxygenated 
environment vs under anoxic conditions [6,7].

Hypoxia induces: (1) increased potential of malignancy [8], 
(2) resistance to chemotherapy, immunotherapy, and radia-
tion therapies [9,10], and (3) increased metastasis occurrence, 
which all lead to a poor prognosis [11]. Elucidating these re-
sistance mechanisms would therefore improve cancer pa-
tients’ outcomes.

Extensive studies have focused on the impact of this hostile 
environment on tumor cells, therapeutic responses, and clini-
cal outcomes. Many strategies have been developed to over-
come this feature [12,13]. This review presents an update on 
the mechanisms of hypoxia in radioresistance in solid tumors, 
and presents some potential therapeutic solutions.

Hypoxia-Regulated	Programs	in	Cancer

When pO2 level is below 10 mmHg, solid cell tumors grow rap-
idly due to hypoxia, which has long been associated with che-
motherapy and radiotherapy resistance [14,15]. The propor-
tion of hypoxic cells is heterogeneous within the tumor mass 
and among tumors. In normal tissues, consumption and sup-
ply of oxygen are balanced, whereas this balance is disrupt-
ed in tumoral tissue. Indeed, within this disordered devel-
opment of cancer cells and expanding tumor tissue, oxygen 
demand is surpassed by oxygen supply. Therefore, a combi-
nation of multiple factors, as well as the increasing vascula-
ture, prevents oxygen diffusion, leading to an increase of hy-
poxic region area [3,16].

In solid tumors, 2 subtypes of tumor hypoxia are well docu-
mented. Acute and chronic hypoxia leads to different hypox-
ia-related responses within the tumor [17]. Acute hypoxia or 
perfusion-limited hypoxia is mainly due to a transient occlu-
sion, narrowing of vessels, and arteriolar vasomotion, which 
cause local disturbances in perfusion and thus a disruption in 
oxygen supply [18]. Conversely, chronic hypoxia, also called 
diffusion-limited hypoxia, is caused by a critical limitation in 
oxygen diffusion from tumor microvessels to surrounding tis-
sues [18]. Anemic hypoxia is due to the decreased oxygen 
transport induced by chemotherapy [19,20]. Acute and chron-
ic hypoxia used to be considered as having similar cellular bi-
ological effects, but recent analyses have proved otherwise. 
Although there is no consensus, acute hypoxia is associated 
with a more aggressive phenotype by increasing cell migra-
tion and leading to possible tumor metastasis [17]. Cairns et 
al studied the contribution of acute and chronic hypoxia in the 
process of lung metastases in murine models of fibromas [21]. 
Mice with acute hypoxia (intermittently inhaling 5-7% oxygen 
for 10 min 12 times a day) had significantly more pulmonary 
metastasis than in the control group (inhaling normal air) [21]. 
Conversely, there was no significant difference between mice 
exposed to chronic hypoxia (inhaling 5-7% oxygen for 2 h each 
day) and the control group [21].

At the cellular level, the effects of hypoxia on tumor cells are 
multiple and ambivalent. Indeed, hypoxia causes proteomic 
modification by stopping the cell cycle and thus causing necro-
sis and apoptosis [22], or induces proteomic changes by stim-
ulating tumor growth, invasion, and metastasis [23]. At the 
molecular level, transcription factors such as hypoxia-induced 
factors (HIFs) play an essential role in these shifts. Under hy-
poxic conditions, the HIF-1a subunit translocates to the nucle-
us and binds HIF-1b, which results in transcriptional activation 
of many genes and plays a role in tumor progression. Thus, 
HIF-1 induces the expression of angiogenic vascular endothe-
lial growth factor (VEGF), which is one of the most important 
stimulators of angiogenesis. Glucose transporters like GLUT-1 
facilitate anaerobic glycolysis metabolism and enable cancer 
cell survival by limiting sufficient ATP (Adenosine 5-triphos-
phate) production and hematopoietic factors such as eryth-
ropoietin (EPO) [24-26].

HIF-1a is overexpressed in the vast majority of patients with 
squamous cell cancer of the oropharynx. Its degree of expres-
sion has predictive and prognostic significance in patients un-
dergoing curative radiation therapy [27]. For breast and en-
dometrioid ovarian cancer, carbonic anhydrase IX (CAIX) is a 
biomarker of poor prognosis for metastasis and survival. CAIX 
is a hypoxia-inducible protein that regulates cellular pH to pro-
mote cancer cell survival and invasion in hypoxic microenvi-
ronments [28,29]. Therefore, the evaluation of CAIX in breast 
cancer is a robust indicator of hypoxia.
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Tumor	Hypoxia	and	Radiation	Efficacy

In 1909, Schwarz demonstrated that skin response to radi-
ation decreased when blood flow in the irradiated area was 
compressed. Mottram, Crabtree, and Cramer and many oth-
ers later explored the issue of oxygen and radiation effects 
more fully [30]. Indeed, they highlighted that cells were much 
more sensitive to X-rays in the presence of oxygen [30]. This 
was measured by the oxygen enhancement ratio (OER). OER 
is a ratio of radiation doses delivered under hypoxic to aerobic 
conditions to achieve the same biological endpoint. Indeed, hy-
poxic cells required higher radiation doses to reach the same 
death rate as normoxic cells. In hypoxic areas, the ability of 
tumor cells to survive ionizing radiation was 2-3 times high-
er than in normoxic areas [31]. Concentration and time of ex-
posure to oxygen are crucial. Thus, to produce an apoptosis 
effect, molecular oxygen must be present during radiothera-
py treatment or at least during the lifetime of the free radi-
cals generated by the radiation. Only a small quantity of oxy-
gen was required for radiosensitization; 0.5% oxygen, pO2 of 
about 3 mmHg [32].

Hypoxic tumors are more resistant to radiotherapy because 
of the absence of oxygen. Radiation can directly create DNA 
(deoxyribonucleic acid) strand breaks and induce tumor cell 
death. Water radiolysis induced the formation of reactive ox-
ygen species (ROS; eg, hydroxyl free radical and superoxide 
radical) and provoked DNA cells damage [33]. Multiple unre-
paired DNA damage then results in cell death. In an oxygen-
free environment, ROS formation is limited and leads to DNA 
damage. Moreover, oxygen reacts with fractured DNA to gen-
erate stable peroxides and prevent cells from repairing DNA 
in an aerobic environment. In a hypoxic environment, tumor 
cells remove hydrogen from free sulfhydryl groups and are 
then able to repair DNA damage [31].

In addition, tumor radiosensitivity depends on cell cycle. In late 
S (chromosome replication) and G0 phases, tumor cells are 
more radiotherapy-resistant, whereas in G2/M phase (separa-
tion of replicated chromosome) cells are more sensitive [34]. 
Indeed, radiation cell sensitivity changes during the cell cy-
cle. Thus, OER increases with the aging of cells. In G1 phase, 
cells are more radiosensitive and they thus have a lower OER 
than in the S phase. At lower oxygen levels, HIF-1a can pre-
vent cells from entering S phase by upregulating genes cod-
ing proteins involved in cell cycle regulation. Thus, Waf1 (p21) 
and Kip1 (p27), which are 2 major cyclin-dependent kinase in-
hibitors, are upregulated under hypoxic conditions and cause 
cell growth arrest [35,36]. Several other factors are activated 
under low oxygen tension, including transcription factors such 
as NF-kb (nuclear factor-kappa B), oncogenes, growth factors, 
and free radicals [37]. Hypoxia can induce apoptosis through a 
number of pathways (HIF-dependent or not), but tumor cells 

survive under hypoxic conditions. Induction of anti-apoptot-
ic genes such as IAP-2 or the downregulation of pro-apoptot-
ic proteins of the Bcl2 family are part of these mechanisms 
(Bid, Bax) [38,39].

In addition, some studies showed that hypoxia in cancer was 
associated with shorter disease-free and overall survival. 
Understanding the mechanisms of radioresistance is a major 
step to develop strategies to finally overcome this problem [15].

Overcoming	Radioresistance:	A	Never-Ending	
Issue?

Hypoxia is currently used as a potential biomarker for radia-
tion oncology in addition to tumor size and positivity for hu-
man papilloma virus in head and neck squamous cell carci-
noma [40]. Thus, hypoxia must be considered as an ultimate 
target to enhance therapeutic effects of radiation [41]. Many 
clinical studies tried to solve this problem by developing phys-
ical or chemical approaches.

Radiotherapy is based on the “5 Rs” of radiobiology: repair 
of sublethal damage, reassortment of cells within the cell cy-
cle, repopulation, intrinsic radioresistance, and reoxygenation. 
This must be taken into account to develop efficient strate-
gies [32,42]. Thus, many studies focused on testing altered 
fractionation and/or increased doses to overcome the radio-
resistance due to hypoxia. Increasing radiation doses are nec-
essary to kill more hypoxic cells. However, normal tissues have 
a limited tolerance to radiation [43]. Use of focal dose esca-
lation on hypoxic areas was developed to improve local con-
trol. Theoretically, it can improve radiation efficacy. However, 
the literature is conflicting and limited on this particular top-
ic [44,45]. In cervical cancer patients, hypoxia can be imaged 
by positron emission tomography (PET) [46]. Dose escalation 
was performed on hypoxic areas, resulting in increased sur-
vival [45]. However, some studies showed that increasing ra-
diation doses in hypoxic areas had a very limited impact on 
acute hypoxic areas, but could partly improve the local con-
trol rate of chronic hypoxic areas [44]. The ESCALOX protocol 
concluded that dose escalation to large parts of the tumor was 
associated with the risk of more acute and late toxicity [47]. 
In prostate cancer, the estimated dose escalation to overcome 
tumor hypoxia was 165 Gy [48]. A recent study reported that 
hypoxia biomarkers can predict outcome and benefit of dose 
escalation in prostate cancer patients receiving external beam 
radiotherapy (EBRT) alone or combined with high-dose-rate 
brachytherapy boost (HDR-BTb) [49].

Stereotaxic body radiation therapy (SBRT) differs from oth-
er EBRTs as it involves the delivery of higher radiation dos-
es to the cancer site. Unconventional SBRT was developed to 
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target hypoxic segments in hypoxic areas [50]. The first data 
from SBRT-PATHY (PArtial Tumor HYpoxic segment) showed 
very encouraging results for very large unresectable tumors, 
but prospective studies are necessary to confirm this [51]. It 
was also demonstrated that SBRT could induce tumor hypox-
ia after initial treatment [52].

Accelerated radiotherapy (1 fraction every 12 h instead of ev-
ery 24 h) was tested in head and neck cancer patients, induc-
ing tumor oxygenation in 70-80% of patients and thus caus-
ing tumor radiosensitivity [53]. Other altered fractionation 
schemes were unsuccessfully tested. The large randomized 
British CHART (Continuous Hyper-fractionated Accelerated 
Radiotherapy) study was carried out in 918 head and neck 
cancer patients. It used a total dose of 54 Gy, with 1.5Gy x 3 
per day over a 12-day period. This protocol failed to prove its 
efficacy versus a normo-fractionated standard radiotherapy, 
possibly because reoxygenation was insufficient to radiosen-
sitize cancer cells [54]. Thus, post-radiotherapy biological ef-
fects such as cell cycle redistribution, blood reperfusion, and 
reoxygenation are complex to model and trigger.

Regarding synergic action, many studies evaluated radio-
therapy-combined treatments, also called radiation-sensitiz-
ers. Historically, nitroimidazole was first studied in the 1950s 
and several generations of drugs generations have emerged 
since. The radiation-sensitizer behaves like water when ir-
radiated. This generates free radicals that damage DNA and 
lead to tumor cell death. First- and second-generation drugs 
turned very toxic, whereas third-generation drugs showed 
positive but inconsistent results in head and neck and cervi-
cal tumors [57-59]. Although such drugs showed efficacy, the 
effect was not significant enough to stimulate a broader in-
terest in this area. To limit toxicities, bioreductive drugs were 
developed to target hypoxic tumor cells only [59]. The results 
of tirapazamine in pre-clinical studies were encouraging, but 
when combined with radiotherapy it was less efficient than 
expected. Moreover, no bioreductive drug was approved for 
use in clinical practice [56-59].

In view of the predominant role of major pathways in hypoxia 
such as HIF, targeting therapies emerged to overcome hypoxic 
resistance. Recent reviews focused on the action of HIF-2 in-
hibitors in glioblastoma, neuroblastoma, and clear cell renal 
carcinoma [60]. Indeed, a study tested HIF-2 Alpha Inhibitor 
PT2385 in patients with recurrent glioblastoma [61]. Only a few 
studies attempted to understand the biological mechanisms 
by which HIF-2a regulates radiation response in cancer [62]. 
HIF-2a inhibition enhanced radiation sensitivity in a cellular 
model of lung cancer by promoting apoptotic activity via the 
p53 pathway [63]. Likewise, targeting HIF-1 and tumor glucose 
metabolism sensitized various solid tumors to irradiation [64].

In an in vitro lung cancer model, inhibition of the HIF-1a/VEGF 
pathway reversed the effect of hypoxia on cell viability, inva-
sion, and migration, thus inhibiting resistance to radiothera-
py [65]. Radiotherapy and anti-VEGF interaction are not yet 
well validated [66]. In vitro, TNP-470, an angiogenesis inhibi-
tor, could increase tumor oxygenation and radiosensitivity [67]. 
ROS are considered the main cause of radiation-induced cell 
death. Therefore, disruption of ROS homeostasis can overcome 
hypoxic radioresistance (Figure 1) [68].

In the tumor microenvironment, hypoxia influences the in-
teraction between cancers and the immune system on every 
level: downregulation of major histocompatibility complex 
(MHC) molecules, upregulation of immune checkpoint inhibi-
tors such as HLA-G (Human leukocyte antigen-G), CTLA-4 (cyto-
toxic T-lymphocyte antigen 4), and PD-L1 (programmed death 
ligand-1) [69,70]. The rational to combine radiotherapy and im-
munotherapy is based on increased T cell infiltration in irradi-
ated tumors and mitigation of radiation-induced immunosup-
pressive mechanisms such as PD-L1 upregulation by immune 
checkpoint inhibition. Thus, hypoxic cells might be a specif-
ic target of immune checkpoint inhibitors combined with ra-
diotherapy. Such inhibitors improve local control and induce 
abscopal effects, which leads to better systemic tumor con-
trol [71]. The tumor microenvironment and stromal reaction 
should be considered, as they clearly play a critical role in re-
sistance and may offer novel therapeutic perspectives [72].

More recently, gene therapy strategies targeting hypoxic cells 
were developed. Studies evaluated the double gene knockout 
of GLUT-1 and HIF-1a, which are 2 major genes involved in hy-
poxic resistance. The technique used was the developed ge-
nome editing system CRISPR (clustered regularly interspaced 
short palindromic repeat)/Cas (CRISPR-associated proteins), 
which permitted multigene knockout. In modified cells, the pro-
liferation, migration, and invasion significantly decreased [72]. 
Research is warranted on adding radiotherapy to this model.

Conclusions

This review has shown that hypoxia is a major characteris-
tic of the microenvironment of solid tumors. Tumor tissue hy-
poxia affects the response to radiation therapy, chemothera-
py, and immunotherapy. The mechanism of hypoxia is via the 
selection of more aggressive tumor cell clones that affect pa-
tient prognosis. Currently, multiple therapeutic strategies have 
failed to overcome hypoxia-related radioresistance. Therefore, 
the pathophysiological mechanisms and molecular pathways 
involved need to be investigated.
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Figure 1.  Strategies to overcome hypoxia-induced radioresistance. 
Under hypoxic conditions, the HIF-1a subunit translocates to the nucleus and binds HIF-1b. This results in the transcriptional 
activation of many genes, which plays a role in tumor progression. Both HIF-1 and HIF-2 stimulate transcription of vascular 
endothelial growth factor (VEGF), a crucial regulator of vascular development. Different strategies have already been tested 
to overcome hypoxia-induced radioresistance. (1) The ESCALOX protocol concluded that dose escalation to large parts of 
the tumor was associated with the risk of more acute and late toxicity. (2) Stereotaxic body radiation therapy showed very 
encouraging results for very large unresectable tumors. (3) Accelerated radiotherapy induced tumor radiosensitivity. 
As perspective, in vitro TNP-470, an angiogenesis inhibitor, could increase tumor oxygenation and radiosensitivity. Likewise, 
HIF-2a (PT2385) inhibition enhanced radiation sensitivity in a cellular model of lung cancer by promoting apoptotic activity 
via the p53 pathway. The association of radiotherapy and TNP-470 and/or PT2385 should be investigated.
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