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Abstract

Background: Gastric cancer is a highly heterogeneous disease, presenting a

major obstacle to personalized treatment. Effective markers of the immune

checkpoint blockade response are needed for precise patient classification. We,

therefore, divided patients with gastric cancer according to collagen gene

expression to indicate their prognosis and treatment response.

Methods: We collected data for 1250 patients with gastric cancer from four

cohorts. For the TCGA‐STAD cohort, we used consensus clustering to stratify

patients based on expression levels of 44 collagen genes and compared the

prognosis and clinical characteristics between collagen subtypes. We then

identified distinct transcriptomic and genetic alteration signatures for the

subtypes. We analyzed the associations of collagen subtypes with the

responses to chemotherapy, immunotherapy, and targeted therapy. We also

established a platform‐independent collagen‐subtype predictor. We verified

the findings in three validation cohorts (GSE84433, GSE62254, and GSE15459)

and compared the collagen subtyping method with other molecular subtyping

methods.

Results: We identified two subtypes of gastric adenocarcinoma: a high‐
expression collagen subtype (CS‐H) and a low‐expression collagen subtype

(CS‐L). Collagen subtype was an independent prognostic factor, with better
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overall survival in the CS‐L subgroup. The inflammatory response, angiogen-

esis, and phosphoinositide 3‐kinase (PI3K)/Akt pathways were transcription-

ally active in the CS‐H subtype, while DNA repair activity was significantly

greater in the CS‐L subtype. PIK3CA was frequently amplified in the CS‐H
subtype, while PIK3C2A, PIK3C2G, and PIK3R1 were frequently deleted in

the CS‐L subtype. CS‐H subtype tumors were more sensitive to fluorouracil,

while CS‐L subtype tumors were more sensitive to immune checkpoint

blockade. CS‐L subtype was predicted to be more sensitive to HER2‐targeted
drugs, and CS‐H subtype was predicted to be more sensitive to vascular

endothelial growth factor and PI3K pathway‐targeting drugs. Collagen

subtyping also has the potential to be combined with existing molecular

subtyping methods for better patient classification.

Conclusions: We classified gastric cancers into two subtypes based on collagen

gene expression and validated these subtypes in three validation cohorts. The

collagen subgroups differed in terms of prognosis, clinical characteristics,

transcriptome, and genetic alterations. The subtypes were closely related to

patient responses to chemotherapy, immunotherapy, and targeted therapy.
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1 | INTRODUCTION

Gastric cancer is the fifth most common cancer and the
fourth leading cause of cancer‐related mortality globally [1].
East Asia, Eastern Europe, and South America are hotspots
of incidence for gastric cancer [1, 2]. It is a highly
heterogeneous disease in terms of genetics, histopathology,
and treatment response, which presents a major obstacle to
personalized treatment [3, 4]. The efficacy of immune
checkpoint blockade (ICB) for the treatment of gastric
cancer has recently been well validated; however, the
existing biomarker [microsatellite instability–high (MSI‐H)]
cannot accurately predict ICB response, and 50% of MSI‐H
patients are resistant to programmed cell death protein‐1
(PD‐1) blockade [5]. Furthermore, classification systems
based on genomic status have not been effectively
translated into treatment stratification or therapeutic
strategies [2, 6]. There is thus an urgent need for alternative
molecular subtypes that are more clinically applicable and
able to predict therapeutic response.

The tumor microenvironment (TME) has received
extensive attention in recent years because of its ability to
modulate tumor growth and progression and influence
treatment response [7–9]. The TME comprises nontumor
cells, including fibroblasts, immune cells, and endothelial
cells, and the extracellular matrix [9]. Collagens are the main
component of the extracellular matrix, and they are

remodeled in tumors by cancer‐associated fibroblasts (CAFs)
[10, 11]. Collagens can regulate tumor behavior and promote
immunotherapy resistance in cancer through CD8+ T‐cell
exhaustion [12, 13] and may thus be biomarkers for the
diagnosis, prognosis, and classification of a variety of tumors
[10, 14, 15]. The collagen signature is also a marker of lymph
node metastasis, peritoneal metastasis, and prognosis in
patients with gastric cancer [16–18].

In this study, we identified two molecular subtypes of
gastric cancer based on the expression patterns of
collagen genes, with distinct clinical features and
prognoses. Angiogenesis, DNA repair, and the inflam-
matory response differed significantly between the
collagen subtypes, and the phosphoinositide 3‐kinase
(PI3K)/Akt pathway was significantly upregulated in
patients with high collagen expression. Importantly, the
collagen subtype was closely related to patient responses
to chemotherapy, immunotherapy, and targeted therapy.

2 | METHODS

2.1 | Patients and data sets

Data for 1250 patients with gastric cancer were collected
from four cohorts: The Cancer Genome Atlas (TCGA)‐STAD
[3], GSE84433 [19], GSE62254 [20], and GSE15459 [21]
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(Table S1). For the TCGA‐STAD cohort, as the derivation
cohort, multiomics data, including messenger RNA expres-
sion, protein expression, somatic mutations, copy number
data, and clinical information, were downloaded from GDC
PanCanAtlas Publications. The drug responses of patients
from TCGA were curated by Ding et al. [22].

The other three transcriptome data sets (GSE84433,
GSE62254, and GSE15459) were used as validation
cohorts and downloaded from the Gene Expression
Omnibus (GEO), and clinical information was obtained
from corresponding reports.

PRJEB25780, which contains tumor transcriptome
data for 45 patients treated with PD‐1 blockade, was
downloaded from the European Nucleotide Archive
(Table S1) [23]. RNA sequence reads were aligned to
the human reference genome (GRCh38, GENCODE
Release 38) using STAR [24], and RSEM was used to
quantify gene expression [25]. We used a regularized
logarithm (“rlog” function from DESeq2) to normalize
gene quantification for collagen subtyping analysis [26].
Analysis of each cohort is depicted in Figure S1.

2.2 | Curation of a collagen gene set

The collagen gene set was derived from the collagen gene
group (HUGO Gene Nomenclature Committee, ID: 490)
and contained 44 genes after removing non‐protein‐
coding genes (Table S2).

2.3 | Collagen subtyping

Consensus clustering of collagen genes at the transcript
level was performed using ConsensusClusterPlus v1.50.0
(parameters: maxK= 6, pItem= 0.8, pFeature = 1, reps =
10,000, seed = 31415) [27]. Ward.D and the Euclidean
distance were used as the clustering algorithm and
distance metric, respectively. The proportion of ambigu-
ous clustering (PAC) and consensus matrix were adopted
to assess the optimal cluster number (k) [28].

2.4 | Transcriptome analysis

Differential expression analysis was performed using
limma, and genes with a false discovery rate (FDR) ≤
0.01 were defined as differentially expressed genes
(DEGs) [29]. We used clusterProfiler [30] or fgsea [31]
to perform gene set enrichment analysis (GSEA) of the
Molecular Signatures Database (MSigDB) [32], REAC-
TOME [33], and Kyoto Encyclopedia of Genes and

Genomes (KEGG) [34] gene sets (parameters: nperm =
100,000, minSize = 10, maxSize = 500), and FDR ≤ 0.05
was considered to indicate statistical significance. Gene
Ontology (GO) biological process (BP) enrichment
analysis was performed using clusterProfiler, and
FDR ≤ 0.05 was regarded as statistically significant.
The single‐sample GSEA (ssGSEA) algorithm from the
GSVA package was applied to calculate the ssGSEA
scores to evaluate the expression activity of the gene set
[35]. We used the RTN package [36] to evaluate the
regulon activity of gastric cancer driver genes [37] at the
transcriptome level. The data in Figure S4 were
visualized via Pathview [38].

2.5 | Genetic alteration analysis

The mutation file (mc3.v0.2.8.PUBLIC.maf.gz) and copy
number file (broad.mit.edu_PANCAN_Genome_Wi-
de_SNP_6_whitelisted.seg) were downloaded for genetic
alteration analysis. GISTIC 2.0 software was used to analyze
the copy number file and the command line parameters
from the GDC documentation were used (https://docs.gdc.
cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/)
[39]. We then utilized maftools to analyze mutation data
and copy number variation (CNV) analysis results from
GISTIC separately to obtain the gene‐level alteration profile
of each patient [40].

2.6 | Prediction of treatment response

We used the Tumor Immune Dysfunction and Exclusion
(TIDE) response prediction module to predict patient
response to ICB based on expression profiles [41, 42].
TIDE predicts the ICB response by evaluating multiple
transcriptomic biomarkers, including the TIDE score,
T‐cell dysfunction score, T‐cell exclusion score, and
scores for three cell types—myeloid‐derived suppressor
cells (MDSCs), tumor‐associated macrophages M2 type
(TAM M2s), and CAFs—reported to restrict T‐cell
infiltration in tumors. A higher TIDE score was
associated with a worse ICB response.

We also used the pRRophetic package to impute
patient responses to chemotherapy and multiple targeted
drugs. A drug‐response predictive model based on gene
expression was constructed via pRRophetic based on
drug response data and baseline gene expression levels
from cancer cell lines in the Genomics of Drug Sensitivity
in Cancer (GDSC) database. We therefore inputted gene
expression data for the patients with gastric cancer and
used the predictive model to estimate patient sensitivity
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to specific drugs, measured as the half‐maximal inhibi-
tory concentration (IC50) [43].

2.7 | Construction and validation of
collagen‐subtype predictor

The TCGA‐STAD cohort was used as the training
cohort, and the three GEO cohorts were used as
validation cohorts. We first performed feature selection
for the collagen subtype in the training cohort based on
the expression of 44 collagen genes, using the Boruta
algorithm [44], recursive feature elimination (RFE)
algorithm [45], and least absolute shrinkage and
selection operator (LASSO) algorithm [46]. Three
signatures were obtained. In the context of the
transcriptome, we then calculated the score for each
signature using four unsupervised methods provided by
the GSVA package—gene set variation analysis (GSVA),
ssGSEA, z score, and pathway level analysis of gene
expression (PLAGE)—and determined the optimal
threshold in the training cohort [35, 47]. We finally
evaluated the performance of these 12 models in three
validation cohorts and selected the model with the
highest area under the curve (AUC) as the collagen‐
subtype predictor.

2.8 | Pancancer collagen subtyping

For pancancer analysis, we first excluded unqualified
samples based on merged sample quality annotations
and retained cancer types with a sample size ≥100. We
used the same analysis pipeline as for the TCGA‐STAD
analysis to perform collagen subtyping and survival
analysis for the retained cancer types.

2.9 | Statistical analyses

Intergroup differences in continuous variables were
analyzed using Student's t‐test or Wilcoxon's rank sum
test. Associations between two categorical variables were
analyzed using Fisher's exact test. Prognostic associations
between collagen subtypes and clinical features were
evaluated via Kaplan–Meier curves, log‐rank tests, and
Cox proportional hazards regression models. The pROC
package was used to construct the receiver operating
characteristic (ROC) curve of the model in each cohort
and obtain the AUC, and the optimal threshold was
determined using the “closest.topleft” method in the
training cohort [47]. All statistical analyses were
performed using R, version 4.1.1.

3 | RESULTS

3.1 | Consensus clustering of collagen
gene expression identified two subtypes
of gastric cancer

We stratified gastric cancers based on the expression
levels of 44 collagen genes by unsupervised consensus
clustering of RNA‐seq data from TCGA‐STAD. The PAC
was smallest when the cluster number was 2, which was
determined as the optimal cluster number (Figure 1a). A
heatmap of the consensus matrix showed that the two
subtypes could be clearly separated (Figure 1b). The
expression of collagen genes in the blue‐subtype tumors
was relatively low, and this subtype was named the low‐
expression collagen subtype (CS‐L), while the orange
subtype was named the high‐expression collagen subtype
(CS‐H) (Figure 1c). The assignments of these subtypes
were validated using principal component analysis
(PCA), which confirmed the robust difference in expres-
sion patterns between these two collagen subtypes
(Figure 1d). CS‐H subtype tumors showed increased
transcriptional activity of collagen gene sets (Figure 1e)
and protein expression levels of type VI collagen
(Figure 1f), consistent with the transcription level of
collagen genes.

To assess the clinical importance of the collagen
subtype, we examined the correlations between the
collagen subtype and overall survival (OS) time. The
collagen subtype was an independent prognostic factor,
and CS‐L patients had a better prognosis than CS‐H
patients (Figure 1g,h). CS‐H was associated with worse
survival, AJCC stage, grade, and T stage than CS‐L,
according to Fisher's exact tests, suggesting that highly
malignant gastric cancer is associated with high collagen
expression (Figure 1i). We further confirmed the robust-
ness of the collagen‐subtype classification in the
GSE84433, GSE62254, and GSE15459 cohorts (Figure 2;
Figure S2). We thus identified two subgroups of gastric
cancer based on collagen gene expression and determined
the clinical significance of the classification system.

3.2 | Collagen subtypes were
transcriptionally distinct in terms of
cancer hallmarks

We further characterized the transcriptome differences
between the two collagen subtypes by differential
expression analysis of TCGA‐STAD RNA‐Seq data. We
compared CS‐H and CS‐L samples and identified 8605
DEGs, including 3571 downregulated and 5034 upregu-
lated genes (Figure 3a). Enrichment analysis of these
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genes revealed subtype‐specific BPs. Upregulated genes
in the CS‐H subgroup were enriched in angiogenesis,
extracellular matrix organization, calcium ion homeosta-
sis, and leukocyte migration (Figure 3b).

GSEA of hallmark gene sets in MSigDB showed that
epithelial mesenchymal transition (EMT), inflammatory
response, hypoxia, and KRAS signaling were enriched in
the CS‐H subgroup, and DNA repair and MYC targets
were enriched in the CS‐L subgroup (Figure 3c). We then
validated cancer‐related hallmarks through ssGSEA,
which confirmed that EMT, angiogenesis, inflammatory
response, hypoxia, and apoptosis were significantly

enriched in the CS‐H subgroup, while DNA repair was
significantly enriched in the CS‐L subgroup (Figure 3d).
These results were confirmed in the GSE84433,
GSE62254, and GSE15459 cohorts (Figure S3). We
further analyzed the activity of gastric cancer driver
genes as regulators in the transcriptional regulatory
network and found that the regulon activity of driver
genes exhibited collagen‐subtype specificity (Figure 3e).
Regulon activity of PIK3CA was significantly increased in
the CS‐H subgroup (Figure 3e). Overall, these results
indicate that tumors with different collagen subtypes
exhibit biological differences at the transcriptome level.

(c)

(b)

(d)

(h) (i)(g)

(a)

(f)(e)

FIGURE 1 Identification of two collagen subtypes in gastric cancer from the TCGA‐STAD cohort. (a) PAC curve for each k. k= 2 with
the lowest PAC was the optimal k. (b) Consensus matrix for k= 2. (c) Heatmap of expression patterns of 44 collagen genes. Each column
represents one patient in the cohort. (d) PCA results for gastric cancer samples. The first principal component scores showed that CS‐H‐ and
CS‐L‐subtype tumors clustered separately. (e) Distribution of collagen ssGSEA scores between the two collagen subtypes. ***p< 0.001.
(f) Distribution of type VI collagen protein expression levels between the two collagen subtypes. ***p< 0.001. (g) Forest plot with hazard
ratios of clinical variables and collagen subtypes according to multivariate Cox proportional analysis of OS. (h) Kaplan–Meier curves for OS
in patients with the two collagen subtypes. (i) Comparison of clinical characteristics between the two collagen subtypes. *p< 0.05, **p< 0.01,
and ***p< 0.001. OS, overall survival; PAC, proportion of ambiguous clustering; TCGA, The Cancer Genome Atlas.
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3.3 | Genetic alterations led to
differences in PI3K/Akt pathway activity
between subtypes

We explored the difference in genetic alterations
between the collagen subtypes by analyzing somatic
mutation and CNV data in the TCGA‐STAD data set
via maftools. In terms of somatic mutations, the
tumor mutational burden (TMB) was significantly
greater in the CS‐L subgroup than in the CS‐H
subgroup (Figure 4a). The mutation frequencies of
TP53, PCLO, LAMA1, and PEG3 were significantly
greater in the CS‐L subgroup compared with the CS‐H
subgroup, while the mutation frequency of CDH1 was
significantly greater in the CS‐H subgroup. Notably,

there was no significant difference in PIK3CA muta-
tion frequency between the collagen subtypes
(Figure 4b). We then obtained gene‐level CNVs
through maftools and found that PIK3CA was
frequently amplified in the CS‐H subgroup, while
PIK3C2A, PIK3C2G, and PIK3R1 were frequently
deleted in the CS‐L subgroup (Figure 4c). These
CNVs reshaped the expression of the corresponding
genes (Figure 4d): amplification of PIK3CA increased
its expression and deletion of PIK3C2A and PIK3R1
decreased their expression (Figure 4d). As core genes
of the PI3K pathway, pathway activity was signifi-
cantly reduced in the overall‐deleted patients com-
pared with the overall‐amplified patients (Figure 4e).
These subtype‐specific changes resulted in high

(a) (b)

(c)

FIGURE 2 Confirmation of collagen subtypes in the validation cohorts (GSE84433, GSE62254, and GSE15459). (a) PAC curves for each
k of the validation cohorts. The optimal k for all cohorts was 2. (b) Heatmap of 44 collagen gene expression patterns in the validation
cohorts. Each column represents one patient in the corresponding cohort. (c) Kaplan–Meier curves for OS in patients with the two collagen
subtypes. OS, overall survival.
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expression of PI3K in the PI3K/Akt pathway in the
CS‐H subtype (Figure S4). PI3K/Akt pathway activity
was therefore upregulated in the CS‐H subtype
compared with the CS‐L subtype (Figure 4f). These

results indicate distinct genetic alteration patterns
between collagen subtypes, with CNV leading to
activation of the PI3K/Akt pathway in the CS‐H
subtype.

(b)

(c)

(d)

(e)

(a)

FIGURE 3 Transcriptomic features of collagen subtypes in gastric cancer from the TCGA‐STAD cohort. (a) Volcano plot of DEGs
between the CS‐H and CS‐L subtypes. Genes with an FDR ≤ 0.01 were defined as DEGs. (b) Significantly enriched GO BP terms of
upregulated and downregulated DEGs (FDR ≤ 0.05). (c) Significant hallmark gene sets in the MSigDB associated with collagen subtypes
revealed by GSEA (FDR ≤ 0.05). (d) Comparison of ssGSEA scores for cancer‐related hallmarks between collagen subtypes. Statistical
analysis was performed using Wilcoxon's rank sum test. ***p< 0.001. (e) Heatmap showing regulon activity profiles for gastric cancer driver
genes; Wilcoxon's rank sum test used for comparisons between subtypes. *p< 0.05, **p< 0.01, and ***p< 0.001. BP, biological process;
DEG, differentially expressed gene; FDR, false discovery rate; GO, Gene Ontology; TCGA, The Cancer Genome Atlas.
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3.4 | Collagen subtypes correlated with
therapeutic response

We explored the relationship between collagen subtype and
therapeutic response by evaluating multiple markers and
patient treatment responses in the TCGA‐STAD cohort.
Chemotherapy is the first‐line therapy for gastric cancer,
and we therefore compared the response to chemotherapy
between patients with different collagen subtypes. The
response rate to fluorouracil was significantly greater in the
CS‐H compared with the CS‐L group (Figure 5a). pRRo-
phetic analysis revealed that CS‐H tumors had significantly
lower estimated IC50 values for the chemotherapeutic drugs
cisplatin, docetaxel, doxorubicin, etoposide, and methotrex-
ate (Figure 5b), indicating that patients with CS‐H tumors
were more sensitive to these chemotherapeutic drugs.

We subsequently used TIDE to estimate multiple
transcriptomic biomarkers and predict patient response to
ICB therapy. The T‐cell dysfunction and exclusion scores
were significantly greater in the CS‐H subgroup than in the
CS‐L subgroup, consistent with the TIDE score results
(Figure 5c). This suggested more serious dysfunction and
exclusion of cytotoxic T lymphocytes in CS‐H tumors and
indicated that these tumors were less likely to respond to
ICB. Notably, among the three types of tumor‐infiltrating
restricted T cells, CAFs exhibited greater differences between
collagen subtypes than MDSCs and M2 TAMs (Figure 5c).
When multiple biomarkers were combined, TIDE predicted
that CS‐L‐subtype patients had a significantly greater ICB
response rate than CS‐H‐subtype patients (Figure 5d). We
verified this finding in the PRJEB25780 cohort of patients
who received PD‐1 blockade (pembrolizumab) and showed

(b)

(c)

(d)

(e)

(f)

(a)

FIGURE 4 Collagen subtype‐specific genetic alterations and their impact on the PI3K pathway in the TCGA‐STAD cohort.
(a) Distribution of TMB between the two collagen subtypes. Statistical analysis performed using Wilcoxon's rank sum test. *p< 0.05.
(b) Comparison of mutated genes between collagen subtypes. Statistical analysis performed using Fisher's exact test. p< 0.1, *p< 0.05,
**p< 0.01, and ***p< 0.001. (c) CNV profiles of PIK3 genes between collagen subtypes. Blue represents deletion and red represents
amplification. (d) Boxplot showing RNA expression of PIK3 genes grouped by CNV status of the corresponding gene. Student's t‐test used for
comparison. *p< 0.05 and ***p< 0.001. (e) Comparison of ssGSEA scores for PI3K/Akt pathway between overall‐deleted and overall‐
amplified patients. Statistical analysis performed using Wilcoxon's rank sum test. ***p< 0.001. (f) GSEA plot for PI3K/Akt pathway.
CNV, copy number variation; TCGA, The Cancer Genome Atlas; TMB, tumor mutational burden.
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that the response rate of CS‐L patients was greater than that
of CS‐H patients (Figure 5e), and the collagen scores of
nonresponders were greater than those of responders
(Figure 5f). SubMap analysis [48] showed that CS‐H subtype
was associated with a lack of response (Figure S5a).

We also estimated the IC50 of the targeted drugs in
each patient. Angiogenesis (Figure 3c,d) and the
PI3K/Akt pathway (Figure 4f) were significantly
upregulated in the CS‐H group, and multiple proan-
giogenic factors, including vascular endothelial

(e) (g) (h)(f)

(c) (d)

(a) (b)

FIGURE 5 Differences in therapeutic responses between patients with two collagen subtypes. (a) Response rates to fluorouracil
between collagen subtypes in the TCGA‐STAD cohort. Statistical analysis performed using Fisher's exact test. R, responder;
NR, nonresponder. (b) Boxplot showing estimated IC50 values of chemotherapeutic drugs for two collagen subtypes in the TCGA‐
STAD cohort. Student's t‐test used for comparison. **p< 0.01 and ***p< 0.001. (c) Comparison of TIDE, dysfunction, exclusion, MDSC,
TAM M2, and CAF enrichment scores between collagen subtypes in the TCGA‐STAD cohort. Statistical analysis performed using Student's
t‐test. ***p< 0.001. (d) Response rates to ICB predicted by TIDE between collagen subtypes in the TCGA‐STAD cohort. Statistical analysis
performed using Fisher's exact test. (e) Response rates to pembrolizumab between collagen subtypes in the PRJEB25780 cohort. Statistical
analysis performed using Fisher's exact test. (f) Collagen GSVA scores in responders and nonresponders to pembrolizumab in the
PRJEB25780 cohort. Statistical analysis performed using Wilcoxon's rank sum test. ***p< 0.001. (g) Boxplot showing estimated IC50 values
of drugs targeting VEGFR in two collagen subtypes in the TCGA‐STAD cohort. Student's t‐test used for comparison. ***p< 0.001.
(h) Boxplot showing estimated IC50 values for drugs targeting HER2 in two collagen subtypes in the TCGA‐STAD cohort. Student's t‐test
used for comparison. ***p< 0.001. CAF, cancer‐associated fibroblast; TCGA, The Cancer Genome Atlas.
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growth factor (VEGFR), were highly expressed
(Figure S5b, c). These findings suggest that angiogen-
esis and the PI3K pathway could be therapeutic
targets for CS‐H subtype tumors. HER2 expression
was significantly greater in CS‐L‐subtype tumors
(Figure S5d). Correspondingly, CS‐H‐subtype tumors
were more sensitive to drugs targeting VEGFR,
including axitinib and sunitinib (Figure 5g), and
drugs targeting the PI3K pathway (Figure S5e), while
CS‐L‐subtype tumors were more sensitive to drugs
targeting HER2, including afatinib and lapatinib
(Figure 5h). Notably, the treatment responses of the
two subtypes in the GSE84433, GSE62254, and
GSE15459 cohorts were consistent with those in the
TCGA cohort (Figure S6–S8). Overall, these results
showed that collagen subtype was associated with
responses to chemotherapy, ICB therapy, and targeted
therapy.

3.5 | Collagen‐subtype predictor
excelled on multiple platforms

Considering the clinical significance of the collagen
subtype and the need for convenient clinical application,
we established a collagen‐subtype predictor (Figure 6a).
With respect to the TCGA‐STAD cohort, we used three
machine learning algorithms—Boruta, RFE, and LASSO—
to perform feature selection for the collagen genes and

obtained 30, 24, and 17 genes, respectively (Table S3).
Twelve scores were calculated for these three signatures
using GSVA, ssGSEA, z score, and PLAGE, and the
subtype‐prediction performances of these 12 scores (mod-
els) were evaluated in the validation cohorts (Figure 6b).
Among them, the score computed by PLAGE based on 17‐
gene signatures from LASSO performed best in the three
validation cohorts (average AUC= 0.996). The optimal
threshold for discrimination was 0.003: samples with a
score ≥ 0.003 were assigned to the CS‐L subtype, and those
with a score < 0.003 were assigned to the CS‐H subtype.
This collagen‐subtype predictor was validated in three
cohorts tested according to two types of gene arrays, and all
the studies showed excellent discriminative power (Kappa
coefficients of 0.9323, 0.8711, and 0.871, respectively)
(Figure 6c; Tables S4–S6). These results showed that the
collagen‐subtype predictor could accurately classify pa-
tients with gastric cancer according to collagen subtypes,
independent of the platform.

3.6 | Comparison of collagen and other
molecular subtypes

We explored the relationship between collagen subtypes
and previously reported molecular subtypes of gastric
cancer [20, 49]. The TCGA study revealed five molecular
subtypes of gastrointestinal adenocarcinoma: EBV, MSI,
HM‐SNV, CIN, and GS [49]. Based on gene expression

(a) (b)

(c)

FIGURE 6 Training and validation of collagen‐subtype predictor. (a) Schematic diagram of collagen‐subtype predictor construction.
(b) Performance of the 12 scores (models) in the validation cohorts. Performance was evaluated according to the area under the curve
(AUC). The score computed by PLAGE on 17‐gene signatures from LASSO was the best model and was therefore called the collagen‐subtype
predictor. (c) ROC curves and confusion matrices for collagen‐subtype prediction in the GSE84433, GSE62254, and GSE15459 cohorts.
ROC, receiver operating characteristic.
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signatures, the Asian Cancer Research Group (ACRG)
defined four molecular subtypes of gastric cancer: MSI,
MSS/EMT, MSS/TP53+, and MSS/TP53− [20].

In the TCGA‐STAD cohort, we compared the distribu-
tion of TCGA subtypes between collagen subtypes and found
that the TCGA GS subtype was enriched in the CS‐H
subgroup (Figure 7a). For the ACRG classification approach,
we explored differences between collagen subtypes in the
GSE62254 cohort and showed that ACRG MSS/TP53+ and
MSS/TP53− subtypes were enriched in the CS‐L subgroup,
while most ACRG MSS/EMT patients were enriched in the
CS‐H subgroup (Figure 7b). Furthermore, the prognosis of
CS‐L patients was significantly better than that of CS‐H
patients for MSI gastric cancers according to the TCGA and
ACRG classifications (Figure 7c,d). These findings suggest
that collagen subtyping may potentially be combined with
existing molecular subtyping methods for better patient
classification.

3.7 | Collagen subtyping was suitable
for multiple tumors

We determined if the collagen subtype was clinically
important in other cancer types by consensus clustering of
other cancer types in TCGA. In addition to STAD, there
were 17 other cancer types with two collagen subtypes
indicated by different expression patterns (Figures S9a
and S10). OS was better in patients with the CS‐L subtype
compared with the CS‐H subtype among patients with
bladder urothelial carcinoma, cervical squamous cell
carcinoma and endocervical adenocarcinoma, kidney renal
clear cell carcinoma, kidney renal papillary cell carcinoma,
brain lower grade glioma, and lung adenocarcinoma, as
well as all 18 tumors with two subtypes (Figure S9b).
Among a group of seven tumors, differences in the
expression of collagen genes were similar between the
collagen subtypes (Figure S9c). These findings indicated
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that collagen‐subtype classification could have a common
biological basis among cancer types. Most pathways
enriched for collagen subtype‐related DEGs were shared
among cancer types. In particular, the upregulated genes in
the seven cancer types in the CS‐H subgroup were enriched
in the PI3K/Akt signaling pathway (Figure S9d). These
results demonstrated that collagen subtyping could be
extended to multiple tumors to indicate differences in
survival.

4 | DISCUSSION

For the first time, we identified two collagen subtypes of
gastric cancer using consensus clustering. The two subtypes
differed significantly in terms of cancer‐related hallmarks
and genetic alterations. Patients in the CS‐L subgroup were
more sensitive to immunotherapy and HER2‐targeted drugs,
while patients in the CS‐H subgroup were more sensitive to
chemotherapy, epidermal growth factor receptor‐2‐targeted
drugs, and drugs targeting the PI3K pathway. We con-
structed a collagen‐subtype predictor for clinical practice and
showed that collagen subtyping could be combined with
existing molecular subtyping methods.

Multiple classification schemes have been established
for gastric cancer and have reportedly been associated
with inflammatory infiltration, histopathology, treatment
response, and clinical outcome [20, 49–54]. Some
investigators clustered gastric cancers according to gene
expression profiles [50–53]. The TCGA group yielded
molecular subtypes of gastrointestinal adenocarcinomas
based on mutations, copy‐number alterations, and DNA
methylation patterns [49], while the ACRG classified
gastric cancers into four subtypes based on gene
expression signatures, including EMT, MSI, cytokine
signaling, cell proliferation, DNA methylation, TP53
activity, and gastric tissue [20]. Li et al. divided gastric
cancer into immunity‐deprived, stroma‐enriched, and
immunity‐enriched subtypes according to the enrich-
ment levels of 15 pathways [54]. In summary, existing
molecular subtypes are based on gene expression profiles
or predefined sets of gene expression signatures.

Compared with these previous classification schemes,
the current study focused on the collagen component of the
TME and used collagen gene expression alone to achieve a
good classification. Furthermore, this classification scheme
has the potential to use collagen staining instead of gene
expression to quantify collagen in clinical applications. In
this study, patients with different subtypes exhibited
significantly different biological characteristics and genetic
alteration profiles and also different treatment responses and
prognoses. The collagen subtype was closely related to the
responses to chemotherapy, immunotherapy, and targeted

drugs and may thus provide guidance for drug combinations.
Notably, this classification scheme does not consider other
omics characteristics and only divides patients into two
subtypes, and its discrimination accuracy will thus be
relatively low; however, this scheme could be combined
with existing molecular subtypes to better classify patients.
For example, the collagen subtype was still associated with
prognostic differences within the MSI subgroup. The
collagen subtype is thus a simple, effective, and flexible
marker, emphasizing its clinical application prospects.

Collagen plays a critical role in the progression of
gastric cancer and constitutes the biological basis for the
collagen‐subtype classification. In gastric cancer, stromal
collagen deposition is increased and morphologically
altered [55]. Collagen‐related remodeling of the TME
is associated with multiple biological pathways. In the
stomach, chronic inflammation causes metaplasia, result-
ing in the requisite environment for the development of
gastric cancer [56]. During inflammation, infiltration of
macrophages induces collagen crosslinking, stromal stiffen-
ing, and fibrosis by stimulating stromal cell expression of
LOX and LH2 [57]. Compared with normal tissue, type V
collagen expression was increased 2‐ to 9‐fold in chronically
inflamed tissue [58]. This extracellular matrix remodeling,
characterized by collagen deposition and crosslinking, is
associated with tumor progression [59, 60]. Collagen
subtype may thus reflect the biological characteristics of
gastric carcinogenesis. PIK3CA, an oncogene in gastric
cancer, was specifically amplified in CS‐H subtype tumors
and the PI3K/Akt signaling pathway was accordingly more
active in CS‐H‐subtype tumors. This genetic change could
also explain the high expression level of collagen genes.
Using a genetically engineered mouse model, Wegner et al.
reported that activated PI3K drove profound stromal
remodeling and collagen accumulation in the prostatic
epithelium [61]. Collagen remodeling within the TME is
closely related to various hallmarks of cancer [62]. The
inflammatory response, angiogenesis, EMT, hypoxia, and
apoptosis were significantly increased while DNA repair
was significantly decreased in CS‐H tumors. These biologi-
cal differences reflect differences in patient prognosis and
treatment response.

Patients with different collagen subtypes had signifi-
cantly different responses to treatment. The DNA repair
pathway plays a major role in cancer cell resistance to
chemotherapy drugs, and the DNA repair capacity can
thus predict the tumor's response to chemotherapy drugs
[63]. We showed that CS‐H‐subtype patients had lower
transcriptional activity in the DNA repair pathway and
were more sensitive to chemotherapy. In addition to
chemotherapy, targeted therapies for gastric cancer are
increasingly important. Based on the different expression
levels of the drug targets HER2 and VEGFR, we found
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that CS‐L‐subtype tumors were more sensitive to drugs
targeting HER2, while CS‐H‐subtype tumors were more
sensitive to drugs targeting VEGFR. Moreover, chemo-
therapeutic agents and sunitinib share common targets,
indicating that VEGFR‐targeted therapy can be used in
combination with chemotherapy [64] (Figure S5f).

In CheckMate 649, nivolumab (a PD‐1 inhibitor) in
combination with chemotherapy showed superior sur-
vival benefit compared with chemotherapy alone, sug-
gesting that ICB is a promising treatment for gastric
cancer [65]. Moreover, screening patients who benefit
from ICB has become an urgent problem. High TMB
[23, 66] and MUC16 mutation status [67] have been
associated with improved clinical efficacy of ICB therapy,
consistent with the significantly greater response to ICB
in patients with the CS‐L subtype in the present study.
Banchereau et al. showed that the PI3K/Akt pathway
was enriched in nonresponders to anti‐PD‐L1 therapy,
consistent with the poor response of patients with the
CS‐H subtype to ICB [68]. Compared with the reported
effects of PIK3CA mutations on immunotherapy [69],
this study revealed that CNVs in PI3K genes affected
PI3K pathway activity, with potential impacts on
immunotherapy efficacy. Furthermore, we showed that
PIK3CA expression was significantly positively correlated
with TGFB2 and TGFB3 expression (Figure S5g). Based
on signaling interplay between the transforming growth
factor (TGF)‐β receptor and the PI3K/Akt pathway in
cancer, we speculate that PI3K activates TGF‐β in CS‐H‐
subtype tumors. TGF‐β is a CAF activator [70], which
could explain the high infiltration of CAFs in CS‐H
tumors. Using the single‐cell atlas of gastric cancer,
Kumar et al. [71] identified inhibin subunit beta A as the
main component of the TGF‐β pathway and as a
regulator of CAFs. The poor response of patients with
the CS‐H subtype could be due to the high infiltration of
CAFs into tumors, suggesting that these patients might
need to eliminate CAFs to respond to ICB [41, 72].
Targeted therapy and immunotherapy could have
combined effects and clinical benefits. In the
KEYNOTE‐811 trial, dual PD‐1 and HER2 blockade
markedly reduced tumor size and significantly improved
the objective response rate in HER2‐positive patients
with gastric cancer [73]. This was consistent with greater
sensitivity of CS‐L subtype patients to PD‐1 and HER2
blockade compared with the CS‐H subtype, suggesting
the potential value of the collagen subtype in
combination‐treatment decision‐making.

We used multiple data sets from different regions for
validation in the present study; however, there might still
be potential confounding factors that can cause bias. We
therefore plan to carry out a multicenter prospective

clinical trial to confirm the role of the collagen subtype
before further clinical application.

5 | CONCLUSIONS

Gastric cancers can be classified into two subtypes based
on collagen gene expression patterns, with different
transcriptome, genetic alterations, prognosis, clinical
characteristics, and therapeutic responses. The collagen
subtype could be used to screen patients with gastric
cancer who might benefit from chemotherapy, ICB, and
targeted therapy and to select suitable treatment
strategies.
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