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Abstract Evolutionary neural networks, or neuroevolu-

tion, appear to be a promising way to build versatile

adaptive systems, combining evolution and learning. One

of the most challenging problems of neuroevolution is

finding a scalable and robust genetic representation, which

would allow to effectively grow increasingly complex

networks for increasingly complex tasks. In this paper we

propose a novel developmental encoding for networks,

featuring scalability, modularity, regularity and hierarchy.

The encoding allows to represent structural regularities of

networks and build them from encapsulated and possibly

reused subnetworks. These capabilities are demonstrated

on several test problems. In particular for parity and

symmetry problems we evolve solutions, which are fully

general with respect to the number of inputs. We also

evolve scalable and modular weightless recurrent networks

capable of autonomous learning in a simple generic clas-

sification task. The encoding is very flexible and we

demonstrate this by evolving networks capable of learning

via neuromodulation. Finally, we evolve modular solutions

to the retina problem, for which another well known

neuroevolution method—HyperNEAT—was previously

shown to fail. The proposed encoding outperformed

HyperNEAT and Cellular Encoding also in another

experiment, in which certain connectivity patterns must be

discovered between layers. Therefore we conclude the

proposed encoding is an interesting and competitive

approach to evolve networks.
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1 Introduction

As computers gain computing power, practical potential of

evolutionary computation does grow as well. Evolutionary

synthesis of intelligent agents, hardware or software, is a

field of continuously growing interest. Agents can be

evolved to solve virtually any reproducible problem for

which a fitness function can be defined, and the most

interesting results might be expected in domains, where

little human expertise and no robust methods exist so far.

One promising approach to evolve intelligent agents is to

combine learning and evolution in the evolutionary artificial

neural networks (EANNs) or neuroevolution framework.

Evolutionary algorithm (EA) can be used to optimize net-

work topology, weights, transfer functions or learning rules.

While plenty of EANN systems has been proposed so far

[see e.g. 7, 33], most of them addressed only one or two

selected aspects of network architecture. Less common are

attempts to capture most of the architecture in the repre-

sentation. And even more difficult is to find encodings

designed with scalability in mind—property conducing

evolution of complex, somehow regular networks.

The motivation behind using evolution to generate net-

works is probably well known to Evolutionary Intelligence

journal reader. Nonetheless it might be worth brief reca-

pitulation here. First of all, the same EA can be used across

many different problem domains, while requiring little

knowledge about them. The very flexible definition of the

fitness criterion allows to generate networks having an

arbitrary performance measure optimized—be it accuracy,

efficiency, robustness or any combination of these.
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Likewise, user-specified design constraints can be easily

imposed, such as input-output interface or types and

numbers of nodes and connections. EANNs can be opti-

mized along a single or multiple dimensions, either

implicitly or explicitly, by using an appropriate multi-

objective EA [1]. However, there are also disadvantages

and limitations of the evolutionary approach—primarily

unbounded computing power demands and difficulties in

the analysis of evolved solutions.

The main challenge in pursuit to evolve complex net-

works efficiently is their genetic representation. In this

paper we propose a novel encoding for networks, called

Developmental Symbolic Encoding (DSE). As the name

suggests, the encoding is developmental, which means

networks are grown according to some genetic recipe. The

genome is a tree of routines, which in turn consist of lists of

instructions. Genetic program grows the network by

dividing nodes and layers and by connecting them in a

more or less patterned manner. To this extent the encoding

incorporates some concepts of two related neuroevolution

methods—Cellular Encoding [9] and HyperNEAT [27, 30].

The encoding proposed allows to grow modular and

regular networks in a scalable way. In a broad sense,

scalability means a capability to solve varying size, and

thus also large-scale, problems efficiently. This in turn

implicates a capability to capture regularities inherent in

these problems. Scalability manifests itself as a slower

growth of the genotype as compared to the phenotype of

network solution—a sign that some regularity of the

problem has been reflected in the network and captured in

its genotype. One of the most important elements influ-

encing scalability is a capability to produce modular net-

works, i.e. networks consisting of structurally localized and

functionally encapsulated subnetworks. From a topological

perspective, a module is a set of nodes densely connected

internally and sparsely connected to other nodes. Modu-

larity is an important feature because it facilitates code

reuse and exchange of useful modules between networks.

That is why a significant amount of research has been

devoted to modularity in evolutionary computation, as e.g.

in Genetic Programming (GP) [see e.g. 22, ch. 6.1].

The two features of DSE, scalability and modularity, are

demonstrated experimentally. In Sect. 4.1 we evolve per-

fectly scalable solutions to parity and symmetry problems.

In Sect. 4.2 we demonstrate modular capabilities on the

parity problem. In Sect. 4.3 we evolve modular networks

capable to learn autonomously in a generic classification

task and manifesting scalability in solving the task for

increasing number of inputs.

Proposed encoding is very flexible in that it can generate

whole array of networks—weighed and weightless, recur-

rent or feed-forward, employing arbitrary transfer functions

as well as connections types. Depending on a variant of the

evaluation algorithm, they can learn autonomously,

through plastic connections with local learning rules,

employ neuromodulation, and even backpropagation. It is

possible to evolve learning rules for connections and

transfer functions for nodes are also evolvable in principle;

which is by itself an interesting subject for investigation

[see 20]. In theory, the encoding can express any recurrent

network, thus allowing to evolve networks equivalent to

any Turing machine and solve any computable problem.

Yet, even with all these features, it remains difficult to

estimate practical utility of the encoding. Due to its com-

plexity, it has been tested on a few specific problems so far.

It is also not straightforward to compare it with other

neuroevolution methods. In Sect. 5, however, we manage

to compare DSE with HyperNEAT and Cellular Encoding

on two problems and the results show DSE is very com-

petitive. Unlike its relatives, DSE succeeded in delivering

modular solutions to the retina problem. It also outper-

formed the two other encodings in a task similar to the bit

mirroring problem [3], in which regular patterns of con-

nectivity must be discovered between two layers of nodes.

In Sect. 2 we briefly describe several notable approaches

to evolve networks. In Sect. 3 we describe an adopted

computational model of the network and the encoding

itself. In Sect. 4 we examine the concepts of scalability and

modularity of genetic representation and demonstrate these

two features in DSE; we also demonstrate some flexibility

of DSE with an example of network using neuromodulation

to learn. Experiments are presented in Sect. 5 and finally

we conclude the paper in Sect. 6.

2 Related work

An excellent review of the work on EANNs prior to 1999

can be found in [33]. More recent developments are cov-

ered in [6]. Therefore we briefly characterize only a few

selected neuroevolution systems. For an overview of many

other developmental systems, not necessarily devoted to

evolve networks, see [12, 29].

2.1 Kitano’s graph grammar

One of the earliest attempts to evolve neural networks,

taking advantage of indirect encoding, was Kitano’s Graph

Grammar Encoding [16]. In this encoding, the neural net-

work is represented with a genome divided into blocks of 5

elements, interpreted as fixed-length rewriting rules. The

first element of the block represents a non-terminal pre-

decessor (the left hand side of the rule), while the

remaining four determine 2 9 2 matrix of terminals and

non-terminals, being a successor (the right hand side).

Starting with some initial non-terminal symbol, rules are
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applied repetitively, building up the connectivity matrix

until all its elements are terminals, i.e. 0’s or 1’s. The

resulting network topology is then trained using error

backpropagation algorithm. Kitano claimed the system

allowed to generate better performing networks, however

later it was suggested the difference in performance might

be also due to other factors than genetic representation [see

33].

2.2 Cellular encoding

Another well known developmental representation for

neural networks is Cellular Encoding (CE) [9], strongly

inspired by the processes of biological development,

mainly cell division and differentiation. Starting with an

embryo—a single cell or neuron connected with all the

inputs and outputs—the network grows according to a tree-

structured program. Whenever the program tree branches,

the cell divides in a way determined by the instruction in

the branching node, with parallel and sequential divisions

playing a major role. After division, daughter cells follow

their own program-branches, and may undergo other

transformations such as cutting and ‘‘weighting’’ incoming

connections. CE was demonstrated to bear some important

characteristics, such as completeness and closure. More-

over, if some recurrence is added to the program-tree, e.g.

by means of conditional jumps (making it rather graph than

tree), then CE can display modularity and scalability

properties. CE was capable of growing networks solving

21-input parity problem, 40-input symmetry and 7-input

decoder problem. Later it was used to generate locomotion

controllers for multi-legged robots [10]. There is not much

data, however, on CE’s performance as compared to other

neuroevolution methods. The only experiments we know

are presented in [11], where it performs worse than a direct

encoding in pole balancing tasks. Finally, CE was not

designed to grow networks with regular patterns of con-

nectivity between layers, and this is evident in the exper-

iment presented in Sect. 5.1.

DSE is similar to CE in the way it grows the network,

that is by means of parallel and sequential divisions of

nodes, which alone can yield any number of nodes,

deployed in fully connected layers. The way the network is

connected, however, is very distinct. In CE, connections

are manipulated using link registers, which are incre-

mented, decremented and eventually point to the connec-

tion which can be cut. While this might be an efficient way

of operating on the network, we believe it is brittle under

genetic variation. Introduction of some new nodes to the

network during variation is likely to disrupt the whole

network. In fact, the work on DSE stemmed from our

experiments with CE, where it was found difficult to grow

networks capable of solving the perceptron problem even

for n = 1 (Sect. 4.3). We suppose the difficulty might be

partly due to that one fundamental trait of CE, that in the

developing network, connections between neurons can be

only cut and not established. Neurons can not establish new

connections, because there is no way to select neurons

beyond those already connected. Once the connection is

cut, the set of possible network topologies achievable in

further development is restricted. And if wrong cuts happen

to occur in top parts of the developmental tree, which by

chance dominates an early population, then it is—much as

in the tree-based GP [19]—difficult to escape the local

basin of topologies.

2.3 Analog genetic encoding

Another interesting system for neural development is

Analog Genetic Encoding (AGE) [18], inspired by bio-

logical processes of gene regulation. Here the genotype is a

string of characters from a finite alphabet, representing

neurons (‘‘devices’’) and weighted connections between

them. The string contains predefined sequences of char-

acters, which identify neurons of possibly various types.

After the neuron identifier, a sequence encoding its weights

follow, though the final weight values are computed from

interactions between weight sequences of both neurons

involved. AGE has been used to evolve several electronic

circuits, such as temperature-sensing circuit or a circuit

solving the XOR problem [18]. In [25] it was also used to

evolve neuromodulatory network capable of learning in

non-stationary environment—the foraging bee reinforce-

ment learning problem. This, however, was achieved after

biasing the system toward an adequate structure of the

solution. The critical trait of AGE, in our view, is that the

genotype encodes each neuron separately. This casts a

doubt on its scalability, and in fact the issue is acknowl-

edged by authors and considered for future work [18].

2.4 HyperNEAT

Scalability was in turn a major concern from the beginning

in the work on Compositional Pattern Producing Networks

and HyperNEAT [27], which seek to achieve the scalability

offered by developmental systems, without simulating the

process of development itself; or at least without striving to

reflect biological development, which is based on local

interactions between developing cells. Although the con-

cept of local development is discarded here, the encoding is

far from direct. In fact it employs another well known

method for growing networks, namely Neuroevolution of

Augmenting Topologies (NEAT) [28]. Networks grown by

NEAT serve as genetic representation for the networks

actually aimed to be evolved. Not going into details, the

trick here is that although NEAT can not produce scalable
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networks, it can produce networks, which can produce

scalable networks. Using that approach authors interac-

tively evolved 2D images having such properties as sym-

metry, imperfect symmetry, repetition and repetition with

variation [27]. Then it was used to evolve controllers for

food gathering simulated robots and networks solving a

simple visual discrimination task at varying resolutions

[30]. Since its conception, much further research on

extensions and applications of HyperNEAT has been

conducted [e.g. 8, 23, 24].

The basic idea behind HyperNEAT is very ‘‘neat’’

indeed: to encode the network topology using a single

composed function; which in principle can be represented

in many ways, and which composition determines the

space of topologies easily expressible. Composing the

function from symmetrical or cyclical subfunctions, for

example, would yield topologies featuring some symmetry

or repetition. Originally, HyperNEAT employs the so

called Compositional Pattern Producing Networks (CPPN)

to represent the function, but we have experimented with

expression trees (borrowed from GP) also, producing

general solutions to the symmetry and parity problems.

This neat idea has been also introduced in DSE through

ConE instruction, in which one of the arguments defines

the connectivity between two groups of nodes (layers) by

means of an expression tree. Using appropriate non-ter-

minal nodes, provided the unlimited depth of the tree and

unique indexes of nodes, it can describe any connectivity

between two layers, or within a single layer. So the power

of expressiveness is ultimately the same as in CPPNs,

although they work a bit differently. First, CPPNs operate

on the basis of nodes’ geometric positions in n-dimensional

space called substrate, whereas ConE instruction operates

on indexes (which can be also multidimensional in prin-

ciple). Second, CPPNs compute the connectivity for the

entire network at once, while ConE can perform calcula-

tions for two selected groups of nodes only. It means

growing a multi-layer network with ConE instructions can

be expected to be computationally less expensive than with

CPPN.

One severe limitation of the original version of Hyper-

NEAT was the necessity to determine the number and

geometric placement of nodes in advance. Only recently, in

[24], some way to include the number and placement of

nodes in the encoding has been proposed. Yet, the mech-

anism is complicated and has been demonstrated on a

single test problem so far, namely navigation in T-maze. In

DSE, the number of nodes and their labeling is controlled

by Div* and Subst instructions, so the size of the network

can freely evolve and match the problem without pre-

sumptions. Still, it is possible to constraint the size of the

network, by introducing explicit limits or by disabling Div*

instructions.

Another important difference is the evaluation mode of

network phenotypes. In HyperNEAT, the network is

always evaluated in ‘‘virtual parallel’’ manner. This makes

evaluation of feed-forward networks very expensive.

Eventually, some execution order could be assumed in the

network, again however, that would be an assumption. In

contrast, nodes are explicitly ordered in DSE and that order

can evolve; and it only requires a minor modification in the

evaluation algorithm (see Sect. 3.1) to obtain a virtual

parallel mode of execution. So DSE appears to be again

more flexible.

Finally, an important question arises, whether Hyper-

NEAT supports modularity. From one side, it is capable of

producing many repeated subnetworks with a single piece

of genotype, but from the other side, that piece of code is

usually inseparable from the whole genotype. The geno-

type is inherently non-modular in the sense, that no frag-

ment of it can be extracted, which would alone produce

some particular subnetwork. As a consequence, individuals

can not exchange ‘‘recipes’’ for useful subnetworks, as in

case of DSE solving the perceptron problem (Sect. 4.3),

where the solution for n = 1 instance was used to solve

n [ 1 problem instances. Noteworthy is that in [31] it has

been shown, that it is possible for HyperNEAT to solve one

problem more effectively if there is already a solution for a

simpler version of that problem; this demonstrated some

versatility of HyperNEAT solutions, yet that is a different

concept than modularity and transferability of modules.

2.5 Summary

In the end, an important question is what new DSE has to

offer. As it was already remarked, DSE combines some

concepts of CE and HyperNEAT. Much as CE, it can grow

networks by means of node divisions, and features an

explicit genetic modularity and hierarchy, conducing reuse

of code and network modules. Much as HyperNEAT it can

establish connectivity patterns between layers or groups of

nodes, and exploit some geometric-like relationships

between them, enabling evolution of highly regular net-

work topologies. These two ways of growing networks are

combined in a coherent genetic representation, optimisti-

cally allowing to get best of both encodings while solving

problems.

3 Developmental Symbolic Encoding

DSE defines genetic representation for networks along with

some genetic operators working on it. As such, it forms the

central part of EA, which is nevertheless quite independent

from other parts, such as fitness evaluation, selection or

population structure. In this section, therefore, we focus on
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the encoding itself, assuming the rest of EA is typical, as

for example in Genetic Programming (GP) [22]. We

believe the basic results presented in Sect. 4 should also be

reproducible under different settings of EA.

3.1 Phenotype

The phenotype of the individual is the network G ¼
ðV;EÞ ¼ ð½v1. . . vN �; feijgÞ; where V is a vector of nodes

and E is a set of connections. Nodes and connections can

hold a number of attribute values. Some of them playing

role in the development, while other being used only in

computation. Throughout the paper we assume nodes have

only two attributes—an indexed label (symbol) and the

current activation value. Connections, in turn, can have

disparate number of attributes, depending on the type of

connection. Weightless connections does not need any

attributes, weighted connections need only a weight, while

plastic connections can hold a number of parameter-attri-

butes. Such a representation of G is a bit different from a

conventional notation for directed graphs, where nodes and

connections are contained in sets, and attributes are even-

tually imposed using functions. This departure follows

from the assumed sequential model of computation, in

which nodes are evaluated in an ordered manner. Therefore

it is natural to have them explicitly ordered in a vector.

Vector V can be dissected into three contiguous sub-

vectors: input Vu; hidden Vh and output Vy: Input and

output subvectors constitute the interface of the network

and their length depends on the problem. The hidden part

of the network is free to vary in size.

The network is initialized only once, at the beginning of

its ‘‘lifetime’’ or a trial. During initialization, values of all

nodes are zeroed and weights are set to their initial values.

Then, for any input vector u; the network is evaluated as

follows:

1: Assign inputs Vu :¼ u

2: For each vj 2 ½Vh Vy� do

3: Evaluate node: xj :¼ fjðfeijðxiÞgi¼1;...;ni
Þ

4: For each connection eij do

5: Update eij (if applicable)

6: Return Vy;

where xj is the node’s value, eij(xi) denotes an operation

performed by the connection—usually just weighting, and

fj denotes a transfer function assigned to node j. The

transfer function operates on the set of incoming signals,

which are usually aggregated by summing. Note the for-

mula for a connection update is not given, because it is

dependent on the connection type; besides, it is only

applicable in networks with plastic connections.

3.2 Genotype

The genotype is a kind of program to grow the network.

The program is tree-structured, with nodes corresponding

to routines. The root of the tree constitutes the main routine

and it is sufficient to solve many test problems. Each

routine-node of the program-tree has the same structure:

c = (R, Body,Tail, cc), where R is an identifier, Body is a

list of instructions, Tail is a list of terminating instructions

and cc is a set of subroutines.

The main component of the routine is Body. It contains

instructions acting on, and developing the network. The

whole program C grows the network from its initial state

into final, i.e. Gs ¼ CðG0Þ: So the instruction can be seen

as a function k taking the network Gt and returning a new

network Gt?1, i.e. Gt?1 = k(Gt). Let us briefly describe the

most important instructions:

1. Con X Y C: connect nodes X and Y, with the connec-

tion having the same attribute values as a reference

connection C.

2. Cut X Y: cut connections between X and Y.

3. ConE X Y C E: connect nodes X and Y, satisfying the

expression E, using C as a reference connection.

4. CutE X Y E: cut connections between X and Y, satis-

fying the expression E.

5. DivP X Y: divide nodes X ‘‘in parallel’’. Parallel

division duplicates the node X along with all its

connections, assigns label Y to the new node and

places it in V right after the original.

6. DivS X Y: as above, except the division is sequential,

which means that instead of duplicating connections, Y

takes over the outgoing connections of X and the

connection from X to Y is set.

7. Subst X Y: substitute node symbols X with Y.

8. Call R X: for each node X call the subroutine R.

9. Term X Y: like Subst, except Y is necessarily

terminal, i.e. it denotes a transfer function.

Here, the instructions’ arguments X and Y stand for

symbols, which are used to identify nodes in the network

or elements in vector V: Actually, the symbol X consists

of label x and index i. Since many nodes can bear the

same label, it serves to identify a layer or a group of

nodes. The index is a natural number, but it can also take

an ‘‘empty’’ value (e). In that case, plain x means ‘‘all the

nodes with label x’’. It makes possible to select and

operate on a whole group of nodes with a single instruc-

tion. More formally, symbol xi matches yj if and only if:

x ¼ y ^ ði ¼ j _ i ¼ e).
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The expression E appearing in ConE and CutE

instructions is a tree involving some basic arithmetic and

Boolean operations, constants and usually four inputs. The

expression is evaluated for all node pairs from the two

layers involved. Among inputs to the tree are indexes of

nodes and the highest indexes in both layers. In effect, the

connection of type C is established for all the node pairs

satisfying the expression. See Sect. 4 for examples.

3.2.1 Initialization and determination

The initial population of genotypes consists of either empty

or randomly generated genotypes. A random genotype

consists of randomly drawn instructions, having their

arguments undetermined. The way arguments are deter-

mined is an important part of the encoding, affecting its

performance. Arguments of instructions have to correspond

to the current state of the network, otherwise instructions

are unlikely to be effective. Argument X in instruction

DivP, for instance, has to match some nodes in the network

or the instruction will be ineffective. Therefore, arguments

can not be drawn in a completely random manner, but from

certain ,,sources’’. To clarify it further, let us discern sev-

eral classes of symbols:

1. Input, Su�Vu � fxi : x ¼ ug:
2. Hidden, Sh�Vh � fxi : x 2 fA; . . .;Zgg [ St:

3. New, Sn�fxi : x 2 fA; . . .;Zg ^ i ¼ eg:
4. Output, Sy�Vy � fxi : x ¼ yg:
5. Terminal, St�fxi : x 2 fþ; �; �; . . .gg:
6. Subroutine identifier, Sr � cc � fxi : x ¼ rg:

The sentence Sa�X � Y means ‘‘the symbol of class a

is determined by drawing from X, which belongs to Y

domain’’. Such an interpretation pertains to input, hidden,

output and subroutine identifiers (where cc denotes the set

of all subroutines’ identifiers in a given routine). In case of

new and terminal symbols, determination is done

straightaway on their domain. Note that terminal symbols

are those denoting some transfer function, all other sym-

bols, except Sr, can be treated as non-terminal. The clas-

sification serves to clearly define valid arguments for

instructions (Table 1). We write Sab or Sa|b to denote the

argument can belong to class Sa or Sb.

Whenever a new instruction is inserted into the program,

either during initialization or mutation, its argument sym-

bols are undetermined; and they become determined during

development. Determination of the symbol is tightly cou-

pled with its class and consists in drawing the symbol from

its ‘‘source’’ or domain. For Sab the symbol is drawn uni-

formly from the union of Sa and Sb. The first argument of

the Con instruction, for instance, is determined by uni-

formly drawing the symbol from input and hidden sub-

vectors of V: In case of Sa|b, first a single domain is drawn

with equal probability, and then the symbol from it (uni-

formly). These two ways of determination has been intro-

duced to maintain a balance between the new symbols and

those already existing in V: Once the instruction is deter-

mined, it remains so, until eventually one of its arguments

is mutated into undetermined form; and determined again

during the next development.

The last note on argument determination regards ,,index

stripping’’. Each time a node-selecting symbol is drawn

(Suhy), it is stripped from its index with some probability

(0.5 by default); and in case of ConE and CutE instruc-

tions it is stripped every time. This is to allow an instruc-

tion to generalize and operate on a whole group of nodes

instead of just a single one.

3.3 Development

Much as in Cellular Encoding [9], development usually starts

from an initial network G0, having a single hidden node fully

and weightlessly connected with inputs and outputs. The

hidden node’s initial symbol is always A0: Alternatively,

development can start from an empty network, consisting of

inputs and outputs only. The final network Gs is generated by

executing the program in the genotype, i.e. Gs ¼ CðG0Þ:
Network Gs is guaranteed to be functionally valid due to

the Tail part of routine and the covering operator, which

automatically inserts Term instruction for any non-termi-

nal symbol in V (see Sect. 3.4). In fact, development can be

interrupted at any instruction-step in the Body, and the

network will be valid, provided it is terminated by the Tail.

Figure 1 gives a simple example of network develop-

ment from its initial to the final stage. Nodes without inputs

and having the transfer function �; produce constant 1 on

output. The network computes a logical equivalence

function or can act as a XNOR gate (assuming the output

greater than 0.5 means 1 and 0 otherwise).

3.3.1 Subroutine development

An important feature of the encoding is its capability to

reuse code be means of routines. When a subroutine R is

called via Call R X, development proceeds as follows:

1: A new initial network Ĝ0 is created, in which the number

of inputs corresponds to the number of connections

incoming to X node, the number of outputs corresponds to

the number of connections outgoing from X, and there is

one hidden node A0:

Table 1 Instructions and their valid arguments

Con Suh Shy C Cut Suh Shy Div* Suhy Sh|n Subst Shy Sh|n|t

ConE Suh Shy C E CutE Suh Shy E Call Sr Sh Term Shy St
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2: Subroutine ĉ is executed, i.e. Ĝs ¼ ĉðĜ0Þ:
3: The resulting subnetwork Ĝs is composed with

theparent network G.

The composition of networks consists in replacing all

input nodes in Ĝs with their corresponding nodes in G and

connecting (with weights 1) all output nodes in Ĝs with

their corresponding nodes in G. In short, node X is replaced

with the subnetwork Ĝs: Certainly, the symbol X may

select several nodes in the network; then the subroutine is

called for each one in sequence.

One critical aspect of subroutine development is how to

map the nodes connected to X to the inputs of the initial

subnetwork Ĝ0; and likewise the output nodes of X to the

outputs of the subnetwork. Fully universal subroutines

would require any such a mapping to be possible to

express. One solution to that problem would be to add an

additional attribute to the connection, allowing to order the

connections (and thus the nodes in question) in arbitrary

way. For the sake of simplicity however, we restrict the

mapping to the ordering in vector V; thus inputs (and

outputs) in the subnetwork are always indexed according to

the order of the corresponding nodes in V of the parent

network G.

3.4 Genetic operators

We employ four operators that can modify the genotype C :

mutation, crossover, cleaning and covering. Here we

describe them in general terms, because details are often a

matter of arbitrary choice and their impact on the perfor-

mance is difficult to assess.

The most prominent is mutation. When an individual is

selected for reproduction, mutation is performed with some

fixed probability. The operator is defined to act on the

program-tree in a recursive manner, i.e. it starts with the

main routine, but eventually recurse deeper into the tree.

We suppose, however, that for the evolution of subrou-

tines—and thus modularity—it might be better to mutate

subroutines less often. Essentially, the operator can insert a

new (undetermined) instruction, delete one, mutate one, i.e.

turn one of its arguments into undetermined form, or

duplicate and mutate simultaneously.

Crossover operator deals with whole routines and is very

similar to the crossover in tree-based GP [22]. In brief, the

crossover replaces a randomly chosen subtree in the acceptor

tree with a randomly chosen subtree from the donor tree. The

choice of subtrees is random, yet constrained by the maximum

depth of the tree and the maximum arity of the node in the tree,

which can be imposed by the user.

Cleaning is not very essential operator, though it

improves readability of genotypes and speeds up the search

in some problems. It consists in removing all the ineffec-

tive instructions from the genotype. The instruction is

ineffective if it does not alter the network in any way.

Unlike 3 previous operators, covering is not applied during

reproduction, but at the end of development. As already

mentioned, for each non-terminal symbol X remaining in V by

the end of Tail, the covering operator appends a new Term X Y

instruction. Covering may be applied for each routine or for the

main routine only. Either way it guarantees, that all nodes in

the final network are assigned valid transfer functions.

4 Properties of DSE

4.1 Scalability

What exactly is scalability? In the context of evolutionary

networks, Harding and Banzhaf [12] say scalability

Routine r199
Body:
   DivP A0 G
   Con u y0 w:-0.58
   Cut u G

Tail:
   Term A *
   Term y +
   Term G *

u0

A0

u1

y0

Initial network

u0 A0

G0u1

y0

DivP A0 G

u0

A0

G0

w:-0.58

u1

w:-0.58

y0

Con u y0 w:-0.58

u0

A0

w:-0.58

u1

w:-0.58

y0

G0

Cut u G

u0

*

w:-0.58

u1

w:-0.58

+

*

Tail, final network

Fig. 1 Example of network development; given the genotype (top left) and the initial network (top middle), development proceeds with 3 Body

and 3 Tail instructions
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‘‘means that it is possible to grow more neurons if they are

needed in the neural net to solve harder problems’’. Hornby

[14] and Lipson [17] decompose scalability into regularity,

modularity and hierarchy. Stanley et al. [8, 30] view it as a

capability to grow large-scale networks; to represent net-

works at any resolution, allowing them to scale to new

numbers of inputs and outputs, possibly without further

evolution. Gruau [9] formulated a strict—and very

demanding—definition of scalability, according to which,

it is the capability to encode the network solution for a

problem with varying number of inputs, using a single

(possibly parametrized) genotype. Closely related to this

definition is the notion of compactness, which is the ability

to encode the network compactly, hence to capture some of

its regularity. Compactness manifests itself as a slower

growth of the genotype than the phenotype.

In our words, scalability is a capability to reflect some

regularity of a problem in the network and capture that regu-

larity in the genetic code, and thus to solve increasingly larger

problems more efficiently. Certainly, different problems can

have different type and amount of regularity to be captured

and thus different amenability to the scalable method.

One measurable symptom of scalability is a slower

growth of the genotype as compared to the phenotype of

network solution, which can be measured as the ratio:

SðnÞ ¼ jCðnÞjjGðnÞj ; n ¼ 1; 2; . . .; ð1Þ

where n is the size of problem, e.g. measured with the

number of inputs; jCðnÞj and |G(n)| denote sizes of the

genotype and the phenotype, correspondingly.

The ultimate way to measure scalability, however, is to

see how a computational effort needed to solve a problem

grows with its scale. For perfectly scalable solutions, as

conceived by Gruau’s definition for example, the effort

would be constant with problem size, i.e. SðnÞ 2 Oð1Þ:
In the remaining part of this section, we demonstrate on

two examples, that DSE features scalability, i.e. it is

capable to capture regularity of a problem and encode the

network solution in a compact way.

4.1.1 Scalable solution to the symmetry problem

The problem of symmetry is to find a network computing

the symmetry function of n binary inputs, i.e. returning 1 if

ui ¼ un�i�1; i ¼ 0; . . .; n� 1 and 0 otherwise, where u is

the input vector.

We employ an incremental evolution approach. Initially

the population solves n = 2 problem instance. When the

solution is found, a new instance with n = 3 is added for

evaluation, and so on, until eventually a general solution

for all n ¼ 2; . . .; 11 is found, which is likely to work also

for n [ 11.

In Fig. 2 we show one such evolved solution to the

symmetry problem. The network employs n-ary EQ (¼)

and AND (&) transfer functions, defined as:

EQðxÞ ¼

0 if jxj ¼ 0;

x0 if jxj ¼ 1;

1 if jxj[ 1 ^ 8i 6¼j xi ¼ xj;

0 otherwise,

8
>>><

>>>:

ANDðxÞ ¼
0 if 9i xi ¼ 0;

1 otherwise,

�

ð2Þ

where jxj denotes the number of elements in vector. The

genotype encodes the network that automatically scales up

to the problem dimensionality during development. This is

done in three constructive steps: first, the input layer is

divided sequentially, producing nodes 10–14, second,

another division produces nodes 5–9, and third, connec-

tions are made between the input layer and layer B;

according to the tree expression (in prefix notation) in the

ConE instruction: i ? j = m ? 0, where i and j are node

indexes in both layers and m is the maximum index in the

target layer (B). So the connection of type ‘1’ (weightless)

is made for every pair of nodes from both layers satisfying

the expression. Finally, transfer functions are assigned by

the Tail. The solution shown is the simplest among several

other obtained, though it is obviously not minimal. Hidden

nodes are numbered according to their position in V; so it

might be noted the network is feed-forward.

4.1.2 Scalable solution to the parity problem

Parity is another well known machine learning test prob-

lem. Here the objective is to calculate for each of 2n pos-

sible input vectors u; whether it contains even number of

1’s. Figure 3 depicts one evolved solution to this problem,

where the only transfer function used is NEQ, defined as a

negation of EQ.

Capability to produce perfectly scalable (i.e. general) solu-

tions to the parity problem has been also recently demonstrated

for Self-modifying Cartesian Genetic Programming [13].

Body:
   DivS u B
   DivS u D
   ConE u B 1
       (= (+ j i)(+ m 0))
Tail:
   Term D =
   Term B =
   Term A &
   Term y = u0

5: = 14: = u1

6: =

13: =

u27: =

12: =

u3

8: =

11: =

u4

9: =

10: =

15: &

y0: =

Fig. 2 Perfectly scalable solution to the symmetry problem; the

network shown is developed for n = 5 inputs
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4.2 Modularity

From a general network theory perspective, the network is

modular, if it contains subnetworks densely connected

internally, but sparsely connected between themselves.

Kashtan and Alon [15] define modularity as ‘‘the separa-

bility of the design into units that perform independently, at

least to a first approximation’’, which is then quantified by

a measure coming from the general network theory pro-

posed by Newman and Girvan [21]. Clune et al. [5] follow

these lines by defining modularity as ‘‘the localization of

function within an encapsulated unit, which in a network

entails clusters of nodes with high connectivity within the

cluster and low connectivity to nodes outside the cluster’’.

This is also close to the view of ‘‘modularity as an

encapsulated group of elements that can be manipulated as

a unit’’ by Hornby [14], where ‘‘manipulated’’ presumably

includes ‘‘reused’’. Perhaps the shortest formulation is by

Lipson [17], according to which ‘‘functional modularity is

a structural localization of function’’.

Another definition given by Gruau [9] and referring

specifically to genotypic modularity, says that if network

G1 contains many copies of subnetwork G2 and the geno-

type of G1 includes the code for G2 only once, then the

genotype for G1 is modular. This definition, however, does

not cover networks with single instances of modules, which

can possibly be replaceable and transferable between

networks.

Bringing these views together, we say genetic encoding

supports modularity, if the genotype is capable of pro-

ducing ‘‘encapsulated’’ and possibly repeated subnetworks

in the network using a single piece of code. Modularity can

be further enhanced by the capability to transfer genetic

code producing phenotypic modules between individuals.

This would be particularly interesting in scenarios, where

many related problems are solved in parallel and hence

benefits from the communication might be expected.

Closely related to modularity is hierarchy, which is

conceived as ‘‘the recursive composition of structure and/

or function’’ [17]. Support for hierarchy by the encoding

makes it theoretically possible to decompose the network

into smaller, possibly nested and reused subnetworks and

eventually to solve complex problems more efficiently.

Modularity and hierarchy are explicitly supported by

DSE, as the genotype is a tree of routines, here. These

routines can produce multiple subnetworks in the network

solution. Moreover, they are easily transferable between

individuals, making it possible to take advantage of parallel

task solving. In the following, we demonstrate modular

capability of DSE on example.

4.2.1 Scalable and modular solution to the parity problem

Using the same incremental approach as in previous

examples, we evolve a modular solution to the parity

problem (Fig. 4). This time we employ a different set of

transfer functions: NAND (n), OR (j) and AND (&). Here,

NAND is defined as a negation of AND (Eq. 2) and OR

returns 1 only if there is an input having value 1, and 0

otherwise. The solution is partially scalable—it works for

n ¼ 2; . . .; 9; but fails for higher number of inputs. Routine

r214 is used to produce the chain of subnetworks computing

2-input NEQ (XOR) function. The network shown contains

3 such subnetworks, each tied to 1 input (nodes 6–9 and u0;

10–13 and u1; 14–17 and u2). Note the working of the

routine is a bit tricky, as routines can behave differently

depending on the number of input connections to the node

for which they are called.

The example also illustrates two aspects of scalability.

First, the solution is (partially) scalable in the strict sense,

where a single genotype encodes solution networks for

several different problem sizes; and second, the genotype is

scalable in the broader sense, because it captures some

regularity of the problem and narrows the search—as might

be noticed, the effort of finding solutions for n [ 9 is

reduced to adding successive calls to the subroutine.

4.3 Scalability and modularity in a supervised learning

problem

An important focal point in the work on the encoding was

the capability of networks to learn, and especially to learn

autonomously, i.e. by means of their internal dynamics

and not by some externally crafted algorithm. Is it possible

for the evolution to discover a genuine way of learning

for networks, resulting from the network structure and

Body:
  CutE u A
       (- (- m i)(= j j))
  DivS u P
  ConE P P 1
      (+ (+ i 1)(- 1 j))
Tail:
  Term A #
  Term y #
  Term P #

u0 5: #

u1

6: #

u2

7: #

u3

8: #

u4

9: # 10: # y0: #

Fig. 3 Perfectly scalable solution to the parity problem; the network shown is developed for n = 5 inputs
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dynamics, instead of some predefined learning rules?

Originating from that question is the problem of emulating

a perceptron neuron capable of learning linear discrimi-

nation, by means of primitive transfer functions only (?, *)

and weightless connections. We call it ‘‘perceptron prob-

lem’’ in short.

Let x 2 R
n be a point (vector) drawn from a multivariate

normal distribution with mean 0 and standard deviation 1

in all dimensions. Let X ¼ fxi; i ¼ 1; . . .; 20g denote

training set of 20 points. Now, let draw another n-dimen-

sional vector w from likewise multivariate normal distri-

bution N(0, I), which will act as a hyperplane bisecting the

space into two classes. For each vector xi calculate its class

using scalar product as follows:

yi ¼ ðw � xi [ 0Þ; ð3Þ

assigning 0 to points lying on one side of hyperplane and 1

to those on the other. Next, we draw a translation vector z;

from Nð0; IÞ again, and translate all the points from X by

that vector. As a result we obtain a set of 20 randomly

labeled, yet linearly separable points, distributed normally

around some point near the origin of a coordinate system.

Then a candidate solution is evaluated as in Algorithm 1.

The algorithm iterates over 10 trials. From each trial it

calculates the average number of misclassifications, but

taken from the last epoch only. If the program classifies all

inputs correctly in some epoch, the trial is interrupted with

perfect score 0. In each generation, the best individual in

the population is tested not for 10, but 300 trials. Note we

do not perform any validation within trial, because we are

only interested in basic learning capability, so it is suffi-

cient to observe learning on the training set only. To avoid

bias in reported results, however, the best individual in the

run is tested once more, and the result is taken as the final

performance result.

In the experiment, we use incremental evolution

approach, though a bit different than in previous examples.

The evolutionary run starts with a single population (of size

2,048) solving the problem for n = 1 data inputs (and the

error input). Whenever solution for n-input case is found, a

new population for n ? 1 instance is created. In order to

save some computation, all pre-existing populations are

halved. In each generation, each population exchanges 1%

of its individuals with another randomly chosen population.

Due to randomness in data and time limits on training, it is

difficult for a network to obtain a perfect score in the test

evaluation. Even perceptron neurons trained with a back-

propagation algorithm fail to learn occasionally. As a working

condition, we consider the network to be a solution if J \ 0.1,

i.e. if it classifies correctly more than 90% of data points on

average. Table 2 compares results from 100 trials with a

standard perceptron (Neural Network Toolbox for Matlab)

and from 20 evolutionary runs on this task. Note, the figure for

n = 6 is less meaningful, as the run was stopped as soon as the

solution for this task was found, so the population had no time

to further improve in this case.

In all 20 runs, solutions for all task cases were found in

8,000 generations. In Table 2 we also show how difficult it

was to find a solution for each problem instance. Interest-

ingly, the most effort is required to discover the solution

for n = 2, given the solution for n = 1 has been found.

Although finding the solution to the n = 1 instance is also

difficult. However, the effort does not seem to grow further

with dimensionality.

The performance of evolved networks is similar to the

generic perceptron neuron trained via error correction rule.

Noteworthy, for lower dimensions they can even outperform

the generic network. In a separate experiment, we compared

the performance of the best evolved network for n = 1 to the

perceptron network. In 2,000 trials, the evolved network

learned the classification perfectly for all training sets, with a

mean number of learning epochs about 2.3. The generic per-

ceptron failed to learn to classify perfectly about 14% of

training sets, and the mean number of epochs was about 3.3.

Also noteworthy was the time required to complete the task:

about 400 s in case of the perceptron implementation and

0.07 s in case of the network written as an array of equations.

Figure 5 presents one such a solution.

Figure 6 (left) shows how the growth in the genotype

translates into growth in the network. Data points represent

average values from all solutions from each run and each

problem instance. As can be seen, a logarithmic curve can

be well fitted here, indicating the genotype grows much

slower than phenotype. Another fit in Fig. 6 (right), shows

u0 15: |

16: n

u1 11: |

12: n

u2 7: |

8: n

3: |

5: n

4: n

6: n

9: n 10: n

13: n 14: n

17: n 18: n y0: n

Subroutine r214   Body:   DivS u1 B    CutE u A (i)    DivS A D    ConE u B 1 (i)    Tail:    Term A |    Term y n    Term B |

Body:   Call r214 A    ConE n | 1 (+ (= j j)(= i i))    Call r214 |1    Call r214 |1    Call r214 |1    Call r214 |1    Call r214 |1
     Call r214 |1     Call r214 |1    DivP |0 R    Tail:    Term y n    Term D n    Term R n

Fig. 4 Modular, partially scalable solution to the parity problem; the network is developed for n = 3 inputs
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the number of developmental steps versus the network size,

fitting a power curve this time. The figure allows to better

understand where does the scalability comes from in

DSE—it is the result of two main factors: routines and

symbol multiplicity (when a single instruction operates on

several nodes in V). This is because exploitation of routines

tend to prolong development, while having little effect on a

genotype size. Symbol multiplicity in turn, affects neither

development time nor genotype size. Therefore, because

the growth of genotype (logarithmic) is slower than devel-

opment time (square root), which is in turn slower than lin-

ear, it might be supposed, that scalability is due to both

factors.

Also noteworthy is that we performed another experi-

ment, in which subroutines were disabled. The results were

much worse, in that solutions for n [ 1 were not found.

Therefore we conclude the success of DSE on this task is

much due to discovery and effective use of routine mod-

ules, including effective communication between popula-

tions solving different problem instances.

Figure 7 presents an example of evolved network and its

genotype for n = 4 data inputs (u0 is the error). The

striking feature of the network are its repeated subnetworks

for each data input, appropriately tied together by the error

input. The additional ‘‘inputless’’ subnetwork acts as a bias

(inputless * nodes produce 1 on output). What is also

important, all subnetworks are evidently generated by the

single routine r159; which is executed six times during

development (1 call for 6 A nodes in V). Let us shortly

describe how the genotype produces the network. First,

node u3 divides in parallel, making a seed for the ‘‘bias’’

subnetwork. Next, the input layer divides sequentially,

making 6 A nodes in total (5 ? 1 initial). Finally, after

some re-connections, the subroutine is called on these A

nodes, producing the subnetworks.

Interestingly, the common identifier of the subroutine

and the main routine (also r159; though not shown) sug-

gests, that they evolved from a common ancestor routine.

Note also the 3rd instruction in the main routine, indicating

it came from a population solving an instance with n [ 4.

A brief analysis of the functionality of the network

reveals that each subnetwork performs a computation,

which corresponds to weight multiplication and update

with delta rule in standard perceptron. If we call the node

with recurrent connection (e.g. node 14) an analog of

weight, w, then the output v of each subnetwork associated

with data input u (e.g. 16) is computed as:

vðtÞ ¼ uðtÞwðtÞ ; wðtÞ ¼ wðt � 1Þ þ guðt � 1Þu0ðtÞ:
ð4Þ

4.4 Flexibility

Beside examples from previous sections, we applied DSE

to several other test problems. For the artificial ant on Santa

Fe trail—well know problem in GP community—we

evolved two kinds of network solutions: weighted networks

using þ as the only transfer function, and weightless

Algorithm 1 Evaluation of a candidate solution

1: Let criterion J : = 0

2: For 10 trials do

3: Recreate the task, i.e. training sets X, Y

4: For8 epochs do

5: Permute points in X and labels in Y correspondingly

6: Set error e : = 0 and cumulative error ecum :¼ 0

7: For each point xi 2 X do

8: Calculate the output of the network y :¼ /ð½e xi�Þ
9: Calculate the error e : = yi - (y [ 0.5), which is either -1, 0, or 1

10: ecum :¼ ecum þ jej
11: if ecum ¼ 0 then

12: Proceed to the next trial

13: J :¼ J þ ecum=ð10 � 8Þ

Table 2 Best and mean performance in terms of misclassification

percentage of a standard perceptron and best evolved networks; also

the mean number of generations elapsed between finding solutions for

n - 1 and n problem instances is given

n

1 2 3 4 5 6

Perceptron Min 1.0 2.4 3.7 4.1 4.4 4.5

Mean 1.3 3.3 4.5 5.2 5.3 5.3

Std 0.2 0.5 0.6 0.5 0.5 0.5

Evolved Min 0.0 1.2 2.6 4.7 5.1 (5.4)

Mean 1.2 4.0 5.0 6.0 7.1 (9.8)

Std 0.7 1.0 1.2 1.3 1.6 (2.3)

No. generations Mean 264 777 126 77 170 106

Std 346 1,627 82 82 321 95

Tail:
   Term A +
   Term P +
   Term E +
   Term D +
   Term y *
   Term C *

Body:
   DivS u0 P
   DivP A E
   DivS E D
   Con E E0 1
   DivS u0 C
   Con D D 1
   Con A0 C0 1
   Con P0 P0 1

u0 2: *

u1

4: +

5: +

3: +
y0: *

6: +

Fig. 5 Network outperforming

standard perceptron in the

classification task for n = 1

data inputs
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networks using þ; �; �; h and m as transfer functions,

where hðxÞ ¼ ðð
P

xÞ[ 0:5Þ and mðxÞ ¼ ð
P

xÞ=jxj:
DSE was also successful in evolving controllers for

double pole balancing task (i.e. two inverted pendulums

mounted on a cart side by side), with and without veloci-

ties. As this problem is rather irregular, DSE’s performance

could not possibly match the performance of NEAT [28].

In a similar task to the perceptron problem (Sect. 4.3), we

also tried to evolve weightless networks learning in an

unsupervised way. Using multivariate normal distributions

(up to n = 7 dimensions) as training data, we obtained net-

works behaving much like a conventional neuron trained with

Hebbian rule, i.e. displaying an orientation selectivity

towards the direction of the greatest variance in data. Need-

less to say, some of these networks were learning faster and

more accurately than conventional neurons with standard

learning parameter settings (such as learning rate g = 0.1).

We also experimented with reinforcement learning in

uncertain environments, evolving solutions to a simplified

artificial bee problem [25] and some variants of T-maze

problem [23, 26]. Also successful were experiments with

evolving networks incorporating the principle of error

backpropagation to learn in the well known intertwined

spirals problem.

In principle, DSE allows to evolve any network topol-

ogy with ‘‘aggregation nodes’’ (i.e. with indiscernible

incoming connections) and n-way connections (explained

below). To prove it, it is sufficient to consider node divi-

sion, which can generate any number of uniquely labeled

nodes (provided the set of labels is indefinite), and Con

instruction, which can connect any two nodes; and which

can be easily generalized to connect any number of nodes.

Therefore the encoding is complete within the assumed

space of topologies.
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Fig. 6 A logarithmic fit on

genotype vs phenotype size data

(left) and a power fit on

development time vs phenotype

size data (right)

Body:
  DivP u3 P
  DivS u A
  Con u0 A 1
  Con A y0 1
  Con P A0 1
  Cut A A0
  Con A y0 1
  Call r159 A

Tail:
  Term y +
  Term P *

Subroutine r159
Body:
   DivS u0 M
   Con M y0 1
   Con M M0 1
   Subst y N
   Cut M A
   DivS u0 F
   Con A F0 1
Tail:
   Term A +
   Term M +
   Term F *
   Term N *

u0

5: *

9: *

13: *

17: *

21: *

26: *

u1 11: +

u2 15: +

u3 19: +

u4 23: +

6: + 8: *

7: +

y0: +

10: + 12: *

14: + 16: *

18: + 20: *

22: + 24: *

25: *

28: + 27: + 29: *

Fig. 7 Modular solution to the perceptron problem for n = 4 data inputs
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The encoding is also closed, in that any genotype maps

to a valid network; provided it is terminated properly

during development.

DSE allows to employ arbitrarily defined node types, as

well as connection types. They are encoded in the genotype

and selected during development, but their functionality is left

open. Given the object-oriented design of the network

implementation, nodes and connections can be easily defined

in terms of their evaluation and learning methods. Connec-

tions can also hold their own parameters, such as coefficients,

or other structures, such as expression trees. Initialized con-

nections, as constructed objects, appear in the arguments of

Con* instructions and act as references during network

development. So randomly initialized connections found in

the genotype act as templates for connections in the growing

network. It is easy to conceive, that such an approach allows to

employ any learning rules—whether designed manually or

generated randomly, e.g. by means of expression trees.

Certainly the parameters in reference connections can be

subjected to variation during reproduction of the genotype.

This approach could also be applied to nodes, allowing their

transfer functions to be evolvable.

A connection reference determines all the parameters of

the connection, but obviously it can not specify the nodes

to connect. These are specified in the remaining arguments

of the Con instruction. A generalized Con instruction

would require n arguments to specify n nodes to connect

and 1 argument to determine the connection type, i.e. the

reference. Although it is not clear, whether connections

between 4 or 5 nodes would be ever considered, it is cer-

tainly interesting to consider connections between 3 nodes,

i.e. with 1 additional (modulatory) input. The modulatory

input can influence the dynamics of the connection, usually

acting as a local reinforcement signal. Some research on

the role of neuromodulation in artificial neural networks

has been recently undertaken in [23, 25]. Next we show

neuromodulation may also be employed within DSE.

4.4.1 Neuromodulation

Instructions Con and ConE create connections between

two nodes. The internal dynamics of the connection (the

evaluation as well as learning) can be defined arbitrarily,

although with certain limitations. The evaluation and

learning expressions must be local, i.e. involving only pre-

and post-connection nodes and some local parameters only.

This is sufficient to obtain some Hebbian rules of learning

or even error backpropagation, but not some other poten-

tially interesting rules. The concept of neuromodulation is

to allow some third node to influence the dynamics of

the connection, enabling the network to display much

richer dynamics. Neuromodulation enables reinforcement

Hebbian learning in the network, as for example in the

following form [2]:

wðt þ 1Þ ¼ wðtÞ þ grðtÞxðtÞ½yðtÞ � wðtÞ�; ð5Þ

where w is the connection weight, g is a learning rate, x and

y are pre- and post-connection node values and r is the

modulatory signal. In fact, neuromodulation allows to

express the so called general correlative learning rule [2]:

wðt þ 1Þ ¼ ð1� �ÞwðtÞ þ gxðtÞrðtÞ; ð6Þ

where � is a forgetting rate, and r is a general learning

value, which might be simply the post-connection node

value, as in case of simple Hebbian learning; or some other

reinforcement value, computed by the modulatory node.

Figure 8 shows a network solution for the perceptron

problem (Sect. 4.3) using modulated connections. These

are created using ConM instruction, which is the same as

Con except it has a third argument to select the modulatory

input node. The modulated connection is created whenever

some nodes match the arguments of the instruction and no

connection between the input and output nodes exists yet.

Hence multiple connections are not allowed between

nodes, but this is just a variant of implementation.

Regarding the phenotype, the error from the previous

computational step is given by the u0 input. Modulated

connections, labeled with d, are defined to perform ordin-

ary weighting during evaluation phase, and the following

weight update during learning phase:

wðt þ 1Þ ¼ wðtÞ þ xðt � 1ÞzðtÞ; ð7Þ

where z is the modulatory input, i.e. u0:

5 Experiments

DSE features scalability and modularity, hierarchy and

ability to produce regular networks. It is difficult to assess,

however, to what extent it possess these features. It is also

difficult to quantify or even qualify differences between

these features in DSE and in its two relatives—CE and

HyperNEAT. An ultimate way to compare methods, is to

compare their performance on specific problems. However,

due to multiplicity of parameters and algorithmic details,

many of which are undocumented, it is not a simple task to

compare such complex methods.

Generality of these methods makes them applicable to a

wide range of problems, so any benchmark on a few

selected problems would be surely incomplete, and worse it

would be inevitably flawed by the problem of parameter

settings, i.e. the problem of how to set the parameters.

Moreover, as these methods aim to solve problems of

increasing complexity, it might not be easy to run
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benchmarks even for these few problems due to compu-

tational demands.

Next, while complex methods are usually based on some

fundamental concepts, they tend to be extended and

developed into many variants. For example in CE there are

plenty of so called encoding schemes, or instruction sets, to

choose from; it can employ recurrence, automatically

defined functions or learning during development. Like-

wise HyperNEAT is actively extended with new func-

tionalities [5, 23, 24]; and DSE is not very different in this

respect. Certainly there is nothing wrong with this, except

it makes a conclusive comparison difficult, because any

particular variant does not represent the whole method.

This problem can be thought of as an extension of

parameter settings problem. Finally, the comparison is

further hampered by the lack of any commonly accepted

‘‘test suit’’, as in case of EAs for function optimization [see

e.g. 32]. So the question of how to fairly and reliably

compare these methods is wide open.

Nevertheless, in the remaining part of this section we

conduct two modest experiments involving DSE, Hyper-

NEAT and CE. Results indicate DSE is an interesting

alternative to these encodings. Given the above consider-

ations, however, the outcome can not be treated as anything

more than just an indication.

5.1 Target connectivity problem

Both HyperNEAT and DSE aim to evolve regular and

scalable networks. Regularity, however, is a matter of

degree and complex problems, even those regular, might

involve some irregularity as well. In [3], Clune et al. per-

formed a set of experiments to examine capability of Hy-

perNEAT to introduce exceptions into otherwise regular

target topologies. The problem called Bit Mirroring was to

establish some predefined connectivity pattern between

two 2-dimensional layers of nodes. Each node in the input

layer was preassigned some target node in the output layer

and the fitness was proportional to the number of correctly

wired nodes. The target connectivity pattern had a varying

degree of regularity, with respect to columns and rows.

From fully regular, where (i, j)-th node in the input layer

had to connect to (i, j)-th node in the output layer, to quite

irregular, where output nodes were selected randomly,

either within column or within row or both. The experi-

ment showed HyperNEAT was very successful in evolving

highly regular connectivity patterns, however its perfor-

mance deteriorated rapidly as regularity decreased. It was

difficult for HyperNEAT to make exceptions in the regular

patterns of connectivity.

We conduct a similar experiment here, in which we try

to evolve target connectivity patterns between 1-dimen-

sional layers of nodes. The problem is parametrized by

three parameters: the size of layers nu (i.e. the number of

inputs/outputs), offset no, and the number of swaps ns. The

default connectivity is simply between all inputs ui and

outputs yj satisfying i = j. Introducing the offset general-

izes the relationship to:

j ¼ ðiþ noÞ modnu; i ¼ 0; . . .; nu � 1: ð8Þ

Finally, some target nodes are swapped. This is done by

randomly selecting ns pairs of input nodes (without repe-

tition) and swapping their target nodes in the output layer.

Much as in the original problem, fitness is proportional to

the number of correctly wired output nodes; though actu-

ally we minimize the error.

We used HyperNEAT v3.0 C?? implementation1 by

J. Gauci, with all the parameters left default. The problem

has been implemented identically in both systems. Worth

mentioning is that evaluation does not depend on the

phenotype network, since it can be calculated directly from

weight (connectivity) matrix, which is binarized in case of

HyperNEAT. We run the evolution for every combination

of the following parameter values: nu ¼ f5; 10; 15g; no ¼
f0; . . .; 29g and ns = {0, 1, 2}—270 runs in total. Popu-

lation size is 500 and the number of generations 300.

Figure 9 shows how the two encodings coped with the

problem for the three different layer sizes. As can be seen,

both systems have more troubles with larger problem

instances, though DSE clearly outperforms HyperNEAT in

absolute terms (p \ 0.001, permutation test). It is more

difficult to compare scalability for these data. One rea-

sonable way would be to calculate how much longer it took

to reach given level of fitness as the size of the problem

increased. It took 5, 18 and 36 generations for DSE, to

reach 0.6 fitness for nu = 5, 10, 15, correspondingly. So it

was (36 - 18)/(18 - 5) = 1.38 times longer on average to

scale up from 10 to 15 than from 5 to 10. Analogous cal-

culations for HyperNEAT yield (196 - 88)/(88 - 23) =

1.66. This indicates DSE also scales up better.

Another interesting question is how the two encodings

managed the irregularity. Figure 10 (left) presents the most

Body:
   ConM u A u0 d:-2.8
   DivP u2 W
   DivP u1 C
Tail:
   Term A +
   Term W *
   Term C *
   Term y * u0

d d d d dd

u1u2u34: * 5: *

6: +

y0: *

Fig. 8 Network solution for the perceptron problem (n = 3) using

modulated connections

1 Available from http://eplex.cs.ucf.edu/hyperNEATpage/ at the

time.
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interesting case of nu = 15. HyperNEAT performance gets

visibly worse as the number of swaps increase. In contrast,

irregularity have only a marginal impact on DSE. It might

be argued this is a sign DSE does not generate the pattern

in a regular manner, but builds the connectivity incre-

mentally, as probably any direct encoding would do.

But this is not true. Figure 10 (middle) presents an exam-

ple of genotype generating solution network for nu =

15, no = 0, ns = 2 problem instance, where the swapped

target nodes were: 14 with 9 and 11 with 10. The solution

is almost perfect, as the evolution had plenty of ‘‘spare’’

generations to improve the solution in that run (no = 0 is

the easiest case). In the first step of development, con-

nection between u9 and y14 is made, and then between u11

and y10: In the 3rd and 4th steps, nodes y14 and y10 are

relabeled with dummy terminal symbol @. Then a similar

sequence is executed for y9 and y11: Finally the pattern of

connections is established between inputs and outputs,

which indexes satisfy i = j. Note that relabeled nodes are

no longer in y layer, so they do not participate in the last

operation. This way DSE found a regular connectivity

pattern with four exceptions. Presented solution is not an

exception, as many other solutions made effective use of

ConE and CutE instructions, although also many produced

the connectivity using Con instruction, i.e. on per-con-

nection basis. Nevertheless, the experiment showed DSE is

capable of setting regular patterns of connectivity and of

handling exceptions far better than HyperNEAT. This is

because it combines individual and patterned ways for

establishing connections.

HyperNEAT’s deficiency in producing regular networks

with exceptions has been recently improved by extending it

with a direct encoding called FT-NEAT. The resulting

algorithm, HybrID, works by first finding a regular topol-

ogy and then introducing exceptions. This hybrid approach

improved HyperNEAT’s results on three test problems [4].

We also run the experiment with our implementation of

basic Cellular Encoding, using the following encoding

scheme: {ACYC, END, PAR, SEQ, INCLR, DECLR,

MRG, WAIT}, which guarantees completeness and closure

within space of feed-forward topologies (see [9] for

details). Using CE to solve the task turned out to be

problematic, because it can not operate on inputs or out-

puts—the development tree can only operate on hidden

nodes. Therefore we treated the hidden layer as an output

layer, and in consequence the encoding not only had to find

the target topology, but grow the layer as well (there

was no penalty for excessive number of nodes though).

Anyway, CE performed very poorly on this task. For

nu = {5, 10, 15} it scored 0.93 ± 0.11, 1 ± 0, 1 ± 0

correspondingly, not producing any single solution, even in

the easiest case. These results were significantly improved

after throwing out SEQ, DECLR and MRG instructions

from the scheme, but only in the nu = 5 case—scoring

0.65 ± 0.26 and delivering two solutions.

Such an outcome might be predicted, as CE was never

designed to produce regular patterns of connectivity,

except of recurrent kind. An interesting exercise would be

to construct a solution manually. We estimate it would

require about nu
2 properly placed instructions in the devel-

opment tree and that figure is confirmed by the sizes of the

two solution trees obtained, counting 31 and 32 nodes. At

that rate of growth the genotype quickly becomes very

brittle under genetic variation.

5.2 Retina problem

While HyperNEAT is evidently capable of producing

regular topologies, it is unclear whether it can produce

modular networks. Investigation into this issue has been

recently done by Clune et al. [5]. Authors took the retina

problem, originally proposed by Kashtan and Alon [15], as

a suitable test for encoding’s capability to evolve modular

solutions.

The retina problem consists in evolving networks to

recognize patterns on the left and right sides of an artificial

retina, each side consisting of 2 9 2 pixels. Among 16

possible patterns on each side, half are considered positive,

and they are symmetrical for the two sides. The task is to

decide for all 256 possible pattern combinations whether
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either side contains a positive pattern (goal ‘OR’) or

alternatively if both sides contain it (goal ‘AND’). If the

goal is fixed throughout evolution, nothing surprising

happens—the evolution tries to solve the problem anyhow,

usually producing networks intertwining both sides of

retina. If the goal is periodically changing, however, it is no

longer feasible to solve the problem efficiently without

reflecting its structure. First, both sides of the retina shall

be processed separately by the network solution, producing

a response to positive patterns, which is a constant objec-

tive for both goals; and then results shall be combined

appropriately, which is the changing part. The hypothesis

behind the problem is that only encoding capable of gen-

erating modular networks can solve the changing variant of

the problem efficiently. In fact, Kashtan and Alon [15]

found, that modularly varying goal (MVG) not only

enforced modular solutions, but actually allowed to solve

the problem much faster. Here the fitness is a ratio of

correctly classified patterns, usually falling between 0.75

and 1.0, and the network is considered a solution, if it

scores 0.95.

The investigation conducted in [5] revealed a poor

performance of HyperNEAT on the problem (see the paper

for experimental setup details). In no scenario (‘left only’,

OR, AND, MVG-20 and MVG-100, i.e. with the goal

changing every 20 and 100 generations, respectively)

median fitness of HyperNEAT’s solutions exceeded 0.9

and no solutions have been reported on that problem, even

after prolonging the evolution to 30,000 generations. The

fitness function used in the experiment, however, was

based on mean square error, which is not exactly a clas-

sification error.

We performed a similar experiment, using the same

population size (500) and misclassification rate as a fitness

function to be minimized. We used threshold transfer

functions and weighted connections in case of DSE. The

most important difference between DSE and HyperNEAT

setups lied perhaps in the size and layout of the network,

which was fixed in case of HyperNEAT and evolvable in

case of DSE—the very fundamental difference for these

systems. We also tested CE on this task, using threshold

transfer functions and the same, 8-element encoding

scheme as in previous experiment, except extended with

instructions to manipulate connection weights and node

biases. In all three systems networks were constrained to be

feed-forward.

Figure 11 shows a median fitness of 20 evolutionary

runs of DSE, lasting for 2,000 generations. Recognizing

patterns only on the left side of retina was not difficult for

DSE, as perfect solution was found in most runs. Scenarios

AND, MVG-20 and MVG-100 all gave similar median

around 0.1.

Table 3 compares the performance of DSE, Hyper-

NEAT and CE in terms of mean best fitness (MBF, in %)

with standard deviation from 20 evolutionary runs. The

length of run was limited to 1,000 generations, mainly due

to computational demands of HyperNEAT. In the table, we

also show how many solutions were delivered by DSE,

discerning three types of solutions: perfect (f = 0), stan-

dard (f \ 0.05) and weak (f \ 0.1). For example, it deliv-

ered 5 standard solutions for OR and 6 for AND goals in

MVG-100 scenario. Figures for HyperNEAT are not dis-

played, because it delivered not a single, even weak solu-

tion. HyperNEAT was also significantly outperformed by

DSE in terms of MBF (p \ 0.001, permutation test). Even

worse results in terms of MBF were produced by CE,

although it succeeded in delivering 8 weak and three

standard solutions in (and only in) the ‘left only’ scenario.

An important figure in Table 3 is the number of runs in

which solutions were found for both goals in at least two

consecutive periods (‘cons.’ entry) in MVG scenarios.

Solving AND and OR goals in consecutive periods means

the evolution is able to quickly switch between solution

goals, which—according to Kashtan and Alon [15]—

requires modular structure of the solution. DSE succeeded

to do so in terms of standard solutions in two runs in case

of MVG-20 and 3 in case of MVG-100, indicating DSE

features that kind of modularity required to solve the retina

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Generation

F
itn

es
s

irr. 0

irr. 1

irr. 2HyperNEAT

DSE

Body:
  1  Con u9 y14 1
  2  Con u11 y10 1
  3  Subst y14 @
  4  Subst y10 @
  5  Con u14 y9 1
  6  Subst y9 @
  7  Con u10 y11 1
  8  Subst y11 @
  9  ConE u y 1 (= j i)
Tail:
 10  Term y @

u0 y0
u1 y1
u2 y2
u3 y3
u4 y4
u5 y5
u6 y6
u7 y7
u8 y8
u9
u10
u11
u12 y12
u13 y13
u14

y9
y10
y11

y14

Fig. 10 Mean best fitness for

nu = 15 and increasing amount

of irregularity for both systems

(left); an example of solution

genotype evolved by DSE for 0

offset, 2 swaps, 15 inputs task

instance (middle) and the

connectivity it produces (right)

160 Evol. Intel. (2011) 4:145–163

123



problem with varying goals. Analysis of these solutions

confirms, that processing of both sides of retina is separated

until the output node, where the final OR/AND processing

step occurs. Unfortunately, obtained solutions are too large

to be presented here. Their genotypes usually count more

than 100 instructions and phenotypes more than 50 nodes.

6 Summary and conclusions

A novel developmental encoding for evolving networks has

been proposed, called Developmental Symbolic Encoding.

In this encoding, the genotype is a tree of routines, which in

turn consist of lists of instructions saying how to develop

the network. The network grows primarily by means of

node divisions and connection arrangements, which is roughly

how biological neural networks develop. DSE combines some

concepts of CE and HyperNEAT. Much as CE, it can grow

networks by means of node divisions, and features an explicit

genetic modularity and hierarchy, conducing reuse of code

and network modules. Much as HyperNEAT it can establish

connectivity patterns between groups of nodes, and exploit

some geometric-like relationships between them, enabling

evolution of highly regular network topologies. These two

ways of growing networks are combined in a coherent genetic

representation, optimistically allowing to get best of both

encodings while solving problems.

The encoding exhibits scalability—it can represent

network phenotypes compactly, with the genotype growing

slower than phenotype along the problem size. In other

words, it is capable of capturing some regularities of net-

work solutions, and thus regularities hidden in problems.

The encoding has been also demonstrated to feature mod-

ularity and code reuse, where a single piece of genetic

code, namely routine, generates multiple copies of sub-

network in the final network. Modularity and the evolution

of modular solutions is supported by the fact, that routines

are easily transferable between individuals and popula-

tions. This in turn opens an interesting further research on

parallel multiple task solving, in which a number of pop-

ulations solves a number of different, but related tasks,

while possibly taking advantage of communication.

The scalability of DSE has been demonstrated in sym-

metry and parity problems. Evolved solutions for these

problems were fully general with respect to the number of

inputs, i.e. networks were able to automatically scale

themselves up to the size of the problem during develop-

ment, while being encoded by a fixed genotype. Certainly

only for some problems such a perfect scalability can be

achieved. Modularity, in turn, has been demonstrated in a

more difficult variant of the parity problem and also in a

classification problem. These problems required a capa-

bility to discover and exploit useful modules or subnet-

works. DSE is also complete and closed, which means it
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Table 3 Performance comparison of DSE, HyperNEAT and CE on retina problem

Scenario/goal DSE HyperNEAT CE

No. solutions with f

0 \0.05 \0.1 MBF [%] MBF [%] MBF [%]

Left only 13 13 13 4.4 ± 6.1 19.6 ± 2.6 12.5 ± 7.3

Left and right 0 1 7 10.5 ± 2.9 15.3 ± 0.8 23.1 ± 2.8

MVG-20 OR 0 2 6 10.2 ± 3.6 24.0 ± 0.9 24.3 ± 2.2

MVG-20 AND 0 3 8 9.8 ± 3.6 17.8 ± 0.9 21.3 ± 2.7

MVG-20 cons. 0 2 6

MVG-100 OR 1 5 10 9.4 ± 4.9 23.9 ± 1.3 24.7 ± 1.2

MVG-100 AND 0 6 11 8.7 ± 4.1 17.3 ± 0.8 21.2 ± 3.1

MVG-100 cons. 0 3 10
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can represent any recurrent network topology and any

genotype represents some valid network.

Also flexibility of the encoding has been shown, which

allows to employ arbitrary node and connection types,

including weightless, weighted, plastic and modulated

connections. It is possible to employ nodes and connections

having evolvable transfer and learning functions; restrict

the space of topologies to feed-forward only; or impose any

calculable constraints on the network, by including

appropriate terms in a fitness function.

Much as CE and HyperNEAT, DSE is a complex

method, involving many parameters and unspecified algo-

rithmic details. There are endless options to modify the

way things are done, or extend the encoding by new ele-

ments, such as instructions and genetic operators. From

clarifying and simplifying the encoding, to introducing

explicit learning algorithms, to extending the network

model by non-aggregatory transfer functions. Further

research over DSE is wide open.

Although it is difficult to reliably compare such (rela-

tively) complex methods as HyperNEAT, CE and DSE,

two experiments involving these encodings have been

conducted. In the first one, DSE outperformed its relatives

in evolving some predefined target connectivity patterns.

Likewise in the second experiment, it gave the best results,

delivering modular solutions to the retina problem. Thus

we conclude DSE is a competitive neuroevolution method

worth further development and trying in practice.
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