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We propose an improvement of the Gillespie algorithm allowing us to study the time evolution of an ensemble of chemical
reactions occurring in a varying volume, whose growth is directly related to the amount of some specific molecules, belonging to
the reactions set. This allows us to study the stochastic evolution of a protocell, whose volume increases because of the production
of container molecules. Several protocell models are considered and compared with the deterministic models.

1. Introduction

All known life forms are composed of basic units called cells;
this holds true from the single-cell prokaryote bacterium to
the highly sophisticated eukaryotes, whose existence is the
result of the coordination, in term of self-organization and
emergence, of the behavior of each single basic unit.

While present-day cells are endowed with highly sophisti-
cated regulatory mechanisms, which represent the outcome
of almost four billion-years of evolution, it is generally be-
lieved that the first life forms were much simpler. Such
primordial life-bricks, the protocells, were most probably
exhibiting only few simplified functionalities, that required
a primitive embodiment structure, a protometabolism, and
rudimentary genetics, so to guarantee that offsprings were
“similar” to their parents [1–3].

Intense research programs are being established aiming
at obtaining protocells capable of growth and duplication,
endowed with some limited form of genetics [3–6]. Despite
all efforts, artificial protocells have not yet been reproduced
in laboratory and it is thus extremely important to develop
reference models [6–9] that capture the essence of the first
protocells appeared on Earth and enable to monitor their
subsequent evolution. Due to the uncertainties about the

details, high-level abstract models are particularly relevant.
Quoting Kaneko [10], it is necessary to “consider simplified
models able to capture universal behaviors, without carefully
adding complicating details.”

Most of the models present in the literature are based on
deterministic differential equations governing the evolution
of the concentrations of the involved reacting molecules.
Even if the results are worth discussing and provide impor-
tant insights, it should be stressed that the former assump-
tions are rarely satisfied in a cell [11]. Firstly, the number
of involved molecules is small and should be counted by
integer numbers, hence the use of the concentrations can be
questioned; secondly, the presence of the thermal noise intro-
duces in the system a degree of stochasticity than cannot be
trivially encoded by a differential equation, mostly because
this makes the time evolution a stochastic process. One
possible way to overcome such difficulties is to use the Chem-
ical Master equation: given the present state of the system,
namely, the number of available molecules for each species,
and the possible reactions among them, one can compute the
transition probabilities to reach and leave the given state and
thus get a partial differential equation describing the time
evolution of the probability distribution of having a given
number of molecules at any future times [11, 12].
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Analytically solving the resulting equation is normally a
very hard task, one should thus resort to use numerical meth-
ods. A particularly suitable one is the algorithm presented by
Gillespie [11, 12], allowing to determine, as a function of the
present state of the system, the most probable reaction and
the most probable reaction time, that is, the time at which
such reaction will occur.

Let us however observe that in the setting we are hereby
interested in, the chemical reactions occur in a varying
volume, because of the protocell growth; we thus need to
adapt the Gillespie method to account for this factor. To
the best of our knowledge, there are in the literature very
few papers dealing with the Gillespie algorithm in a varying
volume [13, 14]. Moreover in all these papers, the volume
variation can be considered as an exogenous factor, not being
directly related to the number of lipids forming the protocell
membrane. So our main contribution is to improve the
Gillespie algorithm taking into account the protocell varying
volume which is moreover consistent with the increase of the
number of lipids constituting the protocell membrane.

The paper is organized as follow. In Section 2 we briefly
recall the Surface Reaction Models of protocell that would
be used to compare our stochastic numerical scheme. Then
in Sections 3 and 4 we will present our implementation of
the Gillespie algorithm in a dynamically varying volume.
Finally in Section 5 we will present some applications of our
method.

2. Surface Reaction Models

Among the available models for protocells, a particularly
interesting one is the Surface Reactions Model [7, 9], SRM for
short, and its applicability to the synchronization problem.
Such model is roughly inspired by the Los Alamos bug
hypothesis [2, 6] but which, due to its abstraction level, the
SRM can be applied to a wider set of protocell hypotheses.

The SRM is built on the assumption that a proto-
cell should comprise at least one kind of “container”
molecule (typically a lipid or amphiphile), hereby called
C molecule, and one kind of replicator molecule—loosely
speaking “genetic material,” hereafter called Genetic Memory
Molecule, GMM for short, and named with the letter X .
There are therefore two kinds of reactions which are crucial
for the working of the protocell: those which synthesize the
container molecules and those which synthesize the GMM
replicators,respectively,

Xi + Li
αi−→ Xi + C, (1)

Xi + Pj
Mij−−→ Xi + Xj. (2)

In both cases Li and Pj are the buffered precursors, respec-
tively, of container molecules and of the jth GMM, while αi
and Mij are the reaction kinetic constants.

A second main assumption of the SRM, is that such
reactions occur on the surface of the protocell, exposed to
the external medium where precursors are free to move.
Hence, as long as container molecules are produced, they are
incorporated in the membrane that thus increases its size,

until a critical point at which, due to physical instabilities, the
membrane splits and two offsprings are obtained, each one
getting half of the mother’s GMMs and whose size is roughly
half that of the mother just before the division.

Under the previous assumptions and in the deterministic
setting, one can prove [7, 9] that the number of membrane
molecules and the number of GMMs evolve in time accord-
ing to

Ċ =
(
C

ρ

)β−1

�α · �X ,

�̇X = Cβ−1M · �X ,

(3)

where �X = (X1, . . . ,XN ) represents the amount of each
GMM,�α = (α1, . . . ,αN ) is the vector of the reaction constants
responsible for the production of C molecules from the X
molecules plus some appropriate precursor. (Mij) denotes
the reaction constant at which Xi is produced by Xj plus
some precursor. β ∈ [2/3, 1] is a geometrical shape factor
that relates the surface to the volume of the protocell and
ρ is the lipid density (for more details the interested reader
can consult [7, 9]). Let us observe that in this setting the
precursors are assumed to be buffered and thus their amount
to be constant, hence the latter can be incorporated into the
constants α and M.

So starting with an initial value of container molecules,

C(t0) = C0, and of GMMs, �X(t0) = �X0, the protocell will
grow until some time t0 + ΔT1 at which the amount of
C molecules has doubled with respect to the initial value,
C(t0 + ΔT1) = 2C0 and thus the protocell undergoes a
division. Each offspring will get half of the GMMs the mother

protocell had just before the division, �X (1) = �X(t0 + ΔT1)/2.
And the protocell cycle starts once again. One can prove

[7, 9] that under suitable conditions �X (n) tends to a constant
value once n goes to infinity, implying thus the emergence of
synchronization of growth and information production.

3. The Method

Let us now improve the previous scheme by introducing
a probabilistic setting à la Gillespie. We thus consider a
protocell made by a lipidic vesicle and containing a well-
stirred mixture of N GMMs, X1, . . . ,XN , that may react
through m elementary reaction channels Rμ, μ = 1, . . . ,m,
running within the volume V(t) of the protocell.

Let us observe that because of the protocell growth the
volume is an increasing function of time. Actually one can
relate the volume to the amount of container molecules via
their density V = C/ρ where C denotes the integer number
of molecules forming the lipidic membrane. We will hereby
use the same symbol Xi to denote both the ith GMM and the
integer number of molecules of type Xi in the system.

For each reaction channel Rμ assume that there exists a
scalar rate cμ such that cμdt + o(dt) is the probability that
a random combination of molecules from channel Rμ will
react in the interval [t, t + dt) within the volume V(t).

Let hμ(Y) be the total number of possible distinct combi-
nations of molecules for a channel Rμ when the system is in
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state Y = (X1, . . . ,XN ,C), then we can define the propensity
[14] of the reaction Rμ to be aμ(Y) = hμ(Y)cμ.

One can prove [11] that for a binary reaction the rate
cμ can be written in the form cμ = kμ/V , where kμ is a
fixed constant. Similarly one can prove that for a reaction
involving n different species, we get cμ = kμ/Vn−1. And thus
for a single molecule reaction, that is, a decay, we get cμ = kμ,
namely, independently from the volume.

Let us now assume that among the m reactions, Q1

involve one single molecule, Q2 are binary reactions, Q3 are
ternary reactions, and so on. Of courseQ1+Q2+· · ·+QN+1 =
m. We recall that we have N GMMs and the container-type
molecule C, hence N + 1 species. For short we will denote
Q1 the set of indices μ for monomolecule reactions, and by
Q the remaining ones. Let us observe that in this way some
coefficient aμ, will depend both on the system state Y and on
the time via the volume V(t): aμ(Y , t) for μ ∈ Q.

More precisely to study the time evolution of the system
we need to determine the probability Pμ(τ | Y , t)dτ, that
given the system in the state Y = (X1, . . . ,Xn,C) at time t,
then the next reaction will occur in the infinitesimal time
interval (t + τ, t + τ + dτ) and it will be the reaction Rμ. This
probability will be computed as

Pμ(τ | Y , t)dτ = Pnot(τ | Y , t)× aμ(Y , t + τ)dτ, (4)

where Pnot(τ | Y , t) is the probability that no reaction occurs
in (t, t + τ) given the state Y at time t whereas the rightmost
term denotes the probability to have a reaction Rμ in (t+τ, t+
τ + dτ) given the state Y at time t + τ.

To compute the first term Pnot, let us take s ∈ [t, t + τ]
and observe that:

Pnot(s + ds | Y , t) = Pnot(s | Y , t)Pnot(ds | Y , t + s)

= Pnot(s | Y , t)

⎛
⎝1−

∑
μ

aμ(Y , t + s)ds

⎞
⎠,

(5)

being 1 −∑μ aμ(Y , t + s)ds the probability that no reaction
will occur in (t + s, t + s + ds) once we are in state Y at
time t + s. Thus rewriting the previous difference equation
as a differential equation, passing to the limit ds → 0, and
observing that Pnot(0 | Y , t) = 1, we get the solution:

Pnot(τ | Y , t) = exp
[
−AQ1 (Y)τ −

∫ τ

0
AQ(Y , s + t)ds

]
,

(6)

where

AQ1 (Y) =
∑
μ∈Q1

aμ(Y), AQ(Y , s + t) =
∑
μ∈Q

aμ(Y , s + t).

(7)

The apparent asymmetry in the exponential term in (6) is
easily recovered by observing that AQ1 (Y)τ = ∫ τ0 AQ1 (Y)ds.

We can thus conclude that

Pμ(τ | Y , t)dτ

= exp

[
−AQ1 (Y)τ −

∫ t+τ

t
AQ(Y , s)ds

]
aμ(Y , t + τ)dτ.

(8)

Let us observe that the rightmost term is correctly aμ(Y , t+τ),
namely the system is still in the state Y at time t + τ, because
no reaction has been produced in (t, t + τ).

Let us recall that the volume enters in the previous
relation via the function AQ, more explicitly one has

AQ(Y , s) =
∑
μ∈Q2

hμ(Y)kμ
V(s)

+
∑
μ∈Q3

hμ(Y)kμ

(V(s))2

+ · · · +
∑

μ∈QN+1

hμ(Y)kμ

(V(s))N
,

(9)

that can be rewritten in terms of C molecules using the
relation C = ρV . So our method applies to a different
problem with respect to the one considered in [14], in fact
in our case the volume growth is not imposed a priori but
dynamically evolves according to the reaction scheme, if C is
produced then V increases otherwise it will keep a constant
value, while in [14] the volume growth is an exogenous
variable.

4. The Stochastic Simulation Algorithm in
a Growing Volume

Once we have the probability function Pμ(τ | Y , t) we can
build an algorithm that reproduces the time evolution given
by the model defined above.

Given the system in some state Y at time t, we must
determine the interval of time τ and the reaction channel Rμ

according to the probability distribution function Pμ(τ | Y ,
t), and finally update the state Y → Y + νμ, where νμ
is a stoichiometric vector representing the increase and
decrease of molecular abundance due to the reaction Rμ. This
will be accomplished following the standard approach by
Gillespie [11] but taking care of the time dependence of the
propensities. We will thus need to compute the cumulative
probability distribution function and then make use of the
inversion method [12], to determine the channel μ and the
next reaction time τ, distributed according to Pμ(τ | Y , t).

From (8) we can compute the cumulative distribution
function

F(τ | Y , t) =
∫ τ

0

∑
μ

Pμ(s | Y , t)ds, (10)

providing the probability that any reaction will occur in (t, t+
τ) starting from the state Y at time t. The function F(τ | Y , t)
can be explicitly computed by the following.
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Proposition 1. Under the above assumptions we have

F(τ | Y , t) = 1− exp

[
−AQ1 (Y)τ −

∫ t+τ

t
AQ(Y , s)ds

]
.

(11)

Proof. The first step is to use (8) and perform a sum over all
the channels μ to rewrite (10) as

F(τ | Y , t) =
∫ τ

0

(
AQ1 (Y) + AQ(Y , t + s)

)

× exp

[
−AQ1 (Y)s−

∫ t+s

t
AQ(Y , r)dr

]
ds.

(12)

Then we can observe that

∂

∂s

(
exp

[
−AQ1 (Y)s−

∫ t+s

t
AQ(Y , r)dr

])

= −(AQ1 (Y) + AQ(Y , t + s)
)

× exp

[
−AQ1 (Y)s−

∫ t+s

t
AQ(Y , r)dr

]
,

(13)

and thus

F(τ | Y , t)

= −
∫ τ

0

∂

∂s

(
exp

[
−AQ1 (Y)s−

∫ t+s

t
AQ(Y , r)dr

])
ds

= 1− exp

[
−AQ1 (Y)τ −

∫ t+τ

t
AQ(Y , r)dr

]
.

(14)

Once we have the cumulative distribution function we
can obtain the value τ by drawing a random number u1 from
an uniform distribution in [0, 1] and then solve with respect
to τ the implicit equation:

u1 = 1− exp

[
−AQ1 (Y)τ −

∫ t+τ

t
AQ(Y , s)ds

]
. (15)

Let us stress once again that this is not as straightforward
as for the original Gillespie [11] scheme, or the simplified
one presented in [14], because of the time dependence
of AQ via the volume. One can nevertheless find suitable
approximation for the integral, this will be the goal of the
next sections.

4.1. The Adiabatic Assumption. Let us assume that τ is very
small, or which is equivalent, that the time scale of the
chemical reactions involving the GMMs is much faster than
the production of container molecules, hence the volume
growth is very slow compared with the production of the
chemicals Xi.

Under this hypothesis one can assume that in the interval
(t, t+τ) the volume does not vary and thus one can make the
following approximation∫ t+τ

t
AQ(Y , s) ds ∼ AQ(Y , t)τ. (16)

One can thus explicitely solve (15) to get

τGill = − 1
AQ1 (Y) + AQ(Y , t)

log(1− u1), (17)

that is the standard Gillespie result except now that AQ(Y , t)
depends on time and as long the volume increases, then the
contribution arising from AQ(Y , t) might become smaller
because AQ ∼ 1/V .

4.2. The Next Order Correction. One can obtain a somehow
better estimate valid in the case of comparable time scales for
the reactions involving GMM and the container growth. The
idea is to compute the integral in (15) using the following
approximation:∫ t+τ

t
AQ(Y , s)ds =

∫ τ

0
AQ(Y , t + s)ds

=
∫ τ

0

(
AQ(Y , t) +

∂AQ(Y , t)
∂t

s + · · ·
)
ds

= AQ(Y , t)τ +
∂AQ(Y , t)

∂t

τ2

2
+ O

(
τ3),

(18)

where ∂AQ(Y , t)/∂t can be obtained using the definition (9)
and expressing the volume in terms of C = V(t)ρ, namely,

∂AQ(Y , t)
∂t

= − Ċ

C

⎛
⎝ ∑
μ∈Q2

hμ(Y)kμ
C(t)

+ 2
∑
μ∈Q3

hμ(Y)kμ

(C(t))2

+ . . . + N
∑

μ∈QN+1

hμ(Y)kμ

(C(t))N

⎞
⎠.

(19)

To compute Ċ/C we make the assumption that in a very short
time interval, as the one we are interested in, the determinis-
tic growth of the container is a good approximation for the
stochastic underlying mechanism; this implies that we can
use (3)

Ċ

C
=
(
C(t)
ρ

)β−1�α · �X(t)
C(t)

. (20)

Inserting the previous result into (18) and finally solving
(15) with respect to τ, we can compute the next reaction time
up to correction of the order of τ3, as follows

τGill = −(AQ1 (Y) + AQ(Y , t)
)

ȦQ(Y , t)

+

√(
AQ1 (Y) + AQ(Y , t)

)2 − 2 log(1− u1)ȦQ(Y , t)

ȦQ(Y , t)
,

(21)
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Figure 1: Geometrical interpretation of the existence of the next reaction time τGill. (a) τGill is the smallest intersection between the parabola
and the horizontal line log(1− u1). (b) τGill does not exist, the horizontal line is located below the minimum of the parabola.

where we wrote for short ȦQ(Y , t) = ∂AQ(Y , t)/∂t and we
selected the positive square root in such a way in the limit
ȦQ(Y , t) → 0 we recover the previous solution (17).

Remark 2 (On the existence of τGill). In the case of variable
volume a new phenomenon can arise: the volume growth can
be so fast that no reaction can occur in the interval (t, t +
τ + dτ) for any τ. Mathematically this translates into a sign
condition for the term under square root in (21), if

log(1− u1) <

(
AQ1 (Y) + AQ(Y , t)

)2(
2ȦQ(Y , t)

) , (22)

then (15) has no real solution.

This can be geometrically interpreted as follows. The
relation (15) determines τGill as the intersection of the
parabola −AQ1 (Y) − AQ(Y , t)τ − ȦQ(Y , t)τ2/2 with the
horizontal line log(1 − u1), which is negative because u1 ∈
(0, 1). Such parabola intersect the y-axis at τ1 = 0 and τ2 =
−2(AQ1 (Y) + AQ(Y , t))/ȦQ(Y , t) > 0 and it is concave. Then
its absolute (negative) minimum is reached at the vertex τV =
(t1 + t2)/2 and its value is (AQ1 (Y) + AQ(Y , t))2/(2ȦQ(Y , t))
and it is negative because ȦQ(Y , t) is negative. Hence if the
horizontal line is below this value, that is, condition (22)
is verified, the parabola and the line do not have any real
intersections (see Figure 1).

Let us also observe that, whenever it exists, τGill is always
positive as it should be. In the case of a protocell the
nonexistence of such next reaction time could be translated
into the death by dilution of the protocell.

4.3. The Next Reaction Channel. Whenever the next reaction
time does exist, the next reaction channel is determined using
the classical Gillespie method, namely, by drawing a second

uniformly distributed random number u2 ∈ [0, 1] and fix
the channel μ such that

μ−1∑
ν=1

aν(Y , t + τ) ≤ u2a0(Y , t + τ) ≤
μ∑

ν=1

aν(Y , t + τ),

(23)

where a0(Y , t + τ) = AQ1 (Y)+AQ(Y , t+τ) =∑m
ν=1 aν(Y , t +

τ).

Remark 3. Let us observe that if all the reactions involve the
same number of chemicals, then the determination of which
reaction channel μ will be activated in the next reaction does
not depend on the volume which factorizes out from (23).
In fact assuming all the reactions to involve p chemical, we
obtain by definition

aν(Y , t + τ) = hν(Y)kν

[V(t + τ)]p
∀ν ∈ {1, . . . ,m}, (24)

and thus (23) rewrites

μ−1∑
ν=1

hν(Y)kν

[V(t + τ)]p
≤ u2

m∑
ν=1

hν(Y)kν

[V(t + τ)]p
≤

μ∑
ν=1

hν(Y)kν

[V(t + τ)]p
,

(25)

which is clearly independent of the volume value V .

5. Some Applications

The aim of this section is to provide some applications of
the previous algorithm to the study of the evolution of a
protocell.

5.1. One Single Genetic Memory Molecule. The simplest
model is the one where only one GMM specie is present in
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the protocell [9] and thus only two chemical channels are
active:

channel 1,R1 : X + P1
η−→ 2X ,

channel 2,R2 : X + L1
α−→ X + C,

(26)

where P1 and L1 are, respectively, precursors of GMM, that
is, nucleotide, and precursors of amphiphiles.

One can thus compute the propensities in the state Y =
(X ,C) at time t:

a1(X ,C, t) = h1(X ,C)
η

V(t)
= η

P1X

V(t)
,

a2(X ,C, t) = h2(X ,C)
α

V(t)
= α

L1X

V(t)
,

(27)

let us observe that we assume that precursors are buffered
and thus they are constant.

Because system (26) contains only bimolecular reactions,
all the propensities are time dependent, hence AQ1 = 0 and
AQ = a1(X ,C, t)+a2(X ,C, t) = (P1η+L1α)X/V(t), thus (15)
simplifies into

u1 = 1− exp

[
−
∫ t+τ

t
AQ(Y , s)ds

]
, (28)

whose second-order solution (21) is given by

τGill = −AQ(Y, t)

ȦQ(Y , t)

+

√(
AQ(Y , t)

)2− 2 log(1−u1)ȦQ(Y , t)

ȦQ(Y , t)
,

∂AQ(X ,C, t)
∂t

= − V̇(t)
V(t)

(
P1ηX

V(t)
+
L1αX

V(t)

)∣∣∣∣∣
V(t)=C(t)/ρ

= −
(
C

ρ

)β−1
ρL1αX2

C2

(
P1η + L1α

)
.

(29)

So we can finally obtain

τGill

= C

L1αX

(
ρ

C

)β−1

−
√√√√[ C

L1αX

(
ρ

C

)β−1
]2

+2
C2

L1αρX2
(
P1η+L1α

) log(1−u1),

(30)

provided

log(1− u1) ≥ − ρ

2α

(
ρ

c

)2(β−1)(
P1η + L1α

)
. (31)

Which reaction channel μ will be active in the time
interval [t, t + τ] can be obtained according to

if u2

(
P1η + L1α

)
X

V
≤ P1ηX

V

namely 0 ≤ u2 ≤ P1η

P1η + L1α
then μ = 1

if
P1ηX

V
< u2

(
P1η + L1α

)
X

V
≤
(
P1η + L1α

)
X

V

namely
P1η

P1η + L1α
< u2 ≤ 1 then μ = 2.

(32)

Let us observe that according to Remark 3, the choice
of μ does not depend on the volume, because only binary
reactions are present.

Let C0 be the initial amount of container molecules, then
we assume that once C(t) = 2C0 the protocell splits into two
offspring, almost halving the GMM amount. More precisely
we assume that the first offspring will get a number of GMMs
drawn according to a binomial distribution with parameter
p = 1/2 and n = X(t). From this step, for technical reason,
only one randomly chosen offspring will be studied during
each generation.

In Figure 2 we report a comparison between the deter-
ministic (3) and the stochastic dynamics, under the adia-
batic assumption for τGill, corresponding to the continuous
growth phase of the container between two successive
divisions. As one should expect, a system composed by a large
number of molecules exhibits small stochastic fluctuations
whose average is not too far from the dynamics described by
the deterministic model.

In Figure 3 we report the amount of GMM, X (k)

(Figure 3(a)), at the beginning of each protocell cycle and
the duplication time (Figure 3(b)), namely, the interval of
time needed to double the amount of C molecules, for both
the stochastic and deterministic models. Once again one can
clearly observe the small fluctuations of the stochastic system
around the value obtained by the numerical integration of
the deterministic description (3). Let us observe that these
fluctuations are due to the stochastic integrator scheme and
also on the division mechanism.

We are now interested in studying the fluctuations
dependence on the amount of molecules. We already know
that for a sufficiently large number of molecules the stochas-
tic dynamics follows closely the deterministic one and thus
the fluctuations are small. On the other hand, one should
expect that when the number of molecules decreases, then
the fluctuation will rise and the system behavior could
not be completely described by means of a deterministic
approach. This is confirmed by Figures 4 and 5, where we
can observe that a model composed by a small number of
initial molecules, 20-times lesser than in the model presented
in Figure 2 exhibits larger stochastic fluctuations.

In Figure 6 we summarize the results of several protocell
models each one with a different amount of initial molecules,
in order to appreciate the influence of the latter on the
stochastic fluctuations. To compare with, we also report the
case of the deterministic model. Because the kinetic constants
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Figure 2: Stochastic versus ODE SRM protocell (3). Case of one GMM, (a) the time evolution of the amount of GMM, (b) the time evolution
of the amount of C. Parameters are η = 1, α = 1, L1 = 500, P1 = 600, X1(0) = 100, C(0) = 1000, ρ = 200, and β = 2/3.
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Figure 3: Stochastic versus ODE SRM protocell (3). Case of one GMM, (a) the amount of GMM at the beginning of each division cycle,
(b) the division time as a function of the number of elapsed divisions. Parameters are η = 1, α = 1, L1 = 500, P1 = 600, X1(0) = 100,
C(0) = 1000, ρ = 200, and β = 2/3.

are kept constant, the analytical theory for the deterministic
model ensures that the division time does not vary [7]. Nev-
ertheless the fewer the initial amount ofX0 andC0 is, the larg-
er the fluctuations present in the stochastic integration are.

To get a more complete understanding of the fluctuations
dependence, we decided to measure them using the standard
deviation of the protocell division time (after a sufficiently

long transient phase). In Figure 7 we report the standard
deviation of the division time ΔT as a function of the initial
amount of molecules. As expected the fluctuations strength
decreases rapidly as soon as the number of molecules
increases and the relation can be very well approximated by
a power law distribution with exponent −0.54± 0.03 (linear
best fit).



8 Computational and Mathematical Methods in Medicine

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

Time

X
1

×10−3

Stochastic integ
ODE

(a)

0 0.5 1 1.5 2 2.5 3
50

60

70

80

90

100

×10−3

Stochastic integ
ODE

C
(b)

Figure 4: Stochastic versus ODE SRM protocell (3). Case of one GMM, (a) the time evolution of the amount of GMM, (b) the time evolution
of the amount of C. Parameters are η = 1, α = 1, L1 = 500, P1 = 600, X1(0) = 5, C(0) = 50, ρ = 200, and β = 2/3.
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Figure 7: Fluctuation dependence on the initial conditions. We
report the standard deviation of the protocell division time as a
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fit, whose slope is = −0.54 ± 0.03. Parameters are X(0) = 2n with
n = 0, . . . , 10, C(0) = 10X(0), η = 1, α = 1, L1 = 500, P1 = 600,
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5.2. Two Noninteracting Genetic Memory Molecules. A slight-
ly more sophisticated model can be obtained by considering
two linear non interacting GMMs. The system can be de-
scribed by the following chemical reactions:

channel 1,R1 : X1 + P1
η1−→ 2X1

channel 2,R2 : X1 + L1
α1−→ X1 + C

channel 3,R3 : X2 + P2
η2−→ 2X2

channel 4,R4 : X2 + L2
α2−→ X2 + C,

(33)

where Pi and Li are, respectively, precursors of the ith GMM,
that is, nucleotide, and precursors of amphiphiles used by the
ith GMM to build a C molecule.

As previously done, we compare the stochastic and the
deterministic models. Results are reported in Figure 8 and
one can still observe that in presence of a large number of
molecules the deterministic dynamics well approximates the
stochastic model. On the other hand, the protocell division
time exhibits large fluctuations around the deterministic
value even in presence of quite large number of molecules
(see Figure 9(b)).

The parameters have been set in such a way that only
one GMM will survive according to the analytical theory
for the deterministic model. One can observe that, despite
the fluctuations, the same fate is obtained for the stochastic
model (see Figure 9(b)).

Once we reduce the number of involved molecules, the
stochastic fluctuations dramatically increase (see Figures 10
and 11).

As in the case of only one GMM, when two non
interacting linear GMMs are present the size of the stochastic
fluctuations as a function of the initial number of molecules
follows a power law distribution with exponent −0.51 ±
0.05 (linear best fit), see Figure 12: the fewer the molecules
in the system are, the larger the fluctuations around the
deterministic dynamics are.

A new phenomenon arises in the case of two GMMs
modeled by a stochastic process. There can be a breaking of
the symmetry emerging in systems composed of two identical
GMMs (i.e., equal kinetic constants, equal initial amounts,
and availability of precursors) present with a few initial
amounts of each one. Although adopting a deterministic
approach the dynamics of the two replicators would be
perfectly the same, a small fluctuation in the very first
instants of the protocell evolution entails the dilution of
one of the two replicators and thus a different fate for the
protocell. Let us observe that the probability to have a large
fluctuation is never zero, thus waiting for a sufficiently long
time, a specie can always disappear from the system, thus
giving rise to the breaking of the symmetry phenomenon. See
Figure 13 where we report, as a function of the initial amount
of molecules Xi(0), i = 1, 2, the proportion of simulations
where the symmetry breaking has been observed repeating
50 times each simulation with the same set of parameters and
initial conditions during 100 generations.
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Figure 8: Stochastic versus ODE SRM protocell (3). Case of two GMMs, (a) the time evolution of the amount of GMM during a division
cycle, (b) the time evolution of the amount of C molecules. Parameters are η1 = η2 = 1, α1 = α2 = 2, L1 = 500, L2 = 600, P1 = 600,
P2 = 670, X1(0) = X2(0) = 100, C(0) = 1000, ρ = 200, and β = 2/3.
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Figure 9: Stochastic versus ODE SRM protocell (3). Case of two GMMs, (a) the amount of GMM at the beginning of each division cycle, (b)
the division time as a function of the number of elapsed divisions. Parameters are η1 = η2 = 1, α1 = α2 = 2, L1 = 500, L2 = 600, P1 = 600,
P2 = 670, X1(0) = X2(0) = 100, C(0) = 1000, ρ = 200, and β = 2/3.
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Figure 10: Stochastic versus ODE SRM protocell (3). Case of two GMMs, (a) the time evolution of the amount of GMM during a division
cycle, (b) the time evolution of the amount of C molecules. Parameters are η1 = η2 = 1, α1 = α2 = 2, L1 = 500, L2 = 600, P1 = 450,
P2 = 670, X1(0) = X2(0) = 5, C(0) = 50, ρ = 200, and β = 2/3.
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Figure 11: Stochastic versus ODE SRM protocell (3). Case of two GMMs, (a) the amount of GMM at the beginning of each division cycle,
(b) the division time as a function of the number of elapsed divisions. Parameters are η1 = η2 = 1, α1 = α2 = 2, L1 = 500, L2 = 600,
P1 = 450, P2 = 670, X1(0) = X2(0) = 5, C(0) = 50, ρ = 200, and β = 2/3.
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Figure 13: Symmetry breaking phenomenon. Each point denotes
the fraction of runs exhibiting the symmetry breaking phe-
nomenon, during 100 generations, over 50 identical replicas.
Parameters are X1(0) = X2(0) = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50],
C(0) = 10X , η1 = η2 = 1, α1 = α2 = 2, L1 = 500, L2 = 500,
P1 = 600, P2 = 600, ρ = 100, and β = 1.

6. Conclusion

In this paper we presented a new stochastic integration algo-
rithm based on the one introduced by Gillespie. Our contri-
bution is devoted to the explicit introduction of the volume
variation in the algorithm, which moreover is directly related
to the amount of contained molecules, and thus it evolves in
a self-consistent way.

This algorithm straightforwardly adapts to the study of
the evolution of a protocell, simplified form of cells, where an
ensemble of chemical reactions occurs in a varying volume,
the volume of the protocell, that in turn increases because of
the production of container molecules.

We presented several protocell models and we compare
them with the analogous deterministic protocell models,
namely, solved using the ODE. In this preliminary study, we
emphasized the role of the fluctuations and their dependence
on the initial amount of molecules. The dynamics is richer
than the deterministic one and thus it is worth studying, in
particular we deserve to future investigations the case where
the interactions among the molecules can be modeled by
a linear system, whose interaction matrix is not diagonal;
the off diagonal terms representing the cross-catalysis. Also
the case of nonlinear interactions will be deferred to a
forthcoming paper. Also the study of the emergence of time-
periodic patterns due to the fluctuations, will be analyzed.
An analytical treatment of the latter case could be possible
using some recent technics developed by [15, 16], see also
[17] where the space is also taken into account.
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