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Abstract

Background

Human African trypanosomiasis (HAT or sleeping sickness) is caused by the parasite Try-

panosoma brucei sspp. The disease has two stages, a haemolymphatic stage after the bite

of an infected tsetse fly, followed by a central nervous system stage where the parasite pen-

etrates the brain, causing death if untreated. Treatment is stage-specific, due to the blood-

brain barrier, with less toxic drugs such as pentamidine used to treat stage 1. The objective

of our research programme was to develop an intravenous formulation of pentamidine

which increases CNS exposure by some 10–100 fold, leading to efficacy against a model of

stage 2 HAT. This target candidate profile is in line with drugs for neglected diseases initita-

tive recommendations.

Methodology

To do this, we evaluated the physicochemical and structural characteristics of formulations

of pentamidine with Pluronic micelles (triblock-copolymers of polyethylene-oxide and poly-

propylene oxide), selected candidates for efficacy and toxicity evaluation in vitro, quantified

pentamidine CNS delivery of a sub-set of formulations in vitro and in vivo, and progressed

one pentamidine-Pluronic formulation for further evaluation using an in vivo single dose

brain penetration study.

Principal Findings

Screening pentamidine against 40 CNS targets did not reveal any major neurotoxicity con-

cerns, however, pentamidine had a high affinity for the imidazoline2 receptor. The reduction
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in insulin secretion in MIN6 β-cells by pentamidine may be secondary to pentamidine-medi-

ated activation of β-cell imidazoline receptors and impairment of cell viability. Pluronic F68

(0.01%w/v)-pentamidine formulation had a similar inhibitory effect on insulin secretion as

pentamidine alone and an additive trypanocidal effect in vitro. However, all Pluronics tested

(P85, P105 and F68) did not significantly enhance brain exposure of pentamidine.

Significance

These results are relevant to further developing block-copolymers as nanocarriers, improv-

ing BBB drug penetration and understanding the side effects of pentamidine.

Author summary

Sleeping sickness or human African Trypanosomiasis (HAT) is a disease caused by a para-

site, which is transferred to humans by the bite of an infected tsetse fly. There are two dis-

ease stages: the first stage is the blood-based stage of the disease and the second stage

affects the brain. It is fatal if left untreated. The blood-brain barrier (BBB) makes the brain

stage difficult to treat because it prevents 99% of all drugs from entering the brain from

the blood. Those anti-HAT drugs that do enter the brain are toxic and have serious side

effects. Pentamidine is a less toxic blood stage drug, which our research has shown has a

limited ability to cross the BBB due to its removal by proteins called transporters. The

objective of this study was to use Pluronic to improve pentamidine delivery to target sites,

whilst reducing its side effects. Pluronic is a polymer, which can assemble into micelles

and encapsulate the drug. Thus, prolonging its circulation time and protecting it. Our

study indicated that the selected Pluronics did not increase the brain delivery of pentami-

dine. However. Pluronic-pentamidine formulations were identified that harboured trypa-

nocidal activity and did not increase safety concerns compared to unformulated

pentamidine.

Introduction

Human African trypanosomiasis (HAT or sleeping sickness) is a potentially fatal disease

caused by the parasite Trypanosoma brucei sspp. Recent epidemiological studies in 30 of the 36

African countries listed as endemic for the disease indicate that, whilst the number of disease

cases has been decreasing since 1990, there are still ~4,000 new infections/year, and ~15,000

cases worldwide [1, 2]. Furthermore, there is a substantial unreported burden of HAT [3].

The disease has two stages–a haemolymphatic stage after the bite of an infected tsetse fly,

followed by a central nervous system (CNS) stage when the parasite penetrates the brain, caus-

ing death if left untreated. The blood-brain barrier (BBB) makes the CNS stage difficult to treat

because it prevents 99% of all known compounds from entering the brain, including most

anti-HAT drugs [4–7]. Those that do enter the brain are toxic compounds, can have serious

side effects, are complex to administer and/or are expensive. Pentamidine is a less toxic blood

stage drug, which is known to treat early-late (transition) stage HAT[8], but cannot treat stage

2 disease as it does not sufficiently penetrate the BBB[7] and it causes peripheral side effects

(e.g. hypoglycaemia (incidence 5–40%) and diabetes mellitus (incidence: occasional but irre-

versible)[9] which preclude increasing the dose to overcome this limitation. Research has

shown pentamidine has a limited ability to cross the BBB and reach the brain due to it
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physicochemical characteristics and its removal by the efflux transporters P-glycoprotein

(Pgp) and multi-drug resistance associated protein (MRP) [7] (Fig A in S1 File). Furthermore,

transporters are considered essential in the mode of action of pentamidine against

trypanosomes.

Poloxamers, with commercial trademark Pluronics (BASF) or Synperonics (CRODA), are

triblock copolymers made of two poly(ethylene oxide) (PEO) blocks interspaced by a poly(pro-

pylene oxide) (PPO) block and follow the general basic formula: PEOx-PPOy-PEOx, where x

and y are the size of PEO and PPO blocks, respectively (Table 1). In an aqueous environment

and above the critical micelle concentration (CMC), the copolymers self-assemble into

micelles, with the PEO chains forming a hydrophilic shell around a PPO hydrophobic core,

within which lipophilic drugs can be solubilised, drug-free fraction decreased and circulation

time increased [10]. A variety of Pluronic block copolymers differing in the lengths of the EO

and PO blocks are available for formulation with pharmaceutical drugs. Importantly the size

of the hydrophobic block affects micellization and drug solubilisation[11]. Furthermore, com-

bining different Pluronics can enhance drug/micelle interactions and drug loading[12, 13].

The PEO shell serves as a stabilizing layer between the hydrophobic core and the external

medium, and prevents aggregation, plasma protein adsorption and opsonization and therefore

recognition by the macrophages of the reticuloendothelial system [14]. Pluronic copolymers

are also endowed with low cytotoxicity and weak immunogenicity in topical and systemic

administration. Even though PEO–PPO–PEO materials are non-degradable, molecules with a

molecular weight (MW) <7 kDa can be filtered by the kidney and cleared in urine[15]

(Table 1). In addition, Pluronics are recognised pharmaceutical excipients listed in the US and

British Pharmacopoeia so have an established safety profile.

Thus Pluronics have attracted a great deal of attention in pharmaceutical applications as

drug solubilisers [14] or controlled drug-release agents [13, 16, 17]. Notably, Pluronic P85,

P105, F68 and L61 have been shown to inhibit efflux transporters (including P-gp and MRP1-

2) and have been shown to enhance drug passage across the BBB [16, 18–29]. They have all

been approved as cosmetic ingredients [15] with F68 having been utilized as a blood substitute

component[30]. Transporter-targeting Pluronics (L61 and F127) have successfully completed

a phase 2 clinical trial for the intravenous treatment of adenocarcinoma of the upper gastroin-

testinal tract [31, 32]. Interestingly, F127-based amphotericin B-containing micelles have been

shown to be highly effective in treating Leishmania amazonensis-infected BALB/c mice with

results indicating that the empty micelles also exhibited antileishmanial activity [33]. Together

these studies demonstrate that Pluronics have potential beyond the traditional role of simple

micellar vessels for drug encapsulation and longer circulation, but are also active agents with

key biological functions [34].

In this Medical Research Council (MRC) developmental pathway funding scheme (DPFS)

study our multi-disciplinary team developed a milestone driven progression strategy (Fig 1) in

order to assess the potential of pentamidine-Pluronic formulations to effectively treat stage 2

disease, reduce the major known side effect of pentamidine on the pancreas and shorten the

Table 1. Pluronics used in this Study, with their Name, Block Composition, Hydrophilic-Lipophilic Balance (HLB) and General Formula. L, F or P refers to Liquid,

Flake, or Paste Physical Forms, respectively.

Poloxamer Pluronic MW Number of EO blocks Number of PO blocks HLB Formula

235 P85 4600 52.27 39.66 16 EO26.13PO39.66EO26.13

335 P105 6500 73.86 56.03 15 EO36.93PO56.03EO36.93

188 F68 8400 152.73 28.97 29 EO76.37PO28.97EO76.37

181 L61 1950 4.55 31.03 3 EO2PO30EO2

https://doi.org/10.1371/journal.pntd.0009276.t001
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length of treatment required to treat stage 1 disease. It was anticipated that the benefits of this

approach would be a combined pentamidine-Pluronic formulation which would provide a sin-

gle therapeutic entity for safer, simpler and more cost-effective treatment of all HAT stages

using an established drug with a known safety profile. Four Pluronics were selected for evalua-

tion based on their block-copolymer architecture, established safety profile and known ability

to inhibit Pgp. These were P85, P105, F68 and L61 (Table 1). An iterative approach was utilized

as illustrated in Fig 1

Methods

Ethics statement

All animal studies were performed within the framework of the Animals Scientific Procedures

Act (1986) and Amendment Regulations 2012 and with consideration to the ARRIVE guide-

lines. The study was approved by the King’s College London Animal Welfare and Ethical

Review Body or the London School of Hygiene and Tropical Medicine Ethics Committee and

Animal Welfare and Experimental Research Board, as appropriate.

Materials

Pentamidine (1,5-bis-4ρ-amidinophenoxypentane) isethionate salt (MW 592.68; 98% purity; cata-

logue number P0547) and Pluronic P105 (batch number BCBP8915V) were purchased from

Sigma Aldrich (Poole, Dorset, UK). Pluronic P85 (mat 30085877 batch number: WPYE5378) was

a kind donation from BASF plc (Cheshire, UK). Pluronic F68 (medical grade Catalogue number

2750016; batch numbers M7102 and MR29468) was purchased from MP Biomedicals, LLC (Ill-

kirch Cedex, France). L61 was purchased from Aldrich (catalogue number 435422; batch number

MKBH8737V). Purity of excipients met US Pharmacopeia convention NF32 specifications and

was confirmed by external specialist laboratory (Text A in S1 File).

Evaluation of potential neurotoxicity of pentamidine

New toxicities may arise following pentamidine’s improved access to the CNS. The potential

of pentamidine to cause neurotoxicity was evaluated by a brief review of the literature together

Fig 1. NANOHAT project screening cascade. We used a structure activity relationship (SAR) feedback loop to

further refine the selection of the lead formulations progressing through the screening cascade We screened

approximately 30 pentamidine/Pluronic formulations during this project using this rational, iterative approach. The

three milestones were intended to ensure that the most appropriate formulations, on the basis of in silico and in vitro
data, were taken forward to the in vivo pharmacokinetic studies and that the formulations with the greatest likelihood

of success would be tested in the whole animal efficacy studies as outlined in the progression strategy.

https://doi.org/10.1371/journal.pntd.0009276.g001
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with a neurological profiling screen and ion channel activity screens. The biological screens

were performed by external specialist laboratories as described below.

Neurological profiling screen. A CNS side effect panel was custom designed and binding

assays performed by Perkin-Elmer Science Discovery Systems (Hanover MD 21076, USA).

The IC50 for pentamidine against Trypanosoma brucei brucei strain 427 and Trypanosoma bru-
cei gambience has been reported as 1.8–26.1 nM and 14.7±4.7 nM respectively [35–37]. Thus,

testing was performed at a single concentration of 1 μM (100-times the trypanocidal concen-

tration), with follow up concentration-response curves in any assay where there was greater

than 70% inhibition to determine an inhibition constant (Ki).

Ion channel (hKir2.1) activity screens. The in vitro effects of pentamidine isethionate on

cloned hKir2.1 potassium channels (encoded by the human KCNJ2 gene) responsible for the IK1,

inwardly rectifying potassium current, were examined by ChantTest Corporation (Cleveland

Ohio 44128, USA) to industry standards (Chantest FastPatch Assay; study number. 130827.

DCC). Human epithelial kidney 293 (HEK293) cells (ATCC, Manassas VA USA) were stably

transfected with the appropriate ion channel cDNA encoding the pore-forming channel unit.

Cells were cultured in Dulbecco’s Modified Eagle Medium / Nutrient Mixture F-12 (D-MEM/F-

12) supplemented with 10% foetal bovine serum, 100 U/mL penicillin G sodium, 100 μg/mL

streptomycin sulphate and 500 μg/mL G418. Cultured cells were maintained in a tissue culture

incubator set at 37˚C in a humidified 95% air and 5% CO2 atmosphere. Pentamidine was dis-

solved in HEPES-buffered physiological saline containing 0.3% DMSO and sonicated (Model

2510/5510, Branson Ultrasonics, Danbury, CT) at room temperature for at least 20 minutes. A

glass-lined 96 well compound plate was loaded with the appropriate amount of test (five different

concentrations) and positive control (100μM BaCl2) solutions, and placed in the plate well of the

QPatchHT (Sophion Bioscience A/S, Denmark). All experiments were performed at room tem-

perature. Each cell acted as its own control. Vehicle was applied to naïve cells for a 5–10 minute

exposure interval. The test solution applied for a minimum of three minutes via the QPatch robot

pipetting system to naïve cells (n�2, where n = the number of cells/concentration). Each solution

exchange on the QPatch, performed in quadruplicate, consisted of a 5 μl exchange through the

microfluidic flow channel, resulting in 100% replacement of the compound in the QPlate. Intra-

cellular solution was loaded into the intracellular compartments of the QPlate planar electrode

(130mM K-Asp, 5mM MgCl2, 5 mM EGTA, 4mM Tris-ATP and 10 mM HEPES). Cell suspen-

sion was pipetted into the extracellular compartments of the QPlate planar electrode.

Onset and steady state block of hKir2.1current was measured using a ramp protocol with

fixed amplitudes (hyperpolarization: -110 mV, 200 ms duration, followed by a 1-second ramp

from -110 mV to +50 mV) repeated at 10 s intervals from a holding potential of –70 mV. Cur-

rent amplitude was measured at the end of the step to -110 mV. Leak current was calculated

and subtracted from the total membrane current record.

Determination of the micellar aggregation properties of Pluronic

The CMC, micellar size and aggregation number were determined in different solvents, using a

unique combination of light and neutron scattering and atomistic simulations. We also measured

the partitioning of pentamidine isethionate in selected Pluronic and the in vitro release profile.

Preparation of solutions for physicochemical measurements. Unless stated, F68, P85,

P105 or L61 were either dissolved in water (aqueous) or saline solution (0.9% w/v sodium

chloride solution). Pluronic mixtures were also prepared either with a fixed mass ratio of 1:1

(F68-P105 or F68-P85) or in the case of L61, 0.01%. Samples were left to equilibrate for at least

3 hours prior to any measurement. Ultra-pure water (18.2 MO�cm—Millipore-filtered) was

used throughout the experiments.
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Phase behaviour. In this study, L61 alone and in mixtures with one or two other Pluro-

nics in both water (aqueous) and saline mediums were visually assessed from 20˚C to 50˚C in

5˚C steps, plus 37˚C, to assess the impact of mixtures on L61 cloud point (24˚C for a 1% solu-

tion) [38].

CMC determination by fluorescence spectroscopy. The CMC determines thermody-

namic stability of the micelles during dilution of the drug delivery system in body fluids [11,

17]. Furthermore, CMC is an important parameter in view of the biological response modify-

ing effects of Pluronic block copolymers since it is needed to determine the maximum achiev-

able concentration of the polymer single chains (“unimers”) [21]. For measurement of the

CMC, pyrene (Sigma catalogue number 82648; pyrene puriss p.a. for fluorescence,�99%) was

used as a probe. A stock solution of pyrene in acetone (1.7×10−2 M) was initially prepared. A

35 μL aliquot of this solution was placed in a 100 mL volumetric flask and the solvent was evap-

orated to air. The residue was then dissolved in either ultra-pure water (18.2 MO�cm—Milli-

pore-filtered) or 0.9% w/v sodium chloride solution, resulting in a final concentration of

pyrene of 6×10−6 M. These solutions were then subsequently used as the solvent for the poly-

mer solutions. Stock solutions of each Pluronic in water and saline solution were prepared. An

aliquot of these solutions was dissolved in the pyrene/H2O or pyrene/saline solution. Solutions

of different polymer concentration were obtained by diluting the stock polymer solution with

the appropriate solvent. Mixed samples of two Pluronics were also prepared either with a fixed

ratio of 1:1 or containing 0.01% L61. Samples were left to equilibrate for at least 3 hours prior

to the experiment.

The fluorescence emission spectra were recorded on a Cary Eclipse fluorescence spectro-

photometer (Varian, Oxford, UK) with λexc = 340 nm. For the CMC, fluorescence intensities

at 373, 384, 393 nm and, when it appeared, also at the excimer band centred at 490 nm, were

measured. For each polymer, the critical aggregation concentration value was determined by

using the intensity of the best resolved peak. At least two repeats were performed for each sam-

ple. Measurements were performed at 20˚C and 37˚C.

Stability testing. The purpose of stability testing is to check whether pentamidine

becomes altered with time under the influence of a variety of environmental factors such as

temperature, humidity and light (Climatic zone IV, 30˚C and 65–75% relative humidity) [39].

In our initial 7 day assessment we also considered interaction of pentamidine with Pluronic

as product-related factors may also influence its quality. A 5% or more change in initial con-

tent of pentamidine was considered significant. Pentamidine concentration at day 0, 10 and 7

was assessed by NMR.

A Bruker Advance 400 MHz spectrometer was used for recording the one-dimensional

(1D) 1H NMR. Solutions of PTI, PTI/P85, PTI/P105 and PTI/F68 were prepared in D2O

(�99.85% in deuterated component). Data were collected at days 0, 1 and 7. Samples were

stored in amber NMR tubes at 37˚C.

Partition coefficient determination. The partitioning coefficient, P, determines the frac-

tion of drug incorporated into the micelle and provides thermodynamic characterization for

the stability of the drug-micelle complex during dilution within the body fluids[11, 17].

The partition coefficient of pentamidine in the micellar core and bulk solvent, as described

by Kabanov and co-workers [11], was measured for F68, P105 and mixtures of P105 and F68

(1:1), in both saline and aqueous solutions and at 20˚C and 37˚C.

Stock solution of 1×10−6 M pentamidine isethionate salt (PTI) dissolved in water and in

saline were prepared and were then subsequently used as the solvent for the polymer solutions

and the preparation followed a similar method as for the CMC measurements. Samples were

left to equilibrate for at least 3 hours prior to the experiment.
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The fluorescence emission spectra were recorded on a Cary Eclipse fluorescence spectro-

photometer (Varian, Oxford, UK) with λexc = 260nm, for pentamidine. The fluorescence emis-

sion intensity at ca 340 nm was followed. The partition coefficient were calculated as described

in Text B in S1 File.

Drug release. Solutions of Pluronic (1% F68 and 1% P105) with 10 mM PTI and PTI

alone in water (2 mL) were loaded into 2 mL mini-dialysis tubes with 1 kDa molecular weight

cut-off (GE Healthcare Bio-sciences Corp. USA). The tube was immersed in a 200 mL closed

Duran flask which was placed in a water bath at 37˚C for the duration of the experiment. Ali-

quots were collected from the immersion water (ultra-pure water (18.2 MO�cm—Millipore-fil-

tered) in the flask every 30 min for the first 2 hours, every hour for the next 5 hours and then

once more after 1 week. At the end of the experiment, an aliquot was collected from the dialy-

sis cell. PTI concentrations were determined by UV spectroscopy (wavelength 260 mm).

The data was fitted to Ritger-Peppas model[40].

M
M1

¼ ktn Eq 1

Where M and M1 are the cumulative amounts of drug released at time t and at infinite

time, respectively; k, the reaction constant, t the time, n, the diffusional exponent describing

the type of regime type: n = 1, case II transport, n = 0.5, Fickian diffusion, 0.5<n<1 non-Fick-

ian diffusion.

Dynamic light scattering (DLS). Dynamic light-scattering (DLS) were performed with a

photon correlation spectrometer Malvern Zetasizer Nano with a laser wavelength of 633nm.

For obtaining the reduced scattered intensity, toluene was used as the standard and the incre-

ment in the refractive index, @n/@c, was assumed to be independent on the temperature and

taken as 0.133 ± 0.002 mL�g-1 [41]. The samples, of concentrations ranging between 1 to 5% w/

v, were filtered prior to the measurements by 0.22 μm Millex syringe PVDF filters onto semi-

micro glass cells. The temperature of the sample was controlled with 0.1˚C accuracy by the

built-in Peltier in the cell compartment. Size distributions were obtained for each sample from

the analysis of the intensity autocorrelation function, which was performed with the Zetasizer

software in the high-resolution mode to distinguish overlapping distributions.

Small-Angle Neutron Scattering (SANS). The architecture of the nanocarriers was mea-

sured by SANS on the LOQ instrument at ISIS pulsed neutron source (ISIS, Rutherford-

Appleton Laboratory, STFC, Didcot, Oxford) (Text C in S1 File). The aggregation number

(Nagg) and radius micellar size, including volume of core and shell region, correlates directly

with are relevant to properties such as drug loading encapsulation efficiency, stability, half-life

and hence circulation time[14].

Simulations of Pluronic self-assembly and pentamidine encapsulation. During this

project, we worked to develop a model of the Pluronic and pentamidine systems that would

allow us to simulate the self-assembly of the polymers and the encapsulation of the drugs. In

order to simulate the timescales and system sizes required to study these systems, we utilized a

coarse-grain approach; dissipative particle dynamics (DPD)[42]. This method has been used

to study Pluronic before and has been shown to represent expected phenomena well. So we

used the simulation parameters from [43].

Evaluation of potential peripheral toxicity of pentamidine ± Pluronic

The toxicity of pentamidine in the presence of the Pluronic was explored using a variety of

assays. The proposed route of administration for our Pluronic formulations with pentamidine

was intravenous, hence the propensity for Pluronic to lyse red blood cells was studied using a
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haemolytic assay (Text D in S1 File). Capillary wall integrity after exposure to the Pluronics

was assessed using MDCK-MDR cells (see section 2.5b and Text E in S1 File). Peripheral toxic-

ity of pentamidine/Pluronic formulations to the endocrine pancreas was evaluated by quanti-

fying β-cell viability and insulin secretion from the mouse MIN6 β-cell line [44].

MIN6 β-cells were maintained in culture at 37˚C (95% air/5% CO2) in DMEM supple-

mented with 10% foetal bovine serum, 2mM L-glutamine and 100U.ml-1/0.1mg/ml-1 penicillin

/ streptomycin, with a change of medium every 3 days. Cell were trypsinised (0.1% trypsin,

0.02% EDTA) when approximately 70% confluent and seeded into 96 well plates at a density

of 3x104 cells/well. After a 24 hour culture period to allow cells to adhere, the wells were

washed with PBS and cells were pre-incubated for 2 hours in DMEM supplemented with

2mM glucose after which the medium was replaced with DMEM supplemented with Pluronic,

pentamidine and Pluronic/pentamidine solutions in the presence of 2mM glucose. All tissue

culture reagents were purchased from Sigma Aldrich (Poole, Dorset, UK).

The following formulations were evaluated: F68/PTI, P85/PTI and P105/PTI with Pluronic

concentrations of 0, 0.01, 0.025, 0.1 and 0.5% w/v and PTI concentrations of 0, 1, 10 and

100 μM (20 formulations in total, including controls, Pluronic only, PTI only and solvent only

were used). The cells were incubated under each treatment condition for 24 hours and then

evaluated for their capacity to secrete insulin over an acute 30 minute incubation after which

secreted insulin was quantified by RIA [45]. The effect of the formulations on β-cell viability

was assessed by determining the access of trypan blue to the cell interior, indicative of a com-

promised plasma membrane[46].

Blood-brain barrier studies

Radiochemicals. [3H(G)]pentamidine (specific activity, 31.9 Ci/mmol; concentration,

10.74 μg/ml; radiochemical purity, 99.4%; MW 342.64) was custom synthesized and [14C(U)]

sucrose (specific activity, 536 mCi/mmol; concentration, 67.07 μg/ml; radiochemical purity,

98.7%) was purchased from Moravek Biochemicals, California, USA.

In vitro permeability assays. Several in vitro permeability models in both accumulation

(reflecting plasma into the endothelial cell) and permeability (reflecting plasma to brain inter-

stitial fluid) formats were evaluated for this study. This included Caco2 (permeability format),

hCMEC-D3 (accumulation format), bEnd-3 (accumulation format) and MDCK-MDR (accu-

mulation format) cell lines, before selecting the MDR1-MDCK cells (permeability format) as

the most appropriate tool to address our objectives. MDR1-MDCK cells originate from trans-

fection of Madin-Darby canine kidney (MDCK) cells with the MDR1 gene, the gene encoding

for the human efflux protein, P-glycoprotein (P-gp). Using MDR1-MDCK cells avoids the

complexities of multiple transporters by focusing specifically on P-gp.

Preparation of formulation. 1% (w/v) stock solutions of each Pluronic and 10 mM pentami-

dine isethionate were prepared in Hank’s Balanced Salt Solution (HBSS) containing 25 mM

HEPES and 4.45 mM glucose, at pH 7.4. These were further diluted to give final concentra-

tions of 0.01, 0.1 or 0.5% (w/v) Pluronic containing 10 μM pentamidine isethionate. Formula-

tions were stored at room temperature for 2–4 days prior to use.

In vitro permeability assays. MDR1-MDCK cells (NIH, Rockville, MD, USA) were maintained

and permeability assays were performed at both Cyprotex (Macclesfield, Cheshire, UK) and King’s

College London. Analysis was by UPLC-MS/MS or liquid scintillation counting as appropriate.

Transmission electron microscopy confirmed appropriate cell morphology of a monolayer

with microvilli on the apical membrane and Western blot confirmed expression of P-gp.

3.4 x 105 cells/cm2 were seeded on Multiscreen plates with 0.4 μ polycarbonate Isopore

membranes (Millipore, MA, USA) in DMEM/High glucose (Sigma-Aldrich, UK, D6429)
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media containing 1% Non-Essential Amino Acids and 10% foetal calf serum (both from

Sigma-Aldrich, UK). Plates were maintained at 37˚C/5% CO2 for 4 days before use. On the

day of the assay, DMEM was removed and both the apical and basolateral surfaces of the cell

monolayer were washed twice with transport medium consisting of HBSS containing 25 mM

HEPES and 4.45 mM glucose, (pH 7.40; 37˚C). Plates were incubated for 40 minutes at 37˚C/

5% CO2 to stabilize physiological conditions. Transport buffer was removed from the apical or

basolateral chamber and replaced with the formulation to be tested. Samples were taken from

the apical and basolateral compartments after 1 hour of incubation at 37˚C/5% CO2. Samples,

including the test formulation added to the apical chamber at t = 0 were analysed at Cyprotex

using UPLC-MS-MS method (Text F in S1 File) to quantify the pentamidine isethionate con-

tent or were analysed for radioactivity using a Tricarb 2900TR liquid scintillation counter.

In situ perfusions

The in situ brain/choroid plexus perfusion method for examination of the distribution of mol-

ecules into the brain and CSF is an established technique in the rat, guinea-pig and mouse [6,

47, 48]. It allows the passage of slowing moving molecules across the blood-brain and blood-

CSF barriers to be examined and quantified in brain, capillary endothelial cells, and choroid

plexus tissue for perfusion periods up to 30 minutes.

Preparation of formulation. All formulations were prepared on the day of experiment at

a Pluronic concentration of 0.1, 1.0 or 5% (w/v) using artificial plasma as a diluent. The artifi-

cial plasma consisted of a modified Krebs-Henseleit mammalian Ringer solution containing;

117 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 24.8 mM NaHCO3,1.2 mM

KH2PO4, 39 g dextran, 1 g/L of bovine serum albumin and 10mM glucose. [3H(G)]pentami-

dine was added to give a final concentration of 157nM (equivalent to 5 μCi/ml). All formula-

tions were stirred at room temperature for at least 1 hour to allow any chemical interactions

and micelle formation to stabilize.

Animal studies. All animal studies were performed within the framework of the Animals

Scientific Procedures Act (1986) and Amendment Regulations 2012 and with consideration to

the ARRIVE guidelines.

BALB/c mice studies. Adult male BALB/c mice were purchased from Harlan UK Ltd (Oxon,

UK). All animals were maintained under standard temperature/lighting conditions and given

food and water ad libitum. Only mice above 23g in weight were used for experiments. The

study was approved by the King’s College London Animal Welfare and Ethical Review Body.

CD1 mice studies. Adult female CD1 mice (20-25g) were purchased from Charles River

(UK) for in vivo pharmacokinetic distribution studies. They were housed in specific pathogen-

free individually vented cages and fed ad libitum. The experimental protocol was carried out

with the approval of the London School of Hygiene & Tropical Medicine Ethics Committee.

The protocol was reviewed and approved by the LSHTM Animal Welfare and Experimental

Research Board.

In situ perfusions

[3H(G)]pentamidine formulations were delivered to the brain using an in situ brain perfusion

technique as previously described [6]. Briefly, mice were anaesthetized (mixture of 2 mg/Kg

Domitor/150 mg/Kg ketamine administered via the intraperitoneal route) and heparinized

(100 U ip.). Oxygenated artificial plasma (described above) at 37˚C was pumped via a

25-gauge cannula into the left ventricle of the heart, with the right atrium severed to prevent

recirculation. Pumps were calibrated to deliver an overall flow rate of 5 ml/min from the can-

nula. [3H(G)]pentamidine formulations (maintained at room temperature) were fed into the
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flow line from a dual syringe infusion pump (Harvard Apparatus, UK), at a rate of 0.5 ml/min

such that the formulation was diluted 1/10 immediately prior to entering the heart. 11 μM [14C

(U)]sucrose in artificial plasma (equivalent to 5 μCi/ml) was simultaneously fed into the flow

line from a second identical syringe using the same pump set at 0.5 ml/min (equivalent to

1.1 μM or 0.5 μCi/ml entering the heart from the cannula). The perfusion was terminated at 10

minutes or 30 minutes, and the brain was sectioned as previously described [6]. Samples taken

were those known to be invaded by parasites during second stage sleeping sickness and/or

those which control mechanisms that are disrupted by the disease such as the sleep/wake cycle

[6]. After the required samples were taken, the remaining brain tissue was homogenized and

analyzed by the capillary depletion method described by Thomas & Segal [47](Text G in

S1 File). All samples were solubilized with 0.5 ml Solvable (PerkinElmer Life and Analytical

Sciences, Buckinghamshire, UK) for 48 hours. Scintillation fluid (3.5 ml Luma Safe, PerkinEl-

mer Life and Analytical Sciences) was added and radioactivity (3H and 14C) was counted on a

Packard Tri-Carb2900TR scintillation counter in dual-label mode.

Expression of results

The radioactivity (either 3H or 14C) present in tissue samples (dpm/g) was expressed as a per-

centage of that measured in the artificial plasma (dpm/ml) and was termed RTISSUE%, as previ-

ously described [6]. Where stated, measurements for [3H(G)]pentamidine were corrected for

the contribution of drug present in the vascular space by subtraction of the RTISSUE% for [14C

(U)]sucrose from the RTISSUE% of [3H(G)]pentamidine and these corrected values were

termed RCORR TISSUE%.

Pharmacokinetic brain distribution experiments

In vivo pharmacokinetic experiments with [3H(G)]pentamidine. Formulations contain-

ing 0.025% F68 with 8 μM [3H(G)]pentamidine, 0.5% F68 with 8 μM [3H(G)]pentamidine and

8 μM [3H(G)]pentamidine alone were prepared in 0.9% sterile saline and allowed to equili-

brate at room temperature for at least 1 hour before use. A 200 μl bolus of the formulation to

be tested (equivalent to 15 μCi [3H(G)]pentamidine) was administered to mice via the tail

vein. At 2 hours post-injection, mice were exsanguinated via the right atrium of the heart into

a heparinised syringe then perfused for 2.5 minutes with [14C(U)]sucrose (1.1 μM, 0.5 μCi/ml)

via the left ventricle, (all mice were anaesthetised with Domitor/ketamine and heparinised 20

minutes prior to exsanguination). Whole blood samples were immediately centrifuged for 15

minutes at 5,400 × g to remove red blood cells and the resulting plasma was placed on ice. A

CSF sample was taken from the cisterna magna, the IVth ventricle choroid plexus and pituitary

gland were collected and the brain was sectioned into right brain and left brain (both compris-

ing frontal cortex and caudate putamen), cerebellum and midbrain (including pons and hypo-

thalamus). The remaining brain (including occipital cortex and hippocampus) was used for

capillary depletion analysis and all brain, circumventricular organs (CVO) and plasma samples

were solubilized and subjected to dual label (3H/14C) scintillation counting as previously

described.

In vivo pharmacokinetic experiments with pentamidine isethionate. Adult female CD1

mice (20-25g) were injected intravenously with pentamidine isethionate (4 mg/kg in 0.9%

physiological saline) in the absence and presence of concomitant dosing with F68 (initial

plasma concentration, calculated by estimating plasma volume at 10% of body weight) at

0.025%. Each group had an n = 3. Blood (<10 μl) was collected using a heparinized syringe at

1, 30, 120, 600 minutes post-injection and plasma prepared. Both blood and plasma samples

were snap frozen on dry ice and stored at -80˚C before analysis. After the last blood sample,
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the mice were perfused with sterile 0.9% physiological saline (via the hepatic portal vein), the

brains removed, weighed and snap frozen. Analysis of samples was by a validated weak cation

exchange solid phase extraction (WCX-SPE) approach performed by a specialist contract

research organization (Cyprotex). Briefly samples were diluted with water, WCX-SPE sorbent

was primed with MeOH and then water (to ensure phase was fully ionised). Samples were then

loaded onto sorbent and washed with pH7 buffer and MeOH. Pentamidine was then washed

off sorbent by eluting with a combination of MeOH/H2O + 5% v/v formic acid. If necessary,

samples were then evaporated to dryness and reconstituted in injection solvent. Samples were

analysed by UPLC-MS/MS as described above. LLOQ in plasma samples was 2 ng/ml and in

brain samples was 80 ng/ml.

Additional experiments revealed that intravenous administration of 10mg/kg pentamidine

isethionate plus or minus 0.5% F68 was toxic to the mice and the experiment was terminated.

Data analysis. All data are presented as means ±S.E.M and statistical analysis was carried

out using Sigma Stat software, version 12.0 (SPSS Science Software UK Ltd, Birmingham,

UK).

Trypanocidal activity in vitro
In vitro activity of drug formulations against Trypanosoma brucei blood stream form trypomas-

tigotes was determined in vitro using Alamar Blue (resazurin: Bio-Source, Camarillo, CA) as

described by [49]. Prior to determination of the trypanocidal activity of Pluronic-pentamidine

combinations, the IC50 values of the Pluronic alone was established. Each Pluronic was tested in

a 3-fold serial dilution in triplicate and in three separate experiments (n = 3). The diluent was

HMI-9 media (Invitrogen, UK). Blood stream form T. b. brucei (strain S427) trypomastigotes,

cultured in modified HMI-9 media supplemented with 10% v/v heat-inactivated foetal calf

serum, (hi-FCS, Gibco, Life Technologies, UK), were incubated (37˚C; 5% CO2) at a density of

2 x 104/ml in the presence of pentamidine alone or pentamidine-Pluronic formulations for 66h.

Resazurin (20 μl 0.49mM in PBS) solution was then added to each well and incubation contin-

ued for 6 hours. After incubation, samples were removed and fluorescence was measured using

excitation 530nm and emission 590nm on a Spectramax M3 plate reader (Molecular Devices,

USA). IC50 values were determined (where appropriate) using GraphPad Prism.

Results

Evaluation of potential neurotoxicity of pentamidine

Literature review. We conducted a brief review of the literature to assess the potential

neurotoxicity of pentamidine. Information was considered relevant to the NanoHAT project if

it described an activity that could be detected in a simple profiling screen, rather than second-

ary readouts (e.g. hERG-mediated, downstream effects on cardiomyocyte [Ca2+]i).

Table 2 lists the known pharmacology and approximate affinities of the interaction that

have been reported for this compound. As the trypanocidal activity of pentamidine occurs at

around 10 nM in vitro[37], we considered that any affinity greater than 1 μM (i.e. more than

100-fold greater than the trypanocidal concentration) was unlikely to be relevant.

There are 3 major target families for which pentamidine has significant affinity (<20 fold

above trypanocidal range) that were of concern: the imidazoline2 receptor (responsible for

effects on central blood pressure control and pancreatic beta cells); inward rectifying (IR)

potassium channels particularly blockade of Kir2.1 (this is more likely cardiac than CNS-rele-

vant) and NMDA glutamate receptors.

A neurological profiling screen. A wide ligand profiling screen was carried out against

40 CNS targets (Perkin Elmer customised CNS screening; listed in Table A in S1 File), testing
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at a single pentamidine isethionate concentration of 10 μM (1000-times the trypanocidal con-

centration), with follow up concentration-response curves in any assay where there was greater

than 70% inhibition. Pentamidine was inactive at 29 out of 40 CNS targets (including 5 gluta-

mate receptor binding sites) at 10 μM and was re-tested against the remaining targets at a

range of concentrations to generate an inhibitory constant, Ki and this value was compared to

trypanocidal activity (Table 3).

Selectivity screening of pentamidine identified 5 targets (imidazoline I2 receptor; mono-

amine oxidase A and B; adrenergic α1 receptor; muscarinic receptor) for which it has signifi-

cant affinity, and which should be monitored as we progressed through the screening cascade.

In particular, pentamidine’s high affinity for the imidazoline receptor may explain the cardio-

vascular adverse events associated with this drug. The project team considered that remaining

targets were of minor concern, as the adverse events of drugs targeting the adrenergic mono-

amine oxidase and muscarinic systems are reasonably well described. The relatively low affin-

ity of pentamidine for the remaining targets (histamine H2 receptor; opioid receptor;

adrenergic α2, β receptors; 5HT transporter) indicated that the drug was unlikely to have sig-

nificant effects until plasma/brain levels exceeded ~ 100-fold the trypanocidal concentration.

Table 2. Reported Pharmacology of Pentamidine in vitro.

Property Affinity (μM) Comments Reference

Trypanocidal 0.01 Time-dependent [37]

Imidazoline2 receptor 0.014 3H-idazoxan binding [50]

Potassium channel expression/function 0.17 K(v)11.1(hERG) expression, K(IR)2.1 block [51, 52]

NMDA (Ionotropic) glutamate receptor 0.2 Voltage dependent [53]

Human anti-platelet 1.1 Inhibits fibrinogen binding to GP11b/IIIa [54]

Rat NMDA receptor 1.8 Rat brain membrane 3H-dizocilpine binding [55]

PRL phosphatases 3 Oncology target [56]

Delta2glutamate receptor 5 Voltage independent [53]

Calmodulin antagonist 30 Inhibits nNO synthase in vitro [57]

Acid sensing ion channels (ASIC) 38 Potency 1b>3>2a>or = 1a [58]

Serine proteases 4000 [59]

https://doi.org/10.1371/journal.pntd.0009276.t002

Table 3. Ki Values for Pentamidine Determined for Selected CNS targets together with the relative selectivity

value when the Ki is compared to trypanocidal activity (IC50).These results, together with the calculated relative

selectivity values compared with trypanocidal affinity, are listed in Table 3.

Target Ki (μM) Relative to trypanocidal activity

Trypanocidal Activity 0.01 1.0

Imidazoline 12 0.001 0.1

Monoamine oxidase B 0.181 18

Monoamine oxidase A 0.217 22

Adrenergic alpha1 0.273 27

Muscarinic (central) 0.281 28

Histamine H2 7.21 721

Opioid 1.41 141

DA transporter 2.11 211

Adrenergicalpha2 10 1000 Estimate from single-point screen

Adrenergic β 10 1000 Estimate from single-point screen

5HT transporter 10 1000 Estimate from single-point screen

https://doi.org/10.1371/journal.pntd.0009276.t003
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Ion channel screen. We carried out ion channel screening at Chantest to investigate the

potential potassium (K(IR)2.1) blocking liability reported by de Boer et al., (2010) (Table 2).

Pentamidine isethionate salt was evaluated at 0.001, 0.01, 0.1, 1 and 10 μM (Table B in S1 File).

The IC50 value for pentamidine isethionate salt could not be calculated as the highest tested

concentration resulted in hKir2.1 inhibition less than 50% (i.e. 12.3±1.3%). The IC50 is esti-

mated to be greater than 10 μM. The positive control (100 μM barium) confirms the sensitivity

of the test system to ion channel inhibition.

Formulation development

As this was a milestone driven project an iterative, dynamic approach was utilized to select the

lead formulation to take forward as quickly as possible in the screening cascade (Fig 1), hence

not all Pluronic formulations were assessed with each of the methods.

Phase Behaviour. L61 phase diagrams were evaluated by visual inspection from 20˚C to

50˚C for L61 alone and in mixtures with P105 and/or F68 in water and saline solutions. L61

presents a cloud point around 24˚C [60]and F68 does not improve its solubility, while P105

does to some extent (Tables C and D in S1 File).

Critical micelle concentration (CMC) by fluorescence spectroscopy. CMC were mea-

sured for individual Pluronic and mixtures of F68, P85, P105 and L61 at 20˚C and 37˚C, both

in aqueous and saline (0.9 wt%) solutions, using the intensity of pyrene fluorescence emissions

(Table 4; Fig B in S1 File). Mixtures of two Pluronics in both aqueous (aq) and saline (sal)

mediums were prepared in either a fixed mass ratio of 1:1 or with the addition of 0.01% w/v

L61 and the CMC determined. All CMC curves show two inflection points, a feature widely

reported in the literature; the first corresponds to the onset of aggregation and was chosen as

the CMC (Fig B in S1 File; Table 4), giving the following values in saline solution at 37˚C (g/L):

Table 4. CMC Values of Pluronic Dissolved in Pure Water (aq) or Saline (sal) at 20˚C and 37˚C Determined

Using Pyrene Fluorescence Intensity. Values Mean ± S.D. Saline (0.9 wt%).

Temperature Sample 20˚C g/L 37˚C g/L

CMC CMC

P85aq 0.320±0.007 0.043±0.007

P85sal 0.146±0.031 0.042±0.018

F68aq 0.274±0.031 0.061±0.004

F68sal 0.273±0.003 0.048±0.012

P105aq 0.243±0.0140 0.073±0.014

P105sal 0.190±0.0093 0.069±0.019

L61 aq 0.030±0.032 n.a.

L61 sal 0.0240±0.024 n.a.

Fixed ratio 1:1 mixture

P85+F68aq 0.742±0.000 0.095±0.000

P85+F68sal 0.678±0.000 0.099±0.000

P85+L61 aq 0.268±0.000 n.a.

P85+L61 sal 0.3024±0.000 n.a.

Sample + L61 (0.01w/v%)

P85aq 0.114±0.004 0.051±0.0264

P85sal 0.284±0.128 0.0734±0.032

F68aq 0.201±0.004 0.051±0.018

F68sal 0.206±0.028 0.043±0.000

P105 aq 0.242±0.030 0.070±0.024

P105 sal 0.194±0.014 0.0833±0.048

https://doi.org/10.1371/journal.pntd.0009276.t004
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P85sal = 0.042±0.018; F68sal = 0.048±0.012 and P105sal = 0.069±0.020. Overall, these CMC val-

ues are fairly similar and do not allow a prioritisation based on CMC alone. The CMC of F68

and P85 mixtures (1:1 mass ratio) is about double the CMC, when expressed in total Pluronic

mass, of the individual polymers suggesting the absence of mixed micelles in these mixtures.

Small amounts of L61 (0.01%w/v) does not affect the CMC of F68 or P85 or P105 under the

conditions tested.

Stability of the formulations. Pentamidine stability in solution was followed by NMR.

Pentamidine and pentamidine/Pluronic solutions prepared in D2O were kept in amber NMR

tubes at 37˚C. Spectra were measured at days 0, 1 and 7. As a control, pentamidine in D2O was

left at 4˚C and measured at day 0 and 7. NMR data showed no significant change on peak posi-

tion or peak intensity when compared to day 0 measurements or to control samples, confirm-

ing no thermal degradation of pentamidine after 7 days at 37˚C.

Partition. Partition of PTI in the micelles was measured by fluorescence spectroscopy for

P105 and F68. Pentamidine has a slightly larger partition coefficient in F68 than in P105

(Table 5). Measurements in mixtures (F68/L61, P105/L61 and F68/P105, 1:1 mass ratio in all

cases) do not significantly change the partition coefficient.

The values of Log P obtained in saline and aqueous solutions are rather similar, suggesting

that pentamidine partition is not sensitive to the saline levels used here.

The effect of temperature is quite weak (Table 5), and does not follow the same trend with

the two Pluronic studied: values of LogP for P105 are lower at 20˚C than at 37˚C (but still very

close); instead, for F68 the partition of PTI decreases slightly at higher temperature.

At biologically relevant concentrations, 0.5 wt% Pluronics and 1.0x10-6 M PTI, extrapola-

tion of the Log P data suggests that ca. 0.1 PTI molecules would be incorporated in one P105

micelle, and 0.01 PTI molecules in one F68 micelle. At the concentrations used for SANS (5 wt

% Pluronic and 1 wt% PTI), extrapolating these numbers give 166 PTI molecules in the micel-

lar core per P105 micelle and 15 for F68 micelle.

The relative low values of log P for PTI/Pluronic system (for comparison log P for pyrene/

Pluronics is ca. 2.5 and 3.5 for F68 and P105, respectively [11]), is not surprising given the high

water solubility of pentamidine, and helps to explain the drug release profile for PTI / Pluro-

nics systems discussed next.

Overall, this means that Pluronic have a limited capacity to interact with pentamidine and

prolong its circulation.

Drug release. Solutions of 10 mM pentamidine or 10 mM pentamidine plus 1% F68 or

1% P105 were loaded in dialysis cells and the amount of pentamidine eluting from the cells

into water at 37˚C were measured over time (Fig D in S1 File). Both reaction type and reaction

Table 5. The fraction of pentamidine incorporated into the Pluronic micelle expressed as a partitioning coeffi-

cient, P. The Pluronic was dissolved in pure water (aqueous) or saline (saline) at 20˚C and 37˚C. (Also see Fig C in

S1 File).

Pluronic Solvent Temperature ˚C Log P

P105 saline 20 1.06

37 1.15

P105 water 20 0.99

37 1.09

F68 saline 20 1.67

37 1.47

F68 water 20 1.67

37 1.46

https://doi.org/10.1371/journal.pntd.0009276.t005
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constant, for PTI alone and PTI/Pluronic were in a similar range. ca. 0.5 (Fickian diffusion)

for reaction type and ca 0.3 for reaction constant. No significant difference was observed

between PTI/Pluronics and PTI/water systems. Thus, in the conditions tested, pentamidine

release seems to be dominated by diffusion and Pluronic micelles were not a barrier for drug

release.

Aggregation number and Micellar size:. Pluronic micelles can be reasonably described

as a compact core formed by a dry PPO block surrounded by a highly hydrated shell formed

by the two PEO blocks[61, 62]. The core-shell model was thus used to provide a more detailed

characterisation of the morphology of the Pluronic micelles in D2O and how it is affected by

the presence of PTI, using input values for the core radius and shell thickness were based on

hydrodynamic radius values obtained by DLS (Table E in S1 File). A term to compensate for

polydispersity was included for both Pluronics, as well as a structure factor (S(q)), correspond-

ing to a hard sphere model, in order to account for intermicellar interactions. A summary of

the main parameters obtained from the analysis of the data (Fig E in S1 File) is present in

Table 6.

A direct comparison of F68 and P85 micelles in D2O shows that both have similar shell

thickness, with F68 showing values slightly larger, 36.5 Å vs 31.4 Å, respectively. It is worth

noting that F68 EO blocks have on average 76.4 EO units while P85 blocks are only 26.1 units

long. The core of F68 micelles are significantly smaller than P85 micelles, 15.4 vs 42.9 Å. In

terms of PO content, the F68 PO block is 29 units long while P85 is 40 units long. Overall, P85

micelles are larger than F68 micelles, 74.3 vs 52.0 Å, respectively.

The molecular dynamic simulation work agrees well with these experimental results. The

average aggregation number per micelle (Nagg) and the average number of micelles (Nmic)

were calculated once the systems had equilibrated have been measured. Fig 2 shows plots of

Nagg and Nmic as a function of Pluronic concentration for both the F68 and P105 Pluronics.

We carried out simulations over a range of Pluronic concentrations that span the CAC and the

CMC values observed experimentally to validate the models (at least qualitatively). From Fig 2,

one can see that in both systems, once we have passed the CAC the number of micelles remains

more or less constant but they continue to grow in size as the concentration increases until we

reach the CMC at which point the size of the micelles more or less plateaus. Also, when com-

paring the behavior of the F68 and P105 Pluronics, we found that the P105 Pluronics form

larger aggregates when near the CMC as compared to that for the F68 Pluronics, and therefore

fewer micelles. Note, we have also used molecular dynamic simulations to examine mixtures

of F68 and L61 Pluronics, and the results of those systems are presented in Fig F in S1 File.

Additionally, we have compared the findings from the simulations with the identified val-

ues (dashed lines) of the CAC and CMC from the experimental systems.

In the presence of 1% PTI, a small reduction in size was observed for both Pluronics, ca. 2

Å in both cases. The increase to 3% PTI does not cause further changes.

Table 6. Geometric parameters from model-fitting of the SANS Pluronic data at 37˚C, including core and shell micellar sizes, fraction of solvent in the corona

(χsolv) and aggregation number (Nagg). (Also see Fig E in S1 File).

Sample Core radius (Å) Shell thickness (Å) Total radius (Å) χsolv Nagg

F68 5% 15.4 36.5 52.0 0.99 2.37

F68 5%/ PTI 1% 15.1 34.7 49.8 0.98 2.25

F68 5%/ PTI 3% 15.5 33.9 49.4 0.99 2.38

P85 5% 42.9 31.4 74.3 0.95 35.4

P85 5%/ PTI 1% 41.5 30.5 72.0 0.95 32.4

P85 5%/ PTI 3% 41.0 30.5 71.5 0.99 31.6

https://doi.org/10.1371/journal.pntd.0009276.t006
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The coronas were highly hydrated, as reported for these polymers [63, 64]. F68 micelles

were more hydrated than P85: for each EO unit in the shell, there were 17 D2O molecules in a

F68 micelle but only 3.4 in a P85 micelle.

The addition of pentamidine leads to a subtle, but perceptible, reduction of the number of

water molecules in the F68 micelle shell. For P85, no measurable changes were observed.

Peripheral toxicity

Pluronic concentrations used in the biological assays were based on the CMC measurements.

Peripheral toxicity of the individual polymers was assessed. L61 was not studied at this stage

due to its limited solubility. The results of the haemolysis and capillary integrity studies are

found in Text H and I in S1 File.

Effect of Pluronics on insulin secretion and beta-cell viability. Exposure of MIN6

β-cells to 1, 10 and 100μM pentamidine for 24 hours caused a concentration-dependent inhi-

bition of acute insulin secretion (Fig 3). Surprisingly, P85 and 105 were significantly more

Fig 3. The effect of pentamidine and Pluronics on insulin secretion from MIN6 β-cells. (A-D) P85 and P105

induced a strong suppression of insulin secretion from MIN6 β-cells even at low concentrations. (C-D) F68 only

induced insulin secretion suppression at concentrations�0.1% w/v. Data are expressed as a percentage of insulin

secretion from MIN6 β-cells incubated in the absence of pentamidine or Pluronics.

https://doi.org/10.1371/journal.pntd.0009276.g003

Fig 2. The average number of Pluronic molecules found in a micelle (Nagg) and the number of micelles in our

system (after they have equilibrated) (Nmic) as a function of the concentration of the Pluronics in the system for

both the F68 (left) and P105 (right) Pluronics.

https://doi.org/10.1371/journal.pntd.0009276.g002

PLOS NEGLECTED TROPICAL DISEASES Pentamidine reformulation to improve treatment of sleeping sickness

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009276 April 15, 2021 16 / 31

https://doi.org/10.1371/journal.pntd.0009276.g003
https://doi.org/10.1371/journal.pntd.0009276.g002
https://doi.org/10.1371/journal.pntd.0009276


effective than pentamidine in inhibiting insulin secretion, such that insulin release was sub-

stantially inhibited by these Pluronics in the absence of pentamidine at all concentrations

tested (0.01–0.5% w/v) (Fig 3A-D). Low concentrations of F68 (0.01 and 0.025% w/v) gener-

ated similar inhibitory effects on insulin secretion as unformulated pentamidine (Fig 3A and

3B) and increased toxicity was observed with higher concentrations of F68 (Fig 3C and 3D).

Trypan blue staining indicated that the MIN6 β-cells were able to tolerate pentamidine con-

centrations of 1 and 10 μM, but 100 μM pentamidine, which induced maximal inhibition of

insulin secretion, was accompanied by a large number of cells taking up Trypan blue (Figs G

and H in S1 File). These micrographs are indicative of the suppression of insulin secretion by

pentamidine being associated with marked reductions in β-cell viability, but the plasma mem-

brane was largely intact as there was no leakage of insulin, a 5.5 kDa peptide, from the cell inte-

rior. The combination of 100 μM pentamidine with 0.5% w/v F68, which caused maximal

suppression of insulin release (Fig 3), led to the highest proportion of cells that showed Trypan

blue staining.

Trypanocidal activity in vitro

The In vitro activity of Pluronic drug formulations alone against T. b. brucei blood stream

form trypomastigotes was determined showing low trypanocidal activity of F68 compared to

high activity of P85 and P105 (Table 7).

In further studies the anti-trypanosomal activity of combinations of F68 and pentamidine

were assessed (Table 8)(74). The IC50 (± 95% CI) values of pentamidine were 2.11 x 10−5 ±
(1.79 x 10−5–2.50 x 10−5) μM alone, 6.36 x 10−6 (± 4.43 x 10−6–9.12 x 10−6) μM with 0.01% F68

and 3.25 x 10−6 ± (3.13 x 10−7–3.38 x 10−5) μM with 0.001% F68.

To determine if the addition of Pluronic to pentamidine had an additive effect on the trypa-

nocidal activity of pentamidine, it was decided that work should focus on F68 rather than the

other Pluronics, as both P85 and P105 caused an inhibitory effect on insulin secretion.

Although IC50 values could only be determined for two combinations, in part due to the high

starting concentration of pentamidine used, a limited interaction between Pluronic F68 and

Table 7. The Inhibitory Concentration (IC50) required to reduce number of bsf trypomastigotes by 50%. Pluronic

were tested at 12 serial dilutions in triplicate and repeated in 3 separate experiments (n = 3) to produce IC50 values.

w/v % F68 F68/0.01% L61 P85 P105

IC50 0.48% 0.46% 0.00021% 0.00084%

95% CI 0.38–1.35 0.027–0.94 0.00056–0.0014 0.00070–0.0012

https://doi.org/10.1371/journal.pntd.0009276.t007

Table 8. The % of bsf trypomastigotes inhibited by pentamidine/pluronic combinations. The combination formulation was tested in triplicate and repeated in 3 sepa-

rate experiments (n = 3).

Pentamidine (μM)

1 0.3 0.000152 5.1 x 10−5 1.7 x 10−5 5.7 x 10−6

F68 (w/v %)

0.5% 99.5% 98.6% 98.6% 98.3% 98.3% 99.2%

0.1% 98.5% 97.7% 97.1% 97.1% 97.3% 97.7%

0.025% 98.3% 97.5% 97.0% 96.9% 97.0% 90.6%

0.01% 98.4% 97.6% 96.4% 95.1% 82.8% 3.4%

0.001% 98.3% 97.4% 96.4% 91.9% 73.1% 1.8%

0% 98.3% 97.4% 92.7% 65.3% 35.0% 4.1%

https://doi.org/10.1371/journal.pntd.0009276.t008
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pentamidine was observed at the lowest F68 concentrations (Table 8 boxes shaded in red), sug-

gesting that the addition of Pluronic had an additive effect on the trypanocidal activity.

Blood-brain barrier: In vitro permeability assays

We examined the ability of different pentamidine-Pluronic formulations to cross the BBB

using the MDR1-MDCK cell line. Two analytical methods were applied: one detected pentam-

idine isethionate using UPLC-MS/MS (Table F in S1 File) and the other detected radiolabelled

pentamidine using liquid scintillation counting (Text J in S1 File and Table 9). The presence of

the Pluronics (F68, P105 or P85) at concentrations of 0.01% and 0.1% did not significantly

increase the distribution of pentamidine isethionate or [3H(G)]pentamidine across the

MDR1-MDCK monolayer measured over 60 minutes.

In conclusion, our target formulation characteristics of at least a 2-fold increase in pentami-

dine / pentamidine isethionate movement across the monolayer, compared with unformulated

pentamidine, was not observed using these in vitro models of BBB permeability.

Blood-brain barrier In situ brain perfusion

Pluronic P85 and Pluronic P105. Co-formulation of 15.7 nM [3H(G)]pentamidine with

Pluronic P85 did not significantly increase [3H(G)]pentamidine accumulation in any of the

brain regions examined using in situ brain perfusion (Table G in S1 File). Additional informa-

tion regarding this data set can be found in the supplementary Text K in S1 File.

An overall decrease in the [14C(U)]sucrose-corrected uptake of [3H(G)]pentamidine into

brain parenchyma was observed when 15.7nM [3H(G)]pentamidine was co-formulated with

0.1% (p<0.001) and 0.5% (p<0.001) P105, as shown in Table H in S1 File, but (like P85) these

data did not reach statistical significance in any of the individual regions sampled (Two-Way

ANOVA with Bonferroni’s pairwise comparisons).

In contrast, there was a 33% increase in the [14C(U)]sucrose-corrected uptake of [3H(G)]

pentamidine into the endothelial cell pellet when it was co-formulated with 0.1% P105

(p = 0.027; Two- way ANOVA with Bonferroni’s pairwise comparisons). This increase was

apparent in only 3 out of 6 mice, and was associated with penetration of the brain tissue by the

vascular space marker [14C(U)]sucrose, perhaps indicating an increase in the permeability of

the apical/luminal endothelial cell membrane. Additional information regarding this data set

can be found in the supplementary Text L in S1 File.

Table 9. The Effect of P85, F68 and P105 on the Apparent Permeability of [3H(G)]pentamidine (9 nM) MDR1-MDCK Cell Monolayers in the Apical to Basolateral

Direction and the Basolateral to Apical Direction. The percentage recovery of pentamidine is also shown. All the data has been corrected for extracellular space by sub-

tracting [14C(U)]sucrose (5.5 μM) Papp values which ranged from 0.89 to 2.00 x 10−6 cm/s. Each value represents three replicates for each n and n = 3. n.d. = not determined

as integrity of the barrier compromised.

[3H(G)]Pentamidine (9 nM) Pluronic Concentration (%) Papp A2B (10−6 cm/s) Papp B2A (10−6 cm/s) A2B (%) B2A (%)

Mean±SEM Mean±SEM Mass balance Mass balance

0 0.678±0.025 0.776±0.062 84 85

0.01% P85 0.310±0.142 0.431±0.161 86 87

0.1% P85 0.561±0.0.172 0.227±0.081 89 89

0.5% P85 n.d. n.d. 90 90

0.01% P105 0.577±0.0710 0.818±0.086 86 89

0.1% P105 0.898±0.161 0.776±0.054 89 88

0.5% P105 n.d. n.d. 91 91

0.01% F68 0.200±0.115 0.106±0.061 95 83

0.1% F68 0.221±0.067 0.033±0.019 98 87

0.5% F68 0 0 98 84

https://doi.org/10.1371/journal.pntd.0009276.t009
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PLURONIC F68

10 minute perfusions. Co-formulation of [3H(G)]pentamidine with F68 resulted in an overall

decrease in accumulation of [3H(G)]pentamidine into brain parenchyma after 10 minutes of

perfusion (p = 0.002 for 0.1% and p = 0.03 for 0.5% respectively; Two-way ANOVA with Bon-

ferroni’s pairwise comparisons) (Table I in S1 File). A decrease in vascular space as measured

by accumulation of [14C(U)]sucrose was also measured when 0.01 or 0.1% F68 (but not 0.5%)

was present in the artificial plasma (p = 0.042 for 0.01% and p = 0.004 for 0.1% respectively;

Two-way ANOVA with Bonferroni’s pairwise comparisons) (Table J in S1 File).

F68 did appear to increase accumulation of [3H(G)]pentamidine into the endothelial cell pellet

at concentrations of 0.01% and 0.1%, but these results did not attain significance. This increase in

[3H(G)]pentamidine, did not appear to be associated with a concomitant increase in uptake of

[14C(U)]sucrose (p>0.05) and might have been due, at least in part, to a small decrease in the

amount of drug crossing the basolateral membrane to enter the brain parenchyma, as indicated

by a marginal reduction of [3H(G)]pentamidine in the supernatant (Table I in S1 File).

Co-formulation of [3H(G)]pentamidine with 0.5% F68 resulted in a 2-fold increase in

uptake into the pituitary gland after 10 minutes of perfusion (p = 0.017; 1-way ANOVA with

Bonferroni’s pairwise comparisons). A similar, but not statistically significant increase was

observed in uptake of [14C(U)]sucrose into this organ over the same time period.

30 minute perfusion. Accumulation of [14C(U)]sucrose measured in brain parenchyma, as a

percentage of concentration in the artificial plasma (RTISSUE/PLASMA%), ranged from 1.3% in the

hippocampus to 4.3% in the pons after 30 minutes of perfusion. These values are almost identical

to our previously published data for BALB/c male mice (1.6 and 4.5% respectively)[7]. Accumula-

tion of [3H(G)]pentamidine, when corrected for vascular space ranged from 6.9% in the hippo-

campus to 15% and 10.9% in the more highly vascularized regions of the hypothalamus and pons,

respectively. These values were slightly higher than our previously published data (4.3% for hippo-

campus, 7.6% for hypothalamus and 8.2% for pons) and might reflect changes in expression of

transporters due to differences in environment/diet or selective pressures during breeding.

Formulation of 15 nM [3H(G)]pentamidine with 0.01% or 0.1% F68 did not affect [14C(U)]

sucrose brain space (p = 0.139 and 0.460 respectively; 2-way ANOVA with Bonferroni’s post-

tests). No significant differences were observed in [3H(G)]pentamidine accumulation at these

concentrations (p = 0.120 and 1.000 respectively; 2-way ANOVA with Bonferroni’s post-tests).

Similarly, F68 had no significant effect on [14C(U)]sucrose or [3H(G)]pentamidine accumula-

tion in the capillary depletion samples after 30 minutes of perfusion (p>0.05 for each concen-

tration tested for each isotope; 2-Way ANOVA) nor in the circumventricular organs (p>0.05

for each concentration tested for each isotope; 2-Way ANOVA).

There was an approximate 2-fold increase in accumulation of both [3H(G)]pentamidine

and the vascular space marker [14C(U)]sucrose in the brain parenchyma of mice that were per-

fused with formulations containing 0.5% F68, (p = 0.003 and p <0. 001 respectively; 2-way

ANOVA with Bonferroni’s post-tests), as shown in Tables K and L in S1 File. Visible signs of

damage to the BBB including permeation and staining with Evans blue (MW 961), were also

observed in some mice. The results from the capillary depletion analysis after 30 minutes of

perfusion would also appear to reflect damage to both the apical and basolateral endothelial

cell membranes, with a tendency for increased permeation of [14C(U)]sucrose into the brain

parenchyma, as demonstrated by a small, though not statistically significant rise in this isotope

being detected in the supernatant (Tables K and L in S1 File).

Co-formulation of [3H(G)]pentamidine and [14C(U)]sucrose with 0.5% F68 resulted in an

increase into the pituitary gland and the choroid plexus when the perfusion time was extended

to 30 minutes, although these results were not statistically significant.
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In vivo pharmacokinetic experiments with pentamidine isethionate or [3H

(G)]pentamidine

F68 at the 0.025% does not change the accumulation of pentamidine isethionate in the plasma,

brain parenchyma or blood in the CD1 mouse up to 10 hours post-dosing (Fig 4). There might

be a late-onset increase in brain concentrations in the pentamidine alone group, but as the

standard deviations for this group at this time-point are large this is unlikely to be significant.

Table 10 shows the mean plasma and CSF (corrected for blood/sucrose contamination)

concentrations for [3H(G)]pentamidine and/or its metabolites, measured at 2 hours after

intra-venous injection. No significant differences were observed when [3H(G)]pentamidine

was co-formulated with either 0.025% or 0.5% F68 (p>0.05 for plasma and CSF; One-way

ANOVA). Similarly, no significant differences were observed in uptake of [3H(G)]pentami-

dine or the vascular space marker [14C(U)]sucrose, into the brain parenchyma, capillary deple-

tion samples or the circumventricular organs when [3H(G)]pentamidine was injected in the

presence or absence of F68 (p>0.05; 2-way ANOVA with Bonferroni’s pairwise comparisons)

as shown in Table 10.

Discussion

In this study we generated pentamidine/Pluronic formulations and prioritised 18 formulations

using a rational, iterative approach (Fig 1). The milestones were intended to ensure that the

most appropriate formulations, on the basis of in silico and in vitro data, were taken forward to

the in vivo pharmacokinetic studies and that the formulations with the greatest likelihood of

success would be assessed for toxicity issues in vivo and tested in animal efficacy models of

stage 1 and stage 2 HAT. An ideal formulation for injection should be equipped with charac-

teristics that improved the stability and safety profile of pentamidine, enhanced therapeutic

effect, and accelerated the absorbance of drugs.

Since increasing the concentration of pentamidine in the brain may cause an intractable

neurotoxicity and serious adverse events our empirical starting point was a customised, wide

ligand profiling screen carried out against 40 CNS targets (Table 2 and Table A in S1 File).

Five targets (imidazoline I2 receptor; monoamine oxidase A and B; adrenergic α1 receptor;

muscarinic receptor) were identified to have significant affinity for pentamidine (Table 3). All

but one of these (imidazoline I2 receptor) had a 20–1000 fold lower affinity than the relative

Fig 4. The effect of Pluronic F68 on pentamidine concentrations in CD1 mouse plasma, blood and brain after an

intravenous dose. Each point represents an n of 3. 4mg/kg pentamidine ± 0.025% F68 i.v. Values ± SD.

https://doi.org/10.1371/journal.pntd.0009276.g004
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trypanocidal activity and did not generate major concern[55]. The activity against the imida-

zoline I2 receptor may explain the cardiovascular adverse events with this drug. We were

unable to reproduce the result of De Boer et al., 2010[51] in a recombinant human system indi-

cating that pentamidine was without effect (at up to 10 μM) on the hKir2.1 potassium chan-

nel-induced inward rectifying current (Table 2 and Table B in S1 File). Thus progression

could continue through the screening cascade.

For the Pluronics tested in this study (P85, P105, F68 and L61), phase behaviour [38, 65]

and cloud points [66] are well established. P85, P105 and F68 are soluble in water and saline

solutions at both 24˚C and 37˚C. L61 has a very low cloud point at 24˚C. Pure L61 therefore

has limitations as a formulation for drug delivery. Our phase diagrams revealed that F68,

which is highly hydrated, is unable to improve the solubility of highly hydrophobic L61 to a

great extent, so it was not possible to pursue a 1:1 mixture of L61:F68 in the assays (Tables C

and D in S1 File).

Using molecular dynamics simulations and physical techniques, we elucidated the struc-

tural properties of Pluronic P85, P105, F68 and L61 micelles, and were able to extract funda-

mental parameters required for biological evaluation of the formulations. For example, the

CMC were measured for F68, P85 and P105 at 20˚C and 37˚C both in aqueous as well as saline

(0.9 wt%) solutions. Several values for the CMC of Pluronics can be found in the literature [11,

Table 10. Uptake of [3H(G)]pentamidine into brain tissue (corrected for vascular/[14C]sucrose space) and CSF (corrected for blood/[14C]sucrose contamination)at

2 hours post-injection in BALB/c mice. Data is presented (a) as the tissue/plasma ratio and converted into concentrations in ng/g of tissue (b) and as concentration for

the terminal plasma and CSF samples (c). A limitation of measuring pentamidine by scintillation counting is that any metabolites produced during the 2 hours that have

retained the radiolabel, will be counted as [3H(G)]pentamidine. These metabolites may have different transport characteristics and may or may not be active against

trypanosomes.

(a) RTISSUE/PLASMA% (mean±SEM)

Region Control (15.7 nM pentamidine) (n = 6) 0.025% F68 + (15.7 nM pentamidine) (n = 6) 0.5% F68 + (15.7 nM pentamidine) (n = 5)

Right brain 115.52 (± 12.46) 120.29 (± 17.14) 87.36 (± 20.36)

Left brain 152.29 (± 33.48) 111.85 (± 19.15) 106.10 (± 12.92)

Cerebellum 204.02 (± 35.28) 208.87 (± 28.81) 172.48 (± 30.34)

Midbrain 181.18 (± 45.30) 254.02 (± 35.48) 180.00 (± 32.83)

Homogenate 249.41 (± 35.59) 184.18 (± 35.22) 293.81 (± 122.95)

Supernatant 123.35 (± 28.45) 99.72 (± 9.02) 98.66 (± 9.47)

Pellet 479.72 (± 72.50) 310.63 (± 38.62) 536.52 (± 212.72)

Choroid plexus 24666.66 (± 4928) 19628.89 (± 4672) 20463.70 (± 1827)

Pituitary gland 15053.41 (± 3598) 11285.42 (± 2008) 15061.87 (± 5321)

(b) Mean concentration (ng/g or ng/ml for the supernatant ±SEM)

Region Control (15.7 nM pentamidine) (n = 6) 0.025% F68 (15.7 nM pentamidine) (n = 6) 0.5% F68 + (15.7 nM pentamidine) (n = 5)

Right brain 0.363 (± 0.035) 0.417 (± 0.061) 0.302 (± 0.058)

Left brain 0.472 (± 0.084) 0.383 (± 0.063) 0.375 (± 0.048)

Cerebellum 0.607 (± 0.032) 0.719 (± 0.097) 0.591 (± 0.084)

Midbrain 0.494 (± 0.075) 0.866 (± 0.115) 0.614 (± 0.072)

Homogenate 0.820 (± 0.183) 0.643 (± 0.132) 0.988 (± 0.375)

Supernatant 0.363 (± 0.037) 0.345 (± 0.035) 0.351 (± 0.043)

Pellet 1.482 (± 0.151) 1.067 (± 0.125) 1.827 (± 0.662)

Choroid plexus 74.68 (± 11.48) 84.04 (± 5.78) 72.20 (± 7.60)

Pituitary gland 43.76 (± 3.82) 37.58 (± 6.54) 68.13 (± 15.05)

Mean concentration

(c) Control 0.025% F68 0.5% F68

CSF pg/ml (± SEM) 2.669 (± 0.765) 1.948 (± 0.826) 3.592 (± 1.932)

Plasma ng/ml (± SEM) 0.343 (± 0.061) 0.345 (± 0.013) 0.356 (± 0.026)

https://doi.org/10.1371/journal.pntd.0009276.t010
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67–70]. These values tend to vary widely, showing as much as one order of magnitude differ-

ences for the same Pluronic[71]. This has been attributed to several reasons: difference in

molecular weight distribution between batches [70, 72], presence of impurities such as

diblocks[72, 73] and differences inherent to the technique employed[74]. In addition, for some

Pluronic systems, two critical concentrations are detected, both in surface tension and spectro-

scopic experiments [68, 72]. This behaviour has been ascribed to formation of premicellar

aggregates occurring before full micelle formation[67, 68, 75–77]. In this work, which used the

intensity of pyrene fluorescence emission, two critical concentrations were also detected (Fig B

in S1 File). The CMC values presented here (Table 4) are taken from the first break point. The

CMC values achieved for F68, P85 and P106 were similar and did not allow a prioritisation of

a specific formulation based on CMC alone. The concentrations of Pluronic (0.001 to 0.025%)

used in the biological assays were based on the CMC values and were selected on the basis that

they would be likely to consist of mainly unimers (0.001–0.025%); a mixture of unimers and

micelles (0.1%) and mostly micelles (0.5%) respectively.

F68 micelles have a relatively small radius of 52.0 Å (Table 6). This attribute will increase

stability, half-life and therefore circulation time of this Pluronic, since small micelles evade

detection and destruction by the reticuloendothelial system. However, this small volume may

also correlate to low drug loading (Table 5; Fig C in S1 File). In addition, the fact that pentami-

dine release from both F68 and P105 micelles is by diffusion would indicate that these Pluro-

nics are unlikely to significantly prolong the circulation time of pentamidine (Fig D in S1 File).

Haemolysis of human red blood cells was not observed in the presence of 0.5%, 0.1%,

0.025%, 0.01%, and 0.001% P85, P105 or F68, the results being comparable to the negative con-

trol (0.05% DMSO). This suggests that an intravenous formulation containing P85, P105, or

F68 would not lead to haemolysis at the tested concentrations, supporting the safety profile of

Pluronic polymers for medical use[15, 78]. In agreement, no differences were reported in the

terminal haematological values (including haemoglobin, packed cell volume, number of eryth-

rocytes, total number of leukocytes) and blood-chemical values (including urea, total protein,

alkaline phosphatase) obtained from rats who had received once daily intravenous doses of F68

(doses ranging from 10–1000 mg/kg body weight) or from rats who had been administered

physiological saline for one month [79]. No morphological abnormalities were detected in the

rats which received the 0–50 mg/kg daily dose of F68, however, rats which received the higher

doses had detectable alterations i.e. the presence of foam cells in the lungs (dose was 500–1000

mg/kg) and focal cortical degenerative changes in the kidneys (dose was 100–1000 mg/kg).

Pentamidine caused a concentration-dependent inhibition of insulin secretion from MIN6

β-cells suggesting that this is one mechanism through which it could induce diabetes[9]. Pent-

amidine is known to be an agonist at imidazoline receptors [80], but it is unlikely that this

explains its inhibitory effects on insulin secretion since β-cell imidazoline receptors are cou-

pled to increased insulin release[81]. However, the imidazoline ligand idazoxan is reported to

cause a concentration-dependent inhibition of β-cell viability[82], similar to the effects

observed here with pentamidine, so it is possible that the reduction in insulin secretion is sec-

ondary to pentamidine-mediated activation of β-cell imidazoline receptors and impairment of

cell viability. Pentamidine-induced diabetes is not thought to be reversible [9], and so testing

for a marker of pancreatic off target adverse effects occurred early in the screening cascade.

Importantly, a number of Pluronic formulations (P85, P105) were shown to increase the

peripheral toxicity of pentamidine as measured by decreases in insulin secretion. In a human

tissue cell model (HEK-293), P105 has previously been shown to cause dose dependent

changes in cell viability[16]. However, a lead Pluronic (F68) was identified which demon-

strated equivalent toxicity to unformulated pentamidine, on β-cell viability and insulin secre-

tion. Supporting this formulation selection our studies also revealed that P85 and P105 at

PLOS NEGLECTED TROPICAL DISEASES Pentamidine reformulation to improve treatment of sleeping sickness

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009276 April 15, 2021 22 / 31

https://doi.org/10.1371/journal.pntd.0009276


0.01% and 0.5% concentrations caused loss of MDCK-MDR monolayer integrity, whereas F68

at concentrations up to 0.5% had no effect (Fig I in S1 File). A correlation between HLB and

cytotoxicity has previously been observed with low cytotoxicity being guaranteed when the

HLB of the polymer is�10 (Table 1)[30].

Importantly, all formulations tested did not prevent pentamidine killing Trypanosoma bru-
cei blood stream form trypomastigotes. In fact, pure P85 and P105 were highly trypanocidal

and F68-pentamidine formulations had a slight synergistic effect.

In vitro BBB studies indicated that there was an efflux process for pentamidine as also dem-

onstrated in P-gp knockout mice studies [7]. However, we were unable to demonstrate an

increase in pentamidine movement across the barrier in either direction, compared with

unformulated pentamidine in any of our in vitro systems.

Further studies utilizing the in situ brain perfusion technique confirmed that the Pluronics

(P85, P105 or F68) did not increase pentamidine delivery to the brain, including the choroid

plexus, after either 10 or 30 minutes exposure. Our studies using in situ brain perfusions over 10

minutes in mice have shown that the P85, P105 and F68 formulations have a tendency to actually

prevent uptake of pentamidine into brain tissue and/or vascular endothelial cells, which constitute

an intact BBB. This may be related to interactions of the Pluronics with influx transporters for

pentamidine (e.g. OCT1), although our in vitro BBB studies did not indicate that the pentamidine

permeability was affected by the presence of F68, P85 and P105 (0.01% and 0.1%) in either direc-

tion. Importantly, a similar P85 induced reduction in BBB permeability was observed by other

workers, [83] who noted a reduction in the rate of uptake into brain tissue of P85-leptin conju-

gates during the first 90 minutes after iv injection compared with native leptin. Despite this initial

inhibition of P85-leptin influx, a greater overall concentration of the conjugate was measured in

brain tissue after 4 hours, an observation that the authors ascribed to improved pharmacokinetic

properties. Digoxin delivery to the brain has previously been determined 1–10 hr post-injection

in mice and found to be significantly enhanced when Pluronic 85 is present [29].

Sucrose does not cross phospholipid membranes and was used in the brain perfusion exper-

iments as a vascular space marker. An increase in [14C(U)]sucrose would indicate that the

integrity of the membrane or the tight junctions between cells had been compromised. Con-

versely, a decrease would suggest that the proportionate volume of tissue occupied by blood

vessels had been reduced. It is therefore interesting that F68 has previously been shown to

interact with the mechanisms that control vasoconstriction and vasodilation[84, 85] and could

lead to the observed reduction in vascular space.

Interestingly, the in vivo mouse pharmacokinetic study revealed that the concentrations of

pentamidine in brain parenchyma in this species seem high compared with data from human

(using CSF rather than brain parenchyma) which indicated that less than 1% of the plasma pent-

amidine concentration is detected in CSF[86]. Furthermore, assessment of this lead formulation

in an in vivo pharmacokinetic study confirmed that F68 did not increase pentamidine delivery to

the brain under the conditions studied. This is not linked to partitioning of pentamidine inside

the micelles as this is low, hence the use of Pluronic micelles to protect this drug after administra-

tion and extend its circulation time is probably limited. Although it may be related to the fact that

F68 is hydrophilic and prefers to remain in the plasma than be distributed to organs [17].

Whilst there are limitations to all assay systems, the package of data generated by the team

provided a compelling and robust data set. The screening cascade has successfully identified

Pluronic-pentamidine formulations that harbour trypanocidal activity and do not increase the

safety concerns centrally or peripherally (over unformulated pentamidine). However, the data

suggested that we would not be able to significantly enhance brain exposure of pentamidine

using the Pluronic (F68, P85 or P105) within a reasonable time frame and existing budget. We

therefore drew the study to a close at milestone 2 (Fig 1). Importantly a significant body of
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high-quality data has been generated as part of this project which may be highly relevant to

other teams looking to understand block-copolymer architecture, further develop block-copol-

ymers as nanocarriers, improve BBB penetration of drugs or to those looking to understand

toxicity of pentamidine.

Supporting information

S1 File. Fig A—Pentamidine is returned to the blood from the capillary endothelial cell by

P-gp and MRP. Pluronic P85 inhibits-mediated efflux (e.g. P-gp and MRP transport) by

two mechanisms: the first through membrane fluidisation and the second through tran-

sient ATP depletion. These effects are believed to be mediated by unimers (single polymer

chains) [22, 20]. Inhibition of efflux should facilitate the accumulation of pentamidine in the

human cerebral capillary endothelium and the murine choroid plexus epithelium, leading to

higher concentrations of pentamidine. Fig B—Pyrene fluorescence intensity dependence on

pluronic concentration for F68, P85 and P105. The CMC was determined using 18 different

concentrations (range 0.0001 to 1 w/v%) of pure P85, P105 and F68. The value at each concen-

tration is the mean of two samples, each prepared from a separate preparation of the stock

solution. As expected, the curves show two inflection points. The first was taken as the CMC.

Fig C—Typical partition data for PTI fluorescence as a function of F68 and P105 concen-

tration. Fig D—Drug release from dialysis cells measured over time. The experiments were

conducted in water at 37˚C for concentrations as close as possible to in vitro conditions,

within experimental limitations, namely, 1% w/v of Pluronics and 10mM PTI. No signifi-

cant differences between the Pluronics were observed and drug release is diffusion controlled

(Fickian diffusion) under the experimental conditions. Pluronics micelles are not a barrier to

drug release. Fig E—SANS Pluronic data at 37˚C. A) P85 5% B) F68 5% C) P85 5% / PTI 1%

D) F68 5% / PTI 1% E) P85 5% / PTI 3% F) F68 5% / PTI 3%. Fig F—The average number of

Pluronic molecules found in a micelle (Nagg) and the number of micelles in our system

(after they have equilibrated) (Nmic) as a function of the concentration of the F68 Pluronic

in a system that contains F68 and 0.01 w/v% of L61 Pluronic. In both plots, the black curve

represents the results when considering both the L61 and F68 polymers in the mixture, and

the blue dashed curve represents the data from the pure F68 simulated systems. In the top

curve, the red curve represents the number of F68 in a micelle which contains both F68 and

L61, and the green curve represents the number of L61 in a micelle. The results show that as

we increase the concentration of F68, and therefore make the system more and more like the

pure F68 system, the number of polymer molecules in a micelle and the number of micelles

converge to that observed in the pure F68 system, as expected. Interestingly, it seems that from

our simulations that L61 causes the aggregation of F68 to become slightly enhanced as the

number of F68 in the average micelle is always larger than that found in the pure F68 micelles,

which naturally results in their being fewer micelles. Fig G—Effects of exposure of MIN6 β-

cells to 0 (control), 1 or 100 μM pentamidine for 3 and 24 hours. Trypan blue uptake. Blue

staining demonstrates cells of compromised viability, highlighting the toxicity of 100 μM pent-

amidine to these cells after 3 hours exposure. Fig H—Effects of exposure of MIN6 β-cells to

0, 1, 10 or 100 μM pentamidine and 0, 0.01, 0.025, 0.1 or 0.5% w/v% F68 for 24 hours. Try-

pan blue uptake. Blue staining demonstrates cells of compromised viability, highlighting the

toxicity of 100 μM pentamidine and 0.5% F68 to these cells. Fig I—Apical to basolateral per-

meability of [14C]sucrose in the presence of P85, P105, and F68 concentrations measured

over 60 minutes. Significant differences compared to control (no pluronic) was observed in

the presence of P85 and P105 (���p<0.001, ��p<0.01). All data are expressed as mean ± S.E.M,

n = 3 wells. Data were analysed using one-way ANOVA with SigmaPlot 13.0. Table A—Single
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point CNS side effect screening of pentamidine at a concentration of 1.0E-5 M (PERKIN

ELMER study no. 13–9625). Details of the assay, reference Ki, reference compound and the

radioligand/substrate used in the CNS side effects panel ligand binding assay are described. Val-

ues are expressed as the percent inhibition of specific binding and represent the average of

duplicate tubes. Pentamidine could be described as active at that binding site if it showed inhibi-

tion of 50% or greater (see shaded boxes/compound hit true). Inhibition in the range of 20% to

49% indicated marginal activity at the receptor site and were not investigated further. The base-

line range in these assays was considered -20% to +20% inhibition of binding activity. Com-

pounds showing results in this range were considered inactive at this site. Ki is the inhibitory

constant and is reflective of the binding affinity of the drug for the receptor. Table B—Inhibi-

tion of hKir2.1 potassium channel activity with pentamidine isethionate.Evaluated by the

QPatch HT an automatic parallel patch clamp system. The duration of exposure to each test

concentration was 3 minutes. Table C—A visual evaluation of the phase separation of Pluro-

nics dispersions in pure water. Transparent is fully transparent. Opaque completely blocks

light. Slight indicates for slightly translucent (faintly white tint in the solution), and medium

indicates obvious translucence. Table D—A visual evaluation of the phase separation of

Pluronic dispersions in saline. Transparent is fully transparent. Opaque completely blocks

light. Slight indicates for slightly translucent (faintly white tint in the solution), and medium

indicates obvious translucence. Table E—Stokes Radii of P105, P85 and F68 Micelles

Obtained from DLS (1% w/w, 37˚C). Table F—The effect of P85, F68 and P105 on the

apparent permeability of pentamidine isethionate across MDR1-MDCK cell monolayers in

the basolateral to apical direction. The apical to basolateral movement of pentamidine isethio-

nate was below the limits of detection. The percentage recovery of pentamidine isethionate is

also shown. Lucifer yellow permeation was below 0.5 x 10−6 cm/s in all experiments confirming

the integrity of the monolayer. Transcellular marker (propranolol) and Pgp and BCRP substrate

(prazosin) apparent permeability values are also shown. Table G—The effect of Pluronic P85

on the accumulation of [3H(G)]pentamidine (15.7 nM) into brain tissues after 10 minutes

of in situ perfusion. All values have been corrected for vascular space by subtraction of the RTIS-

SUE% for [14C(U)]sucrose from the RTISSUE% for [3H(G)]pentamidine. All values mean ± SEM.

Table H—The effect of Pluronic P105 on the accumulation of [3H(G)]pentamidine (15.7

nM) into brain parenchyma after 10 minutes of in situ perfusion. All values have been cor-

rected for vascular space by subtraction of the RTISSUE% for [14C(U)] sucrose from the RTISSUE%

for [3H(G)]pentamidine. Table I—Accumulation of [3H(G)]pentamidine (15.7 nM) after 10

minutes perfusion with or without pluronic F68 (not corrected for vascular space; Control

A and 0.01% and 0.1% F68 experiments were carried out using MP Biomedicals dextran.

Control B and 0.5% F68 experiments were carried out using VWR dextran). Table J—Accumu-

lation of [14C]sucrose after 10 minutes perfusion with or without Pluronic F68; Control A

and 0.01% and 0.1% F68 experiments were carried out using MP Biomedicals dextran. Con-

trol B and 0.5% F68 experiments were carried out using VWR dextran). Table K—Accumula-

tion of [3H]pentamidine after 30 minutes perfusion with or without pluronic F68. (Not

corrected for vascular space). Table L—Accumulation of [14C]sucrose (B) after 30 minutes

perfusion with or without pluronic F68. (Not corrected for vascular space).
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