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Introduction

Septic shock and sepsis-associated multiple organ failure 
remain the most common cause of death in intensive care units 
of the medically advanced nations. Historically, the mortality 
associated with sepsis and septic shock has been approximately 
50–75%.1-3 The primary advance in the therapy of septic shock 
was the development of modern (i.e., β-lactam) antibiotic ther-
apy 70 years ago which resulted in a reduction in sepsis-associated 
mortality to the 30–50% range.1,2 However, the past 50 years has 
seen a gradual year-to-year increase in the incidence of sepsis.4 As 

a result, total deaths have increased substantially.4 Current esti-
mates suggest a doubling of total United States cases of severe 
sepsis from 800 000 annually to 1.6 million cases by 2050 with 
an increase in population of only 33%.5 Currently, severe sepsis 
and septic shock cases account for approximately 10–15% of all 
intensive care unit (ICU) admissions with approximately 25% 
of cases of sepsis6 and 50–75% of cases of severe sepsis progress 
to septic shock.7 Septic shock alone represents between 5% and 
8% of all ICU admissions.8,9 Despite major advances in tech-
nology and constant refinement of our understanding of sepsis 
pathophysiology, numerous clinical trials have failed to produce 
any new drugs with consistent beneficial effects on this patient 
population. Even the efficacy of the only novel non-antimicro-
bial pharmacotherapy of sepsis and septic shock approved since 
the advent of modern antimicrobials, activated protein C, has 
recently been questioned and the product removed from the 
market.10-12

Current Paradigm: Immunologic Model

Part of the reason for the failure to develop effective novel 
therapies may be a fundamental misunderstanding of the patho-
physiology of septic shock. The currently accepted immunologic 
paradigm suggests that sepsis is present when systemic activation 
of inflammatory pathways (i.e., systemic inflammatory response 
syndrome [SIRS]) is triggered by infection.13 This paradigm 
holds that the disorder is caused by an infection which initiates 
an immunologic (inflammatory cytokine and eicosanoid)/coag-
ulation cascade that propagates independently of the underlying 
infectious trigger.14,15 This view of sepsis as a syndrome that is 
only indirectly related to the underlying infection is reflected in 
the classic figure by Bone and colleagues showing the relation-
ships between SIRS and infection (Fig. 1).13 The figure indicates 
that sepsis is defined by the co-occurrence of infection and SIRS 
but there is no clear suggestion (in the figure) that uncontrolled 
infection drives the development of SIRS.

That is appropriate given current thinking. In this view, pro-
gression of the syndrome (and a counter-inflammatory, “immu-
noparalytic” phase of illness16,17) will occur as a consequence of 
inflammatory cellular signaling despite the rapid elimination 
of the pathogen through administration of cidal antimicrobial 
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The advent of modern antimicrobial therapy following 
the discovery of penicillin during the 1940s yielded remark-
able improvements in case fatality rate of serious infections 
including septic shock. Since then, pathogens have continu-
ously evolved under selective antimicrobial pressure resulting 
in a lack of significant improvement in clinical effectiveness in 
the antimicrobial therapy of septic shock despite ever more 
broad-spectrum and potent drugs. in addition, although sub-
stantial effort and money has been expended on the develop-
ment novel non-antimicrobial therapies of sepsis in the past 
30 years, clinical progress in this regard has been limited. This 
review explores the possibility that the current pathophysi-
ologic paradigm of septic shock fails to appropriately consider 
the primacy of the microbial burden of infection as the primary 
driver of septic organ dysfunction. An alternate paradigm is 
offered that suggests that has substantial implications for 
optimizing antimicrobial therapy in septic shock. This model 
of disease progression suggests the key to significant improve-
ment in the outcome of septic shock may lie, in great part, with 
improvements in delivery of existing antimicrobials and other 
anti-infectious strategies. Recognition of the role of delays in 
administration of antimicrobial therapy in the poor outcomes 
of septic shock is central to this effort. However, therapeutic 
strategies that improve the degree of antimicrobial cidality 
likely also have a crucial role.
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therapy14 (Fig. 2). The concept is one of an inflammatory cyto-
kine and coagulation “cascade” that can progress to higher 
degrees of severity independently of the initial infection trigger. 
In this model, sepsis, severe sepsis (sepsis with organ failure), and 
septic shock (sepsis with cardiovascular failure) are considered to 
be related disorders of increasing severity but sharing a similar 
basic underlying pathology, one of direct endogenous mediator-
driven cellular dysfunction and injury. Septic shock, in particu-
lar, is considered an epiphenomenon to the underlying cellular 
injury induced by these mediators rather than a discrete clinical 
entity with a distinct pathogenesis and pathophysiology. Over-
whelming meningococcemia with septic shock, a condition in 
which an exquisitely antimicrobial-sensitive organism can be 
quickly eliminated but where massive tissue damage may still 
occur is the archetypal infectious syndrome that best fits this 
paradigm. Notably, the pivotal clinical trial of bactericidal per-
meability increasing (BPI) protein, an immunomodulatory agent 
developed as a meningococcal anti-sepsis compound actually 
exhibited some evidence of benefit in meningococcal sepsis.18 
However, other less sensitive pathogenic microorganisms that 
more frequently cause septic shock fit this archetypical profile 
less well. Perhaps because of this issue, the variety of immuno-
modulatory therapies that were developed based on this immu-
nologic paradigm of sepsis have, almost uniformly, failed to 
improve outcomes in clinical trials.19 The source of the efficacy of 
drotrecogin-alfa (activated), the one novel product to have shown 
a potential benefit in sepsis (at least in the initial pivotal study), 
may have been its potent anticoagulant rather than immuno-
modulatory activity since heparin also seems to exert a similar 
benefit.20,21

The Classic Paradigm: Microbiologic Primacy

The reason for the general failure of immunomodulatory 
strategies for treatment of sepsis may be that the underlying para-
digm fails to accurately reflect the disease process. The primacy 
of active infection in driving the immunologic “cascade” of sep-
sis pathophysiology may be underappreciated in the currently 
accepted immunologic paradigm of sepsis. A key deficiency of 
this immunologic model of sepsis is that most pathogens can-
not be eliminated quickly despite cidal antimicrobial therapy22-27 
and likely persist during the period that immunomodulatory 
therapies (most of which are, in fact, immunosuppressive) might 
be initiated. A recent autopsy study of sepsis suggested that a 
persistent septic focus could be found in approximately 75% of 
235 surgical ICU patients who died of sepsis/septic shock and in 
almost 90% of those succumbing in the ICU after at least 7 d of 
treatment.28

Another view of septic shock derives from the more classic 
microbiologic paradigm of life-threatening infection and sepsis. 
In this model, infection is the key driving element of sepsis and 
septic shock. The septic process begins with a nidus of infection 
(peritonitis, pneumonia, etc.) (Fig. 3). Within that focus, the 
organism replicates and, untreated, the microbial infectious load 
increases over time. Overlying that process, the microbial patho-
gens release a variety of exo- and endotoxins (toxic burden) which 

have antigenic properties. These stimulate a further overlay of 
endogenous mediators including inflammatory cytokines such 
as TNF-α, IL-1β, IL-6, HMGB1, and eicosanoids such as pros-
taglandin E2, prostacylin, thromboxanes, leukotrienes (inflam-
matory response). The result is cellular dysfunction which can 
be manifested as tissue injury and, ultimately, organ dysfunction 
including septic shock (cellular dysfunction/tissue injury). The 
central aspect of this model is that the microbial infectious load 
substantially drives downstream responses including the devel-
opment of organ dysfunction and septic shock. This paradigm, 
which forms the basis of standard antimicrobial therapy of sep-
sis and septic shock, suggests that elimination of the underly-
ing infection should terminate the downstream inflammatory/
coagulant basis for tissue injury and organ dysfunction.

A New Composite Model: Integrating Shock

The microbiologic primacy model of sepsis, like the immu-
nologic model, also fails to recognize a key element in mortality 

Figure  1. SiRS, sepsis, severe sepsis, and septic shock. SiRS, systemic 
inflammatory response. Adapted from reference 13. See text for 
explanation.

Figure  2. immunologic view of sepsis and septic shock. SiRS, sys-
temic inflammatory response. Adapted from reference 14. See text for 
explanation.
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of septic states, the concept of irreversible shock as originally 
described by Wiggers.29 This concept suggests that shock, irre-
spective of the etiology, can only be tolerated for a limited time. 
Once present, shock will become irreversible with inevitable pro-
gression to death if the condition is not reversed within a short 
period of time. This concept is directly associated with the idea 
of the “golden hour” first demonstrated in the context of hemor-
rhagic/traumatic shock but applicable to various forms of critical 

injury particularly other shock states. Many 
studies have now shown that early definitive 
intervention (i.e., correction of the underlying 
problem) within a short time of potentially 
lethal injury has a major impact on survival. 
Patients with such injury can be maintained 
for a limited period of time with non-defini-
tive support modalities (e.g., blood products 
for hemorrhagic shock, intra-aortic balloon 
pump for myocardial infarction-associated 
cardiogenic shock, pressors for all forms of 
shock) but mortality will not be improved 
without definitive elimination of the underly-
ing source of hemodynamic instability (e.g., 
thrombolysis,30 angioplasty31 or bypass for car-
diogenic shock due to myocardial infarction, 
embolectomy or thrombolysis of massive pul-
monary embolus causing obstructive shock,32 
or definitive repair/control of a bleeding lesion 
causing hypovolemic shock33).

Septic shock can be viewed through a simi-
lar prism. In this circumstance, the underly-
ing source of shock is the total microbial load. 
This paradigm of septic shock implies that 
the speed with which the inciting infection 
is reduced to a sub-critical thresh-hold after 
the onset of persistent or recurrent hypoten-
sion (as a marker of shock) will be of para-
mount importance in survival. The presence 
of shock becomes a central driver in the gen-
esis of irreversible organ injury rather than 
an incidental epiphenomenon. A conceptual 
model that incorporates the key elements of 
this infectious paradigm of sepsis, immuno-
logic elements from the model described pre-
viously and the concept of irreversible shock 
can be created and used to predict key aspects 
of pathogenesis of septic shock and develop 
novel approaches to effective therapy. This 
construct is similar to the infectious diseases 
model of septic shock with two major addi-
tions (Fig. 4). First, the hatched line indicates 
the point at which inflammatory mediator-
associated cellular dysfunction and tissue 
injury manifest as septic shock. This threshold 
will be highly variable between individuals. 
Those with impaired cardiovascular reserve 
will go into shock at lower levels of cellular 

dysfunction/tissue injury. Young, healthy persons may require a 
substantially greater degree of inflammatory stimulation to reach 
the same shock threshold. The second new element to the model 
is that the presence of shock (as commonly manifested by persis-
tent/recurrent hypotension) sets the patient on the path toward 
irreversible organ injury. At some indeterminate point after 
onset of hypotension (depending on the degree of hypotension, 
comorbid contributors, and genotype of the patient), the patient 

Figure 3. Microbiologic view of sepsis and septic shock. See text for explanation.

Figure 4. Composite view of sepsis and septic shock. See text for explanation.
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will become irreversibly committed to death. 
Because of genotypic variations in the host 
and pathogen and clinical variability in the 
infection, the exact point at which the injury 
becomes irreversible for a given patient cannot 
be determined at present. However, the pro-
gression is similar for all patients.

This model suggests that the appropriate 
approach to therapy of septic shock should be 
to rapidly reduce the infectious load so that 
the period of time in shock (irrespective of 
whether vasopressor are able to maintain blood 
pressure) before reduction of the microbial 
load to a subcritical threshold is limited (i.e., 
minimize the period that sufficient organisms 
are present to generate shock) (Fig. 5). Based 
on the model, this should limit the risk that 
the indeterminate pathophysiologic point at 
which recovery is no longer possible in sep-
tic shock is passed. The issue of time/delay-
dependent irreversibility of the injury and 
irreplaceability of the injured organ are criti-
cal to this model. Other conditions where these conditions exist 
in advanced nations include meningitis/encephalitis, necrotizing 
pneumonia, and necrotizing soft tissue infections. The mortality 
risk for other potentially eligible conditions may be somewhat 
more context-specific. Delays of antimicrobial therapy of endo-
carditis with valve failure or non-necrotizing pneumonia with 
respiratory failure may be fatal in areas where valve replacement 
and mechanical ventilation are unavailable but should be surviv-
able in advanced nations.

There are two major pathophysiologic implications of this 
model of injury in septic shock. First and foremost, this model 
suggests that septic shock and sepsis without shock (including 
sepsis with organ failure other than shock) are fundamentally 
different diseases rather than a simple continuum of severity 
of a single syndrome. The difference lies in the time-/delay-
dependent risk of irreversible and irreplaceable organ injury. The 
simplest line of evidence for this proposal is the commonality 
of the stark clinical features (hypotension, lactic acidosis, sub-
stantial exhaustion of compensatory physiologic responses, etc.) 
and high (>50%) mortality of septic shock and other shock syn-
dromes of any etiology in contrast to the relatively milder clini-
cal features and lower (approximately 15%) mortality of sepsis 
or severe sepsis.34 A pathophysiologic basis for the proposition 
that sepsis without shock and septic shock represent distinct 
clinical entities is suggested in the different profiles of associated 
endogenous mediators35,36 and evidence of hypotension-associate 
immune dysfunction in septic shock (compared with sepsis with-
out shock).37 Moreover, if this model correctly describes sepsis 
and the shock syndromes, there should be a commonality of gene 
expression responses among all shock syndromes whereas distinct 
differences would exist between responses of those of sepsis and 
septic shock. However, this remains to be proven.

The second major implication of this model is that the time 
delay of effective antimicrobial therapy from onset of hypotension 

is a surrogate for an increasing microbial burden of organisms. 
Again, there is evidence to support this contention. We have 
shown that the onset of shock in a rodent model of E. coli peri-
tonitis/septic shock consistently occurs at a defined microbial 
organism load in blood.38 Even as varying numbers of organism 
are implanted into the animal, the time of onset of shock remains 
constant relative to the density of organisms in the blood. This 
issue can be difficult to study in humans because of the variabil-
ity in infecting organism. However, meningococci are remark-
ably consistent in their growth characteristics. Several studies 
have demonstrated that earlier antimicrobial therapy is critical 
in outcome of severe meningococcal disease. One study has 
demonstrated that increasing severity of the clinical syndrome 
(fulminant septic shock vs. meningitis or sepsis without shock) 
is associated with a higher burden of neisserial DNA and LPS 
in plasma of patients with meningococcal disease.39 In another 
study, logistic regression analysis demonstrated that blood bac-
terial load predicted outcome of meningococcal shock.40 Delays 
in antimicrobial therapy were associated with outcome only in 
univariate analysis and all deaths were associated with blood bac-
terial loads of >105 cfu/mL bacteria. Other studies similarly have 
demonstrated that the increasing organism burden is associated 
with increased morbidity and mortality in serious infections.41 
For example, the risk of septic shock and death in serious pneu-
mococcal and gram-negative infections increases with organism 
burden42-44 and mortality of S. aureus, E. coli, and K. pneumoniae 
bacteremia increases with shorter times to blood culture positivity 
(a surrogate marker of higher bacterial blood counts).45-49 Con-
versely, appropriate early antimicrobial therapy has been shown 
to be associated with both improved clinical outcomes and more 
rapid bacterial clearance in studies of Acinetobacter bacteremia 
in the critically ill.50 Similarly, the speed of bacterial eradica-
tion in 24 h in vitro time kill studies of antibiotic combination 
therapy have been shown to correlate strongly with clinical and 

Figure 5. impact of appropriate antimicrobial therapy in sepsis and septic shock. See text for 
explanation.
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bacteriologic outcomes in severely ill patients with Pseudomonas 
infections.51

Optimizing Pathogen Clearance

One of the central testable hypotheses that derive from this 
composite model is that the rapid clearance of pathogens will 
be the central determinant of outcome in septic shock. In the 
remainder of this review, we will focus on the application of anti-
microbial optimization principles deriving from the concept of 
microbiologic load/infectious burden as a driver of the patho-
physiology of septic shock. Notable among the implications of 
this model of sepsis progression is that optimization of antimi-
crobial therapy (i.e., acceleration of microbial clearance) will have 
the most dramatic impact in septic shock rather than sepsis with-
out shock. Relevant antimicrobial factors to consider are listed in 
Table 1. Supplemental antimicrobial therapies (source control), 
antitoxin/immunomodulatory strategies, and supportive mea-
sures (fluid and pressor resuscitation) will not be discussed in 
this review.

Early Antimicrobial Therapy

Although there are several approaches that may yield acceler-
ated pathogen clearance, the simplest approach involves ensuring 
that effective antimicrobial therapy is initiated as quickly as pos-
sible, particularly once septic shock has developed. In the context 
of septic shock, early, potent antimicrobial therapy will rapidly 
reduce the microbial load driving organ injury/dysfunction and 
hypotension reducing the risk of irreversible shock and death 
(Fig. 6).

In one of the earliest enunciations of this principle as it relates 
to all serious infections, Paul Ehrlich, in his address to the 17th 
International Congress of Medicine, 1913 said “Frapper fort et 
frapper vite” i.e., “hit hard and hit fast” with antimicrobials.52 
In the modern context, his advice as it pertains to rapid therapy 
embodies three distinct elements. First, it is clearly necessary that 
initial empiric antimicrobial therapy be microbially appropriate 

(i.e., with in vivo antimicrobial activity for the presumed patho-
gen). Second, this appropriate empiric therapy must be admin-
istered as quickly as possible. Third, therapeutic levels in blood 
and at the target site should be achieved as quickly as possible 
following the first antimicrobial dose.

Appropriateness of Antimicrobial Therapy

Although data in sepsis without shock is inconsistent,53-57 
most studies suggest that failure to initiate antimicrobial ther-
apy to which the pathogen is sensitive is associated with marked 
increases in mortality especially in septic shock.3,58-68 For that rea-
son, empiric antibiotic regimens should approach 100% cover-
age of pathogens for the suspected source of infection. Initiation 
of inadequate antimicrobial therapy may occur as frequently as 
17.1% in community-acquired and 34.3% in nosocomial bac-
teremia admitted to the ICU.69 Similarly, 18.8% and 28.4% of 
septic shock cases were initially treated with inadequate antimi-
crobial therapy in another large study.62

Retrospective studies have shown that the risk of death 
increases from 30–60% in ICU bacteremia3,70 to 70–100% in 
gram-negative shock3 when the initial empiric regimen fails to 
cover the inciting pathogen. More recent data suggests that the 
initiation of inappropriate empiric antimicrobial therapy (i.e., 
failing to cover the pathogen) is associated with a reduction in 
survival of approximately 5-fold (range 2.5- to 10-fold in selected 
subgroups) from 55% to about 11%.62 These findings of sharply 
increased mortality risk with initial inadequate antimicrobial 
therapy apply to serious infections caused by gram-negative and 
gram-positive bacteria as well as Candida species.3,58-65 Similar 
findings have been documented with a variety of other serious 
infections associated with septic shock including community-
acquired pneumonia, hospital- and ventilator-associated pneu-
monia, and bacterial peritonitis (for review, see refs. 66 and 67).

As a consequence of the high mortality associated with inap-
propriate initial therapy, empiric regimens should err on the side 
of over-inclusiveness. The most common cause of initiation of 
inappropriate antimicrobial therapy is a failure of the clinician to 
appreciate the risk of infection with antibiotic-resistant organisms 
(either otherwise uncommon organisms with increased native 
resistance or antibiotic-resistant isolates of common organisms). 
Selection of an optimal antimicrobial regimen requires knowl-
edge of the probable anatomic site of infection; the patient’s 
immune status, risk factors, and physical environment; and the 
local microbiologic flora and organism resistance patterns. Risk 
factors for infection with resistant organisms include prolonged 
hospital stay, recent antimicrobial use, prior hospitalization, and 
prior colonization or infection with multiresistant organisms. 
Increased severity of illness is associated with risk of inadequate 
therapy;69 this may imply that the probability of resistant organ-
isms is increased in patients progressing to higher levels of disease 
severity (i.e., septic shock).

Superior empiric coverage can be obtained through the use 
of a local and unit-specific antibiograms71,72 or infectious dis-
eases consultation.73-75 Some data suggests improved clinical out-
comes with such consultation.76 Although not routinely required, 

Table 1. Antimicrobial determinants of pathogen clearance in septic shock 

1) early antimicrobial therapy

 a. initiate microbially-appropriate therapy

 b. ensure maximally rapid initiation (avoid delays)

 c. Utilize a loading dose when possible

2) Antimicrobial potency

 a. ensure antimicrobial cidality

 b. Optimize pharmacokinetic indices

  i. Time-dependent agents

  ii. Concentration-dependent agents

 c. Utilize combination therapy with antimicrobials possessing 
different mechanisms of action

3) Supplemental therapies

 a. Source control
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Figure  6. impact of earlier antimicrobial therapy in sepsis and septic shock. See text for 
explanation.

extended spectrum gram-negative regimens, 
vancomycin, and/or antifungal therapy may 
be appropriate in specific, high risk cases with 
severe sepsis. In addition, given that 90–95% 
of patients with septic shock have co-mor-
bidities or other factors that make them high 
risk for resistant organisms, it may be appro-
priate to initially treat all patients with septic 
shock using a combination of antimicrobials 
that result in a broadly expanded spectrum of 
coverage for the first few days. This approach 
should ensure that high risk patients are 
not inappropriately categorized as low risk, 
thereby improving the likelihood of initial 
adequacy of antimicrobial coverage.

In order to avoid institutional problems 
with antimicrobial resistance in the long-
term, empiric antimicrobial therapy must be 
adjusted to a narrower regimen within 48–72 
h if a plausible pathogen is identified or if the patient stabilizes 
clinically (i.e., resolution of shock). While several retrospective 
studies have demonstrated that inappropriate therapy of severe 
sepsis and septic shock yields increased mortality,3,58-65,70 none 
have suggested that early narrowing of therapy is detrimental 
if the organism is identified or if the patient is responding well 
clinically. To the contrary, some studies have suggested that de-
escalation of antimicrobial therapy is associated with improved 
outcomes.77-80 This approach will maximize appropriate antibi-
otic coverage of inciting pathogens in septic shock while mini-
mizing selection pressure toward resistant organisms. Although 
it is tempting to continue a broad spectrum regimen in the 
15–20% of patients who are improving but culture negative for 
a potential pathogen, intensivists must recognize that a strategy 
of broad spectrum initial antimicrobial therapy will only be sus-
tainable if overuse of these agents can be avoided. Aggressive de-
escalation of antimicrobial therapy within 48–72 h after initia-
tion is required.

Antimicrobial Delay

Although available studies indicate that delays in initiation 
of appropriate antimicrobial therapy of bacteremia/candidemia 
and sepsis without shock are only inconsistently associated with 
outcome,64,81-88 such delays appear to have a substantial role in 
determining the mortality of high-risk infections with a strong 
association with septic shock.63,89-111 The central role of such 
delays in septic shock is apparent in the major upward inflection 
in mortality of antibiotic-treated murine septic shock coincident 
with the onset of hypotension and lactic acidosis.38 Other animal 
studies have similarly shown a very rapid inflection in mortality 
in experimental severe infections absent appropriate antimicro-
bial therapy.112,113

Human studies pertaining to the impact of delays of antimi-
crobial therapy on serious infections date back at least to the work 
of Bodey and colleagues114 who demonstrated increasing mortal-
ity risk when appropriate antimicrobials were delayed more than 

a day following documentation of Pseudomonas bacteremia. Mee-
han et al. has shown that delays in initial antimicrobial adminis-
tration greater than 8 h after admission to the emergency room 
for community acquired pneumonia is associated with increased 
mortality in a large cohort of Medicare patients.97 Houck has 
pushed this boundary lower by demonstrating increased mortal-
ity in Medicare patients with community-acquired pneumonia 
who were treated with antimicrobials more than 4 h following 
ICU admission.102

One major retrospective analysis of septic shock has suggested 
that the delay to initial administration of effective antimicrobial 
therapy is the single strongest predictor of survival with signifi-
cant decreases in projected survival for every hour delay.115 Initia-
tion of effective antimicrobial therapy within the first hour fol-
lowing onset of septic shock-related hypotension was associated 
with 79.9% survival to hospital discharge. For every additional 
hour to effective antimicrobial initiation in the first 6 h post-
hypotension onset, survival dropped an average of 7.6%. The 
adjusted odds ratio of death was already significantly increased 
by the second hour post-hypotension onset and the ratio con-
tinued to climb with longer delays. An unpublished analysis of 
an expanded data set demonstrates that significant decreases 
in projected survival occur with delays greater than 30 min. 
Despite these findings, the median time to delivery of effective 
antimicrobial therapy following initial onset of recurrent/persis-
tent hypotension in septic shock was 6 h.115 Substantial delays 
before initiation of effective therapy have been shown in several 
studies of serious infections.97,102,116-119 Additional retrospective 
studies of human bacteremia, candidemia, septic shock, commu-
nity-acquired pneumonia, hospital-acquired pneumonia, surgi-
cal infections, meningitis with sepsis, and sepsis in solid organ 
transplants have confirmed that the mortality in these septic 
conditions is increased with significant delays in antimicrobial 
administration.61,63,90,93-98,100,101,103-106,109-111,117,120-125

Several studies have now assessed the impact of speed of 
appropriate empiric antimicrobial therapy on outcome in rela-
tionship to other elements of therapy. In our own study of 
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human septic shock,115 we found that 28% of the variance in 
outcome of septic shock could potentially be explained by varia-
tions in speed of delivery of effective antimicrobials while varia-
tions in fluid resuscitation could explain <2%. This suggested 
that greater remediable deficiencies (and greater potential for 
improvement in care) may lie with the former therapy than 
with the latter. A recent propensity analysis by Ferrer and col-
leagues126 of approximately 2800 patients with severe sepsis and 
septic shock suggested that only rapid antimicrobial therapy 
(<1 h compared with >6 h of severe sepsis diagnosis) and use 
of drotrecogin-alfa (activated) among elements of an interna-
tionally recommended “sepsis bundle”127 were independently 
associated with survival. Similarly, Varpula and colleagues128 
have shown that only early initiation of antimicrobials (<3 vs 
>3 h of emergency room admission) among elements of a “sepsis 
bundle” was associated with improved survival in 92 patients 
with community-acquired septic shock using logistic regression 
analysis. Another analysis of the impact of various elements of 
the bundle demonstrated that only administration of antibiot-
ics within 2 h and obtaining blood cultures before antibiotic 
administration were associated with improved survival in 316 
consecutive patients with severe sepsis or septic shock.129 Like-
wise, Subramanian and colleagues have shown that only rapid 
initiation of antimicrobial therapy (<1 h following ICU admis-
sion or <3 h following admission to the emergency department) 
and early restoration of global perfusion indices were indepen-
dently associated with survival in 95 consecutive patients with 
septic shock.130 Delays in appropriate antimicrobial therapy have 
also been associated with development of acute lung injury,131 
acute renal failure,132 and worsening of organ failure133 and 
higher inflammatory cytokines and other inflammatory mark-
ers.133,134 Further support for the importance of time to appro-
priate antimicrobial therapy comes from studies of the impact of 
bundles of hospital-based interventions which have consistently 
shown improvement in outcome of sepsis and septic shock.126,135-

143 The most consistent element of therapy improved with such 
bundled quality assurance approaches is timeliness and appro-
priateness of antimicrobial therapy.144

In view of these data, intravenous administration of broad 
spectrum antimicrobial should be initiated immediately (prefer-
ably <30 min) following the clinical diagnosis of septic shock. 
Patients with other serious infections are similarly well served 
with maximally rapid initiation of antimicrobial therapy. Appro-
priate, intravenous, broad spectrum empiric therapy should be 
initiated as rapidly as possible in response to clinical suspicion 
of infection in the presence of persistent hypotension, i.e., pre-
sumptive septic shock. An assumption that persistent or recurrent 
hypotension is caused by anything other than sepsis in the set-
ting of documented or suspected infection should be avoided in 
the absence of very strong clinical evidence indicating a specific 
alternate etiology.

Laboratory tests congruent with sepsis or septic shock should 
be considered supportive of the diagnosis but obtaining such 
tests should never delay antimicrobial therapy. For septic shock, 
the presumptive diagnosis should be made on clinical criteria. A 

potential survival advantage may exist if a pathogenic organism 
can be isolated in severe infections including septic shock.62,145 
Every effort should be made to obtain appropriate site-specific 
cultures in order to allow identification and susceptibility testing 
of the pathogenic organism; however, as with other laboratory 
testing, such efforts should not delay antimicrobial therapy.

Loading Doses

Although administration of early appropriate antimicrobial 
therapy is the central element in management of septic shock, 
clearance of pathogens will not begin until therapeutic levels of 
the antimicrobials in the circulation are achieved. The pharma-
cokinetic principles underlying drug absorption and distribu-
tion for optimization of antimicrobial dosing in non-critically 
ill patients are well established. However, an equivalent broad 
understanding of dosing issues in critically ill patients has lagged.

Patients with critical illness are known to have major alter-
nations in antimicrobial pharmacokinetics. In particular, many 
antimicrobials exhibit markedly increased volume of distribu-
tion (Vd) especially those agents that are primarily distributed 
in the extracellular space. Included in this group are β-lactams, 
aminoglycosides, vancomycin, teicoplanin, and colistin.146-148 
This increased Vd can result in inadequate levels of these anti-
microbials during the initial treatment phase.149-152 Failure to 
achieve therapeutic levels early after initiation of antimicrobials 
may result in suboptimal organism clearance and inferior clinical 
results.

Therapeutic serum levels of a variety of antimicrobials fail to 
be consistently achieved using standard dosing regimens in criti-
cally ill patients with sepsis and septic shock. β-lactams represent 
a particularly important example of the problem given their fre-
quency of use in the ICU. In septic shock patients, inadequate 
serum concentrations for coverage of Pseudomonas during the 
first dosing interval have been shown for piperacillin–tazobac-
tam, ceftazidime, cefepime, and meropenem using standard 
intermittent dosing.150 Similarly, initial serum levels of aminogly-
cosides in septic patients are often inadequate resulting in inferior 
clinical outcomes.153,154 Comparable finding have been reported 
for fluoroquinolones,155,156 vancomycin,152,157 teicoplanin,158 and 
colistin.149,159

An emerging body of literature suggests that loading doses of 
some antimicrobials can potentially yield improved clinical out-
comes.149-151,154,157-162 Supportive data exists in severely ill patients 
including those with septic shock for aminoglycosides,162 fluoro-
quinolones,161 vancomycin,152,157 teicoplanin,158 and colistin.149,159 
Loading doses may be particularly important when β-lactams are 
administered as continuous or extended infusions (see later sec-
tion on this subject). In this circumstance, failure to use a load-
ing dose can substantially delay achievement of therapeutic levels 
and may be responsible for less than optimal clinical responses 
in some studies of extended/continuous infusion of β-lactams in 
critically ill patients.163 Loading doses are also recommended for 
a broad range of other antimicrobials including tigecycline, flu-
conazole, anidulafungin, and caspofungin.
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Potency of Antimicrobial Therapy

According to Ehrlich’s dictate on optimizing therapy of seri-
ous infections, the first principle was to “hit hard”.52 In the sim-
plest terms, this can be understood to mean that, all other things 
being equal, highly potent antimicrobial regimens providing the 
most rapid clearance of pathogens are preferred (Fig. 7). This 
principle has many implications in regards to antimicrobial strat-
egy. It would suggest that cidal therapy may be preferred over 
static since the terms “static” and “cidal” intrinsically define the 
rate of pathogen clearance. This principle also suggests that phar-
macokinetic optimization of antimicrobial dosing is a requisite 
element of ideal therapy since “optimization” refers to dosing 
regimens that clear pathogens more effectively. Further, to the 
extent that combination therapy has been shown to accelerate 
pathogen clearance in some models of infection,164 this principle 
implies that improved survival should result.

Rapid pathogen clearance should, in theory, lead to improved 
clinical response in those infections where a persistent organism 
burden leads to a time-dependent risk of irreversible and irre-
placeable organ injury. The classic example is bacterial menin-
gitis where persistence of organism after initiation of therapy is 
associated with poor outcome.165,166 In the case of septic shock, 
more rapid pathogen clearance can similarly be expected to lead 
to less release of endogenous mediators, more rapid resolution of 
hemodynamic instability, and improved survival.

Cidal vs. Static Therapy

Although cidal therapy, by definition, should provide more 
rapid clearance of pathogens, clinical studies generally suggest 
a lack of clinical superiority over static therapy in most infec-
tions.167-169 However, there is a paucity of data on this issue in 

conditions with time-dependent risk particu-
larly septic shock.

The best known study that has addressed 
the issue of the importance of cidality in 
life-threatening infections is the classic study 
of bacterial meningitis by Lepper and col-
leagues.170 Meningitis, like septic shock is a 
condition where the speed of pathogen clear-
ance would be expected to be associated with 
outcome given that delays of therapy can be 
expected to result in a progressively increasing 
risk of irreversible organ (brain) injury and, 
therefore, death. Lepper’s 1951 study dem-
onstrated that the addition of tetracycline, a 
bacteriostatic antibiotic, to penicillin (a bac-
tericidal drug dependent on active bacterial 
replication for killing activity) for therapy 
of pneumococcal meningitis was associated 
with worse survival compared with penicil-
lin alone. The basis of this outcome has been 
thought to be potential antagonism of penicil-
lin-driven bacterial clearance by tetracycline. 
Similar results have been described when 

β-lactams are combined with chloramphenicol for treatment 
of pediatric gram-negative (excluding Haemophilus influenzae) 
meningitis.171-174 Chloramphenicol, though a cidal drug for most 
meningeal pathogens is static for gram-negatives (other than H. 
influenzae). Supportive data in experimental rabbit meningitis 
suggests a similar need for cidal therapy.175

In recent years, relatively few studies have compared the effi-
cacy of well-established cidal vs static agents in serious infections 
that may be associated with sepsis and septic shock. One ran-
domized controlled study of anidulafungin (a cidal antifungal 
echinocandin176) demonstrated superiority over a static triazole, 
fluconazole in invasive candida infections.26 As with bacterial 
endocarditis177-179 and osteomyelitis,180 higher cidal activity of 
antibiotic regimens is associated with better clinical cure rates in 
neutropenic gram-negative bacteremia.181

With respect to specific bacteriostatic antibiotics, at least one 
study has suggested inferior microbiological clearance of patho-
gens in association with a trend to inferior clinical response in 
clinically evaluable subset in patients with skin and soft tissue 
infection treated with tigecycline (a static drug) compared with 
a combination of aztreonam and vancomycin182 though other 
studies have failed to show similar results.183,184 A metaanalysis of 
tigecycline non-inferiority trials has shown evidence of increased 
mortality in the tigecycline arm.185 The use of chloramphenicol 
for intra-abdominal infections yielded similar initial clinical out-
comes compared with penicillin with gentamicin for commu-
nity-acquired pneumonia in third-world children.186 However, its 
use was associated with a significantly higher relapse rate at one 
month suggesting suboptimal microbiologic cure.

Although nominally a cidal agent, vancomycin has relatively 
weak bacterial killing activity relative to anti-staphylococcal 
penicillins for methicillin-sensitive S. aureus (MSSA) in time 
kill studies.187 Accordingly, retrospective studies have shown 

Figure 7. impact of more potent antimicrobial therapy in sepsis and septic shock. See text for 
explanation.
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that vancomycin yields inferior clinical responses and/or sur-
vival than anti-staphylococcal β-lactams in patients with MSSA 
bacteremic infections including pneumonia.92,187-191 Notably, the 
bacteriostatic agents quinipristin/dalfopristin (a streptogramin) 
and linezolid (an oxazolidinone) appear to be no more effective 
than vancomycin for therapy of serious S. aureus infections.192-194 
The cidal lipopeptide daptomycin in contrast tends to be superior 
to vancomycin and comparable to β-lactams in the treatment of 
bacteremic S. aureus infections.195,196

Overall, the available evidence supports the potential supe-
riority of cidal therapy in life-threatening infections where a 
time-dependent risk of irreversible and irreplaceable organ injury 
exists. However, additional studies will be required to defini-
tively address this question in septic shock where the difference 
should be most profound.

Pharmacokinetic Optimization

A substantial body of literature suggests that optimization 
of dosing strategies can improve pathogen clearance and clini-
cal responses in infection. However, to date, data on the impact 
of pharmacokinetic (PK) optimization on mortality in serious 
infections, particularly septic shock, remains sparse. This review 
will focus on the two groups of agents used commonly as mono-
therapy. However, similar principles regarding PK optimization 
and ideal antimicrobial therapy apply to other agents.

Time-dependent killing agents
For β-lactam antibiotics, the key PK parameter for optimi-

zation of pathogen clearance is the fractional time above the 
minimal inhibitory concentration (fT > MIC) of the pathogen. 
This refers to the amount of time (relative to the dosing interval) 
that the concentration of free antibiotic in the plasma exceeds 
the minimal inhibitory concentration (MIC) of the organism. 
Experimental studies including murine neutropenic thigh infec-
tion and pneumonia models suggests that a fT > MIC of >40–
70% (depending on the class of β-lactam) during the course of 
therapy yields maximal rate of pathogen clearance and clinical 
response/cure rate.197 There are relatively few studies that exam-
ine the role of fT > MIC in serious human infections.

In one study, the rate of clearance of gram-negative bacteria 
from a total of 32 cases of nosocomial pneumonia among the 
critically ill was correlated with the fractional time above the 
dynamic response concentration (similar to fT > MIC) of the 
pathogen to the treatment antibiotic, cefmenoxime.198 Higher 
values were also associated with decreased durations of therapy. 
More recently, the same group has shown that a fT > MIC of 
100% in 76 patients enrolled in comparative RCTs of ceftazi-
dime and cefepime for sepsis with bacteremia, lower respira-
tory tract infection, or complicated urinary tract infection was 
associated with better bacterial eradication and clinical cure rate 
than patients with an fT > MIC < 100%.199 In another retrospec-
tive study of non-urinary tract infections caused by P. aerugi-
nosa, achievement of cefepime exposures of > 60% fT > MIC 
minimized the possibility of a poor microbiological response.200 
In another study, continuous infusion (which generates 100% 
fT > MIC for sensitive pathogens) rather than intermittent 

cefmandole (both with intermittent carbenicillin) was resulted 
in improved clinical cure in the neutropenic (ANC < 100) and 
cefmandole sensitive pathogen groups of a group of 235 random-
ized patients.201 The use of continuous infusion as opposed to 
intermittent administration of piperacillin has also been shown 
to be associated with a more rapid decrease in APACHE II score 
at days 2–4 of the ICU stay in another randomized trial of 40 
septic critically ill patients with serious infections.202 Continuous 
infusion of meropenem has further been shown to be superior to 
intermittent dosing with respect to microbiologic cure in a ran-
domized, open label study in severe infections admitted to ICU 
(with a trend favoring improved clinical cure) compared with 
standard intermittent dosing.203

Among the sickest of the approximately 200 patients (with 
an APACHE II score of ≥17), extended infusion of piperacillin/
tazobactam (4 h rather than a standard 30 min bolus which also 
increases fT > MIC) for serious Pseudomonas infections has been 
found to be associated with a shorter hospitalization and lower 
14 d mortality.204 This finding is particularly noteworthy in that 
a mortality effect was noted in only the most critically ill patients; 
presumably, a large proportion of these would have had septic 
shock. Similarly, others have shown that continuous infusion of 
meropenem, piperacillin/tazobactam, and ceftazidime are each 
associated with a higher rate of clinical cures in high risk gram-
negative ventilator-associated pneumonia than is intermittent 
dosing.205-207 This applied particularly to organisms with higher 
MIC values including Pseudomonas. A recent double-blind, ran-
domized controlled study of severe sepsis has shown that continu-
ous infusion of β-lactams yields a higher clinical cure rate than 
does intermittent infusion of the same dose of the antibiotic.208

At least two metaanalyses of continuous infusion of β-lactams 
in human infection have been published.209,210 Neither showed an 
overall beneficial effect of continuous infusion; however, both 
yielded intriguing insights. Each study commented on the trend 
toward greater beneficial effects in those studies with high base-
line mortality risk, an observation that is congruent with our 
underlying hypothesis that the benefit of pharmacokinetic opti-
mization of dosing strategies on mortality should exist primarily 
in septic shock and other conditions where a time-dependent risk 
of irreversible and irreplaceable organ failure exists. In totality, 
these data support the use of high-end daily dosing at short inter-
vals, extended infusions if necessary and continuous infusions 
where possible. These data also suggest the need for studies of 
continuous infusion β-lactam therapy in the highest risk septic 
shock patients who are most likely to benefit. 

Concentration-dependent killing agents
For fluoroquinolones and aminoglycoside antibiotics, the key 

PK parameter for optimization of pathogen clearance is the area 
under the curve divided by the MIC relative to the dosing inter-
val and normalized to 24 h (AUC

24
/MIC) although peak/maxi-

mum concentration divided by the MIC of the pathogen (Cmax/
MIC) is a closely related value.211-215 These refer again to free drug 
values. Experimental animal models and human studies suggest 
that a AUC

24
/MIC of >87–125 (depending on the individual 

drug and clinical syndrome) during the course of therapy yields 
optimal pathogen clearance and clinical cure.197,211-215
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In one study of ciprofloxacin therapy of serious infections in 
74 critically ill patients, an AUC

24
/MIC of >125 (total drug) was 

associated with a significantly better clinical response and bacte-
rial clearance than values below that cut-off.215 Time to bacterial 
eradication sequentially fell with AUC

24
/MIC values of <125 (32 

d), 125–250 (6.6 d), and >250 (2.0 d). Another study found that 
clinical cure rates in excess of 90% could be achieved in cases of 
Pseudomonas bacteremia with AUC

24
/MIC values of >123 and 

Cmax/MIC values >8 for ciprofloxacin and/or aminoglycoside 
therapy.213 The same authors found cure rates of >90% above and 
<30% below a threshold AUC

24
/MIC of 250.216 Similarly, levo-

floxacin Cmax/MIC of >12.2 was found to be associated with a 
favorable clinical response and pathogen eradication in a prospec-
tive open-label study of hospitalized infections requiring at least 
3 d of intravenous therapy.217 Other have found that patients with 
VAP experienced more consistent eradication of the pathogen 
when the AUC

24
/MIC was ≥87.218 Similarly, others have shown 

more effective elimination of P. aeruginosa when levofloxacin 
AUC

24
/MIC was ≥88 (90% vs 43% if <88).219 Unfortunately, 

no human data linking fluoroquinolone PK indices to survival 
or mortality surrogates and no studies of septic shock have yet 
been reported.

Nonetheless, given that several studies have shown that inad-
equate plasma concentrations of fluoroquinolones can be antici-
pated in critically ill patients, an approach that maximizes the 
dose within a non-toxic range (e.g., 600 every 12 h for ciprofloxa-
cin or 750 mg daily for levofloxacin assuming preserved renal 
function) is likely to provide maximally rapid pathogen clear-
ance.156,212,216 Such a high dose approach is prudent particularly 
for critically ill patients with severe sepsis and/or septic shock 
where rapid clearance of pathogen would be expected to improve 
survival.

Vancomycin is another antibiotic whose efficacy is most 
closely related to concentration-dependent pharmacokinetic 
indices. One retrospective study of methicillin-resistant S. aureus 
bacteremia reported fewer vancomycin treatment failures in those 
who had AUC

24
/MIC values ≥421.220 In another retrospective 

study in patients with MRSA pneumonia, better microbiological 
and clinical outcomes in patients who had vancomycin AUC

24
/

MIC values ≥400.221 The author has recently demonstrated that 
AUC

24
/MIC is independently associated with survival in a retro-

spective study of MRSA septic shock.222

Antimicrobial pharmacokinetic indices have been linked clin-
ical and microbiologic response in a variety of studies but studies 
showing an association with survival are more limited. To the 
extent that such studies exist, they tend to show a survival advan-
tage in critically ill patients, particularly those with septic shock.

Combination vs. Monotherapy

Assuming that a pathogen is sensitive to one antibiotic in a 
regimen, the incremental contribution of a second antibiotic to 
which the pathogen is sensitive is uncertain. Combination ther-
apy using antibiotics of different classes can generate an additive 
or even synergistic antimicrobial killing effect leading to more 
rapid pathogen clearance.164,223-226 Antimicrobial synergy with 

increased bacterial clearance appears to be best established for 
β-lactam/aminoglycoside combinations.227-230 However, similar 
data on synergistic activity has emerged for combinations of a 
β-lactam and fluoroquinolone.231-237 There is even some data 
suggesting additive effects238 or even potential synergism239-242 for 
β-lactam/macrolides combinations in certain circumstances.

Despite animal models164,243,244 and clinical studies of infection 
including endocarditis, gram negative bacteremia, cryptococcal 
meningitis, and neutropenic sepsis225,245-247 suggesting a poten-
tial therapeutic role of combination therapy, the clinical benefit 
with respect to outcome of severe infections associated with sepsis 
has been uncertain. One metaanalysis of randomized controlled 
trials failed to demonstrate a benefit of β-lactam/aminoglyco-
side combination therapy in a wide variety of infections.248 Two 
separate metaanalyses have also failed to demonstrate evidence of 
benefit with combination therapy in immunocompetent patients 
with sepsis and/or gram-negative bacteremia.249,250 Other meta-
analyses of neutropenic sepsis have similarly suggested little 
incremental benefit of combination therapy of a β-lactam ± an 
aminoglycoside.251

A few studies have suggested the possibility that a mortal-
ity benefit of combination therapy may exist in sicker patients, 
particularly those with severe pneumococcal pneumonia/bacte-
remia252-255 and gram-negative bacteremia.256-258 Based on these 
data and the view that increased bacterial clearance would be 
beneficial in septic shock, we performed a stratified metaanaly-
sis/metaregression of 60 sepsis data sets. This analysis showed 
that combination therapy using 2 drugs (primarily β-lactams 
with a second agent) yielded a consistent benefit in terms of clin-
ical cure and survival only in patient groups with septic shock 
or otherwise at high baseline (monotherapy) risk of death.259 
Although a pooled odds ratio indicated no overall mortality/
clinical response benefit in sepsis (including both sepsis with-
out shock and septic shock) with combination therapy (odds 
ratio 0.856, 95% confidence interval 0.71–1.03, P = 0.0943, I2 = 
45.1%), stratification of data sets by monotherapy mortality risk 
demonstrated substantial benefit in the most severely ill subset 
(monotherapy risk of death >25%, OR 0.51, 95% CI 0.41–0.64, 
I2 = 8.6%). Of those 24 data sets that could be stratified by the 
presence or absence of shock/critical illness, the more severely ill 
group with shock consistently demonstrated increased efficacy 
of a combination therapy strategy (OR 0.49 95% CI 0.35–0.70, 
P < 0.0001, I2 = 0%). Metaregression indicated that efficacy of 
combination therapy was dependent only on the risk of death 
in the monotherapy group. A consistent benefit of combination 
therapy was found in groups with a baseline (monotherapy) 
mortality risk of >25% and/or characterized by the presence of 
septic shock. Of note, these findings held even when the analy-
sis was restricted to only randomized controlled trials.

Our recent study of 2446 propensity-matched septic shock 
patients has expanded this observation.260 We found that com-
bination therapy using two antibiotics of different antimicrobial 
classes (i.e., a β-lactam with a fluoroquinolone, aminoglycoside, 
or in the case of sensitive gram-positives, macrolide/clindamy-
cin) to which the pathogen was sensitive in vitro resulted in 
an improved 28 d (63.7% vs 71%, hazard ratio, 0.77; 95% 
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confidence interval, 0.67–0.88; P = 0.0002) and hospital survival 
(52.2% vs 62.6%, odds ratio, 0.69; 95% confidence interval, 
0.59–0.81; P < 0.0001). This beneficial effect was independent 
of organism group and clinical syndrome and was restricted to 
β-lactams in combination with fluoroquinolones, aminoglyco-
sides, or a macrolide/clindamycin. Interestingly, the most potent 
β-lactams, β-lactamase inhibitor combinations, and carbapen-
ems (which have 100% t > MIC and therefore maximal cidal-
ity for most pathogens) failed to demonstrate evidence of ben-
efit with combination therapy. As predicted by our model of the 
pathogenesis of septic shock, duration of hypotension was also 
significantly shorter with combination therapy.

While a randomized controlled trial of therapy of severe sepsis 
using meropenem ± moxifloxacin failed to demonstrate similar 
benefit,261 this outcome was predicted by the failure in our pro-
pensity study260 for carbapenem combinations to yield a survival 
advantage for the reason noted above. Several additional recent 
retrospective studies have similarly shown a benefit of combi-
nation therapy using antibiotics with different mechanisms of 
action in septic shock and related conditions.262-264

Although highly suggestive, these recent retrospective analy-
ses cannot be considered definitive. However, pending the publi-
cation of appropriate randomized trials, a strategy of several days 
of combination therapy for cases of septic shock may be advis-
able. If our model of microbial load-driven pathogenesis of sep-
tic shock accurately reflects the pathophysiology of septic shock, 
only a few days of combination therapy (until hemodynamic sta-
bilization) is required since at that point, the organism burden 
has been reduced to a level which no longer drives septic shock 
and significant ongoing organ injury.

Conclusion

There has been little improvement in the mortality of septic 
shock since the advent of modern antimicrobial therapy over 60 

years ago. The development of ever more broad-spectrum and 
potent antimicrobials has predictably resulted in evolutionary 
pressure on microbial pathogens resulting in selection toward 
resistant organisms. One consequence of this phenomenon may 
be the lack of progress in efficacy of antimicrobial therapy of 
septic shock over the ensuing decades.

This review presents a novel model of septic shock pathogen-
esis that integrates microbiologic, immunologic, and physiologic 
aspects of the disorder. This alternate paradigm of septic shock 
pathogenesis differentiates between the pathophysiologic pro-
cesses that underlie sepsis without shock and septic shock. The 
model can be used to understand and predict key determinants 
of antimicrobial therapy response in septic shock. In particular, 
this model implies that improved outcomes in severe infections 
with septic shock may be easily achieved through better use of the 
antimicrobials already in our armamentarium.

In the past, resuscitative elements have taken priority in the 
management of septic shock. Optimal use of antimicrobial ther-
apy has not been emphasized. However, the reviewed data sug-
gest that empiric, broad spectrum antimicrobial administration 
should be considered an intrinsic component of initial resuscita-
tion of septic shock. In addition, early optimization of pathogen 
clearance using highly cidal agents, optimization of antimicro-
bial pharmacokinetics, and use of appropriate combination ther-
apy appears to increase survival. Available evidence suggests that 
an approach that combines rapid and potent therapy (i.e., hitting 
“fast and hard”) should result in significant reductions of septic 
shock mortality.
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