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Abstract

A complete theory of cognitive architecture (i.e., the basic processes and modes of composition that together constitute
cognitive behaviour) must explain the systematicity property—why our cognitive capacities are organized into particular
groups of capacities, rather than some other, arbitrary collection. The classical account supposes: (1) syntactically
compositional representations; and (2) processes that are sensitive to—compatible with—their structure. Classical
compositionality, however, does not explain why these two components must be compatible; they are only compatible by
the ad hoc assumption (convention) of employing the same mode of (concatenative) compositionality (e.g., prefix/postfix,
where a relation symbol is always prepended/appended to the symbols for the related entities). Architectures employing
mixed modes do not support systematicity. Recently, we proposed an alternative explanation without ad hoc assumptions,
using category theory. Here, we extend our explanation to domains that are quasi-systematic (e.g., aspects of most
languages), where the domain includes some but not all possible combinations of constituents. The central category-
theoretic construct is an adjunction involving pullbacks, where the primary focus is on the relationship between processes
modelled as functors, rather than the representations. A functor is a structure-preserving map (or construction, for our
purposes). An adjunction guarantees that the only pairings of functors are the systematic ones. Thus, (quasi-)systematicity is
a necessary consequence of a categorial cognitive architecture whose basic processes are functors that participate in
adjunctions.
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Introduction

A complete theory of human cognition must explain why our

mental abilities are organized into particular groups of cognitive

capacities, rather than some arbitrary, random collection. For

example, if one can infer that the left block is blue on seeing a

(blue, red) pair of blocks, then necessarily one also has the capacity

to infer that the left block is red on seeing a (red, blue) pair. This

property of cognitive architecture (i.e., the collection of basic

processes and modes of composition that together generate

cognitive behaviour) is called systematicity [1], and the problem

posed for a theory of cognition is to explain why systematicity is a

necessary consequence of the assumptions and principles embod-

ied by the architecture that the proposed theory posits [1,2].

The classical explanation derives from the principle of classical

compositionality, which says that cognitive representations and

processes are constructed from a combinatorial syntax and

semantics, whereby semantic relations between constituents of

the complex entities represented by a cognitive system are

mirrored by syntactic relations between the corresponding

constituent representations–that is, syntactically structured repre-

sentations and processes that are sensitive to (i.e., compatible with)

those structures [1].

To illustrate this principle and the intended classical explanation

for systematicity, a (blue, red) pair of blocks is represented by a

(BLUE, RED) pair of symbols, such that the semantic spatial

relation left-of, relating the blue and red constituent blocks, is

mirrored by a syntactic order relation predecessor-of, relating the

corresponding BLUE and RED constituent symbols representing

those blocks; and inferring the left block is realized by a process for

identifying the preceding (first) symbol of a pair of symbols. The

capacity to infer the left block as blue from (blue, red) implies the

capacity to infer the left block as red from (red, blue), assuming the

two inferences involve one and the same process. Thus, the

presence or absence of this process as part of the system’s

architecture realizes the presence or absence of both inferential

capacities; there is no case of having one capacity without having

the other. Hence, this systematicity of block pairs is a consequence

of this architecture.

The problem for the classical explanation, which echoes the

essential problem already identified with the connectionist

explanation [1,3], is that the core principle of the theory (i.e.,

classical compositionality) is not sufficient to explain systematicity:

although classical systems can be configured to realize a particular

form of systematicity, classical systems can also be configured so as

not to realize that form of systematicity from that same classical
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principle [2] (see also [4], for an example). Thus, having a

combinatorial syntax and semantics is not a sufficient explanation

for the systematicity of human cognition. Additional (ad hoc)

assumptions are employed to remedy this situation, and so classical

(and connectionist) compositionality fails to fully explain the

systematicity of human cognition [2].

The crux of the problem is that the two parts of the classical

compositionality principle, that is: (1) combinatorial syntax and

semantics, and (2) structure-sensitive processes, are only made

compatible by the ad hoc assumption (convention) that they respect

the same mode of (concatenative) compositionality (e.g., prefix/

infix/postfix, where a relation symbol is always prepended/

infixed/appended to the symbols for the related entities); there is

no explanation as to why these two components must be compatible

(see [2], ch.4, for detailed discussion, and an alternative

illustration). (Previously [4], we simply highlighted a problem for

classical theory on the constructive side. Here, we highlight the

more general problem to emphasize what our approach is

intended to explain, and how it contrasts with the classical

theory.) By convention, one may assume an infix mode of classical

concatenative compositionality, whereby John loves Mary is

represented by [ John Loves Mary]. Yet, by convention, one

may also choose a prefix mode, e.g., [Loves John Mary], or a

postfix mode, e.g., [ John Mary Loves], as employed in some

(programming) languages, or even one where argument order is

reversed, e.g., [Mary Loves John], where Mary is the beloved and

John is the lover. All these possibilities are characteristically

classical in that the representations of constituent entities are

tokened (instantiated) whenever the representations of their complex

hosts are [1,3]. The problem is that although a representation of,

say, constituent John is tokened in a representation of complex host

John loves Mary, it is not necessarily tokened as the lover with

respect to a process intended to make that inference. An

architecture that employs incompatible combinations will not

exhibit systematicity. Classical compositionality does not fully

explain systematicity because of the ad hoc assumption that only

certain combinations are permitted. This assumption is enforced

by the cognitive scientist not the cognitive system. For an extended

discussion on the problem of ad hoc assumptions in science

generally, and classical/connectionist explanations of systematicity

specifically, see [2]. (At this point, modellers may think to augment

their theory with some sort of learning principle, such as is

commonly incorporated into connectionist [5] and Bayesian

modeling [6]. However, connectionist and Bayesian approaches

suffer the same shortcoming as the classical approach: while both

are capable of configuring architectures with the desired form of

systematicity, they likewise permit architectures without that form

of systematicity. See also [4], on this point.)

Recently, we presented an alternative explanation for systema-

ticity without recourse to such (ad hoc) assumptions [4] that

employed a branch of mathematics called category theory [7],

where the theoretical focus is on the relationships between

structure-sensitive processes, rather than the representations on

which they operate. In particular, the category theory notion of

functor maps (generalizations of) functions to (generalized) func-

tions, as well as mapping objects to objects. The central

explanatory element in [4] is the formal category theory concept

of adjunction: an adjunction relates two functorial constructions so

that of the possibly systematic capacity-realizing constructions there

is one and only one construction that realizes all systematically

related capacities via the adjunction. Hence, no further, ad hoc,

assumptions are required to distinguish the systematic from

unsystematic architectures, thus meeting the explanatory standard

for systematicity in human cognition originally explicated in [1],

and subsequently clarified in [2]. In our theory, basic building

blocks of human cognitive architecture involve adjunctive

relationships between functorial constructions.

Outside our use of adjunction to explain systematicity in [4],

adjunctions do not appear to have been used in cognitive science

(but, see [8] for a conceptual introduction; see also [9] in the

context of general systems theory of abstract machines and

behaviours). To provide some orientation, one may think of the

classical and connectionist approaches as primarily focussed on

the processes that transform representations, at the expense of

being unable to guarantee a systematic relationship between

those processes. In contrast, an adjunction guarantees that the

only pairings of functors modeling such processes are the

systematic ones. Thus, systematicity follows without further, ad

hoc assumptions.

Our explanation of systematicity was applied in two domains

that involved cognitive capacities pertaining to (1) a common

relation, and (2) a common relational schema. With respect to

these domains, human cognition exhibits what we may call ‘‘full’’

systematicity, in the sense that capacity is extended to each and

every combination of the possible constituents that may partake in

the relation or schema. For example, suppose one has the capacity

to represent entities John, Mary, Sue, Tom, and loves, and the

relational proposition that John loves Mary, then one has the

capacity to represent all possible combinations, such as Sue loves

Tom, Tom loves John, Mary loves Mary, and so on.

In fact, not all domains are fully (completely) systematic.

Additional constraints relevant to the domain of interest preclude

particular combinations. In particular, linguistic constructions

often incorporate different types of constraints, including syntactic,

phonetic, semantic, and pragmatic constraints that may further

restrict the group of capacities that are intrinsically connected

[10]. For example, English-speakers say John put his gear down, but

not John stowed his gear down, even though they say John put his gear

away, or John stowed his gear away (see [10] for this and other

examples). Such cases may be regarded as examples of quasi-

systematicity, in the sense that we will detail next. Our purpose in

this paper is to show how our category theory explanation of

systematicity [4] generalizes to include quasi-systematicity.

Author Summary

John, your greengrocer, arranges apples and oranges in
order of price. Being on a budget, you choose the fruit to
the left, because it is always cheaper. Last week it was
apples; this week it’s oranges. Your ability to choose the
fruit on the left, be it apples or oranges, is an example of
systematicity: a property of human cognition whereby
having some cognitive abilities means having certain
others. Explaining why cognitive ability is organized this
way is a basic question for cognitive science. Cognitive
scientists generally agree that systematicity depends on
some form of structured representations. However, they
have been unable to provide a complete answer without
relying on some overly strong assumptions about the
nature of these representations. We provide an alternative
explanation, using a mathematical theory of structure
called Category Theory. Our previous work dealt with a
special case, where ability extends to all possible
combinations of constituents. Some domains (e.g., aspects
of language) are only quasi-systematic: capacity extends to
some but not all possible combinations. The current work
presents our more general theory of (quasi-)systematicity,
which includes our previous explanation as a special case.

Categorial Compositionality II

PLoS Computational Biology | www.ploscompbiol.org 2 August 2011 | Volume 7 | Issue 8 | e1002102



Quasi-systematicity and the distribution of cognitive
capacity

Surrounding the debate over the implications of systematicity

for theories of cognitive architecture are a number of misconcep-

tions as to what is in need of explaining and what counts as an

explanation (see [2] for a detailed review). One commonly held

misconception is that human cognition is rarely ‘‘systematic’’ in

that many cognitive domains include exceptional cases not

covered by the (classical) theory. Therefore, according to this

view, systematicity says little, if anything, about cognition. This

view asserts that systematicity pertains to relatively simple

(structural) relationships between cognitive capacities, and thereby

overlooks the possibility that cognitive capacities depend on more

complex relationships (see, e.g., [1], p.29). This more complex

relationship between cognitive capacities is what we are generally

referring to as quasi-systematicity. Here, we expand upon this

difference to clarify what is in need of explaining and to motivate

our general theory of (quasi-)systematicity.

As a property of cognition, systematicity is essentially about a

distribution of cognitive capacities–instances of an architecture

(i.e., people at various points in development) associated with

groups of cognitive capacities. Cognitive architecture may take on

a variety of instantiations due to, say, genetic endowment,

maturation, or experience (learning). Returning to the blocks

example, suppose one cannot infer that the left block is blue given

a (blue, yellow) pair of blocks, because the two colours interact to

form a single colour, green, so that the constituent colours are lost

and no longer retrievable. In this scenario, having the capacity to

infer blue and yellow as the left blocks when paired with other

coloured blocks does not extend to the (blue, yellow) pair. In this

sense, we say cognition is quasi-systematic with respect to a

particular domain, where quasi-systematicity is just a further

refinement to a more specialized collection of systematic

(intrinsically connected) capacities. That systematicity and quasi-

systematicity are just differences in degrees of the same basic

phenomenon motivates our proposal for a general theory

explaining both.

Notice that the converse situation is also possible, albeit unlikely,

where the ‘‘exceptional’’ cases are intrinsically linked, but the

‘‘unexceptional’’ cases are not, and we shall also illustrate this.

Such cases dispel another misconception: that the argument from

systematicity to cognitive architecture is a fait accompli for classical

theory–that is, that systematicity is defined in a way that only

classical theory can hope to explain (again, see [2] for a review).

On the contrary, it is possible to construct a cognitive system that

has the capacity for inferring, say, John as the lover from John loves

Mary if and only if it has the capacity to infer The ground is wet from

Rain causes wet ground and It is raining, simply by constructing an

architecture that triggers both capacities in the presence of either

case. Such ‘‘facts’’ would not be explained by the classical theory,

since they don’t share a common syntactic process. More to the

point, there is no logical necessity even for capacities pertaining to

John loves Mary and Mary loves John to be intrinsically connected

given the possibility of having an architecture whereby each and

every capacity is acquired by rote-learning. (Another meaning of

quasi-systematicity, not adopted here, characterizes the degree of

generalization exhibited by connectionist networks in language

learning tasks [11].)

Logical possibilities aside, not just any group of capacities are

intrinsically connected in regard to human cognition. Relevant to

this point, and our theoretical motivation, is the observation that

the groups of intrinsically connected capacities are related by

‘‘common structure’’ (i.e., informally, the relationships between

constituent entities of interest). Syntactically structured represen-

tations and syntax-sensitive processes are one way of modeling

structure. So, it behooves us to work from a theory of structure, rather

than prescribe theoretical development via a particular model [4].

Category theory is a theory of structure, par excellence. With these

considerations in mind, we proceed from definitions of the formal

category theory concepts employed (Methods) to our general

theory of (quasi-)systematicity and its application to specific

cognitive domains (Results). In the final section (Discussion), we

discuss the implications of our theory and how it can be tested. As

a somewhat intuitive preview of the theory to come, the category

theory construct central to our theory is the formal concept of an

adjunction, being a particular kind of ‘‘universal construction’’–a

construction is universal in that it conveys all essential properties in

the domain (category) of interest, and does it in a unique way.

Thus, having the universal construction (capacity) is necessary and

sufficient for having all other intrinsically connected constructions

(capacities). In category theory terms, given a universal morphism,

each and every morphism in the category factors through it. Thus,

no further ad hoc assumptions are required, meeting the same

explanatory standard for (quasi-)systematicity [1,2,4]. All system-

atic and quasi-systematic properties of human cognition are just

instances of universal constructions of which adjunctions (also used

to explain fully systematic properties [4]) are special cases.

Methods

In this section, we introduce the category theory definitions used

for our general theory of systematicity. Formal introductions to

category theory are available from a variety of sources [7,12–14].

Our introduction is necessarily brief. A table of notations is

provided in Text S1, and more complete details of these formal

concepts and their relationships are provided in Text S2 (see also

[4,15]). The concept central to our general theory of systematicity

is adjunction, involving products and pullbacks as important cases.

Adjunction depends on the concepts of category, functor, and

natural transformation. So we proceed by first defining these

concepts before defining adjunction. Adjunction, product and

pullback are particular kinds of universal constructions. Universal

construction and the unifying concept of comma category provide

further perspective on our explanation for systematicity, so these

concepts are also detailed in Text S2. (Some definitions have duals,

obtained by reversing the directions of arrows in the original

definitions, and their definitions are provided in Text S2.)

Category
A category C consists of a class of objects DCD~(A,B, . . . ); a set

C(A,B) of morphisms (also called arrows, or maps) from A to B
where each morphism f : A?B has A as its domain and B as its

codomain, including the identity morphism 1A : A?A for each object

A; and a composition operation, denoted ‘‘0’’, of morphisms

f : A?B and g : B?C, written g0f : A?C that satisfies the laws

of:

N identity, where f 01A~f ~1B0f , for all f : A?B; and

N associativity, where h0(g0f )~(h0g)0f , for all f : A?B,

g : B?C and h : C?D.

One may think of a category as modeling a cognitive domain,

where objects are sets of cognitive states, and morphisms are

cognitive processes mapping possible cognitive state transitions. In

this case, the category is Set, having sets for objects and functions

for morphisms, where the identity morphism is the identity

function sending elements to themselves and composition is the

usual composition of functions. The structure of the domain is the
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morphisms. Our theory of systematicity is not specifically limited

to Set, and can employ other categories as appropriate to the

cognitive domain of interest. For example, the category Met of

metric spaces (objects) and continuous functions (morphisms) may

be appropriate for cognitive domains concerning continuous

instead of discrete entities. Furthermore, the objects themselves

may house additional internal structure (relations between

elements within the object), in which case the (homo)morphisms

may be considered as structure-preserving maps, such as in the

category Grph of graphs and graph homomorphisms (see, e.g.,

Text S3).

Here, we also define isomorphism for its use later in the paper. A

morphism f : A?B is an isomorphism if there exists a morphism

g : B?A, such that g0f ~1A and f 0g~1B. If g exists, then it is

said to be the inverse of f , and it is also denoted f {1. If f : A?B is

an isomorphism, then A is said to be isomorphic to B, written A%B.

Functor
A functor F : C?D is a structure-preserving map from a domain

category C to a codomain category D that sends each object A[DCD
to an object F (A)[DDD; and each morphism f : A?B[C(A,B) to a

morphism F (f ) : F(A)?F(B)[D(F (A),F (B)), such that

F (1A)~1F (A) for each object A; and F (g0Cf )~F (g)0DF (f ) for

all morphisms f : A?B and g : B?C for which compositions 0C

and 0D are defined in categories C and D, respectively.

Functors preserve structure in that every morphism in the

domain category is associated with just one morphism in the

codomain category, though this association does not have to be

unique. Functors also provide a means for constructing new

categories from old. In our context, one may think of functors as a

means for constructing new cognitive representations and

processes from existing ones. Thus, functors provide the formal

starting point for a theory about the systematicity of cognitive

capacities.

Natural transformation
A natural transformation g : F ?

:
G from a functor F : C?D to a

functor G : C?D consists of D{maps gA : F (A)?G(A) for each

object A[DCD, such that for every morphism f : A1?A2 in C we

have G(f )0gA1
~gA2

0F (f ), as indicated by the commutative

diagram

(A diagram is said to be commutative when any two compositions

identified by paths with the same start object and the same finish

object yield the same morphism, where at least one path has length

greater than one.) For the diagram in Figure S1, commutativity

means that G(f )0gA1
~gA2

0F (f ).

A natural transformation is a natural isomorphism, or natural

equivalence if and only if each gA is an isomorphism. That is, for

each gA : F (A)?G(A) there exists a morphism g{1
A : G(A)

?F (A) such that g{1
A 0gA~1F (A) and gA0g{1

A ~1G(A).

Natural transformations relate functors (see Text S2, for an

example), which we use to model cognitive constructions. So for

our purposes one may think of natural transformations as a way of

relating cognitive constructions.

Adjunction
An adjunction consists of a pair of functors F : C?D, G : D?C

and a natural transformation g: 1C ?
:

(G0F), such that for every

C{object X , D{object Y , and C{map f : X?G(Y ), there

exists a unique D{map g : F (X )?Y , such that G(g)0gX ~f , as

indicated by the following commutative diagram:

The two functors are called an adjoint pair, denoted (F ,G), where

F is the left adjoint of G (written, F a G), and G is the right adjoint of

F , and g is the unit of the adjunction. (An equivalent definition of

adjunction from the perspective of the counit is given in Text S2.)

A pair of adjoint functors may be thought of as reciprocating

actions that are in some sense ‘‘conceptual’’ inverses of each other.

By contrast, an isomorphic functor has an actual inverse. The

composition of an isomorphic functor with its inverse sends objects

and morphisms to themselves. The composition of right and left

adjoints relates (co)domain objects and morphisms by a natural

transformation, a relationship that is not necessarily an identity.

Hence, adjunction is a more general concept than isomorphism:

though every isomorphic functor has right and left adjoints (i.e., its

inverse–e.g., g: 1C ?
:

G0F is the identity transformation, since

G0F~1C), an adjoint functor is not necessarily an isomorphic

functor (see Text S2). An example is given in Text S2, where the

conceptual inverse of injection (left adjoint) is extraction (right

adjoint); the related categories are not isomorphic, because the

category resulting from the injection contains more objects and

morphisms. The next section details adjunctions involving

products and pullbacks used to address specific cases of

systematicity. These adjunctions are also conceptual inverses in

the sense that one functor takes wholes to produce copies as parts

and the other functor composes combinations of parts back into

new wholes. The categories in these adjoint situations are not

isomorphic, because there are generally more part combinations

than wholes.

Product. A product of two objects A and B in category C is, up

to unique isomorphism, an object P (also denoted A|B) together

with two morphisms (sometimes called projections) p1 : P?A and

p2 : P?B, jointly expressed as (P,p1,p2), such that for every object

Z[DCD and pair of morphisms f : Z?A and g : Z?B there exists

a unique morphism u : Z?P, also denoted Sf ,gT, such that the

following diagram commutes:

The Cartesian product of sets is a product in Set (though, some

categories do not have products).

The pair diagonal functor D2 : C?C2 is specific to the category of

pairs, C2%C|C, whose objects are pairs, (A,B), and morphisms

Categorial Compositionality II
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are pairs of arrows, (f ,g) : (A1,B1)?(A2,B2), where D2 : A.
(A,A),f.(f ,f ).

The product functor P : C2?C is also specific to the category of

pairs, where the object component is P : (A,B).A|B, and for

morphisms f : A?A
0
, g : B?B

0
, and (f ,g) : (A,B)?(A

0
,B
0
),

(a,b).(a
0
,b
0
), the morphism component is P : (f ,g).f |g.

This (diagonal, product) adjoint pair is indicated in commuta-

tive diagram

from the perspective of the unit of the adjunction,

S1X ,1X T : X?X|X , and commutative diagram

from the perspective of the counit, (p1,p2) : (A|B,A|B)?
(A,B).

Pullback. A pullback of two morphisms f : A?C and

g : B?C in category C is, up to a unique isomorphism, an

object P (also denoted A|CB) together with two morphisms

p1 : P?A and p2 : P?B, jointly expressed as (P,p1,p2), such that

for every object Z[DCD and pair of morphisms z1 : Z?A and

z2 : Z?B there exists a unique morphism u : Z?P, also denoted

Sz1,z2T, such that the following diagram commutes:

Objects A, B, and C, and morphisms f and g correspond to the

shape of these compositions, called a sink (see Text S2). A pullback

may be thought of as a product of objects A and B constrained at

C. In the category Set, for example, A|CB is, up to unique

isomorphism, the subset of the Cartesian product A|B that

includes just those pairs of elements (ai,bj) satisfying the constraint

that f (ai)~g(bj)[C. (Not all categories have pullbacks.) With this

intuition in mind, we can begin to see how pullbacks pertain to

quasi-systematicity of binary relations, which we address next. The

associated (diagonal, pullback) adjoint pair is given in Text S2.

Results

Having provided the basic category theory definitions, we now

proceed to show how (quasi-)systematicity follows from adjunc-

tions without recourse to ad hoc assumptions. The indivisible nature

of systematically related capacities is made explict from the

perspective of the more general concept of universal construction

(see Text S2, for a definition). Hence, we also review our

explanation for systematicity of (binary) relations and relational

schemas [4] from the perspective of universal constructions, and

show that this perspective extends to quasi-systematicity.

Systematicity: Natural relations
Systematicity of relational propositions was explained by a

(diagonal, product) adjoint functor pair [4]. The example domain

was a group of inferences that included instances such as the

capacity to infer John as the lover from proposition John loves Mary,

Mary as the lover from Mary loves John, and so on. The explanation

involves the (diagonal, product) adjoint, where the left adjoint is

the pair diagonal functor D2 : C?C|C,C.(C,C); f.(f ,f ),
and the right adjoint is the product functor P : C|C?C,
(A,B).A|B; (f ,g).f |g, and the adjunction is indicated by the

following commutative diagram:

where object Pr is the set of loves propositions, S is the set of

agents/patients (e.g., John, Mary), and morphisms ag and pt extract

the agent and patient (respectively) from a proposition.

Given a cognitive capacity for a relation realized as a particular

product, the commutativity property of the adjunction ensures that

there is one and only one way to realize the other capacities,

obviating the need for an ad hoc assumption dictating a specific

product. An explanation based solely on products, or product

constructing functors, has the same sort of problem as one based

solely on classical compositionality, as we are about to show. For

an architecture with all products having the same form, in general

say, (A|B,p1,p2), where p1 : A|B?A and p2 : A|B?B are

the projections, the capacity to infer John as the lover in John loves

Mary by p1 : (John,Mary).John extends to the capacity to infer

Mary as the lover in Mary loves John since p1 : (Mary,
John).Mary. However, (B|A,p

0

1,p
0

2) is also a product of A

and B, where p
0

1 : B|A?B and p
0

2 : B|A?A. So, an

architecture can also be constructed that has the capacity to

correctly infer John as the lover in John loves Mary from

p1 : (John,Mary).John, by employing (A|B,p1,p2), while also

having the capacity to incorrectly infer John as the lover in Mary

loves John, by employing (B|A,p
0

1,p
0

2), because p
0

1 : (John,
Mary).John. Hence, for an explanation based solely on

products, an ad hoc assumption is required to exclude this second

type of architecture, just as such assumptions are required for the

classical explanation (cf. classical architectures based on grammar

G1 versus G2 in [4]).

If we base our explanation of systematicity on a product

specifically obtained via an adjunction, however, then the

commutativity property of the adjunction rules out the second

architecture. That is, given a capacity realized by a product of one

form, say, (A|B,p1,p2), then only the product functor

P : C|C?C,(A,B).A|B; (f ,g).f |g (implicit in Figure S7)

makes this diagram commute. Product functor P
0
: C|C?C,

(A,B).B|A; (f ,g).g|f does not, since Sf ,gT=(g|f )0
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S1C ,1CT [4]. Commutativity ensures that all other capacities are

realized systematically.

The commutativity property of an adjunction enforces a

particular (cognitive) construction that is universal (see Text S2)

in the category (cognitive domain) of interest. Cognitive capacities

are indivisibly linked via a common, mediating arrow. This

mediating arrow is made explicit from the perspective of universal

construction, and explains the indivisible nature of certain groups

of cognitive capacities. This adjoint situation is indicated in the

following commutative diagram:

where S1Pr,1PrT : Pr?Pr|Pr is the unit of the adjunction. The

adjunction is also given in diagram

where the counit (p1,p2) : (S|S,S|S)?(S,S) is a mediating

arrow. (The counit of the adjunction is also a mediating arrow.)

As a universal construction, the explanation for systematicity is

rendered more explicitly in Figure S9. From this diagram we see

that the capacity to infer the lover (agent), or one being loved

(patient) from a proposition such as John loves Mary, i.e., an arrow

(ag,pt) : (Pr,Pr)?(S,S), has two components: the arrow

(Sag,ptT,Sag,ptT), which is guaranteed to exist uniquely, by the

commutativity property of the adjunction; and the mediating

arrow (p1,p2), which is common to all such capacities. Thus, it is

the presence or absence of the mediating arrow that implies the

presence or absence of all capacities pertaining to the loves

propositions. Hence, this universal construction provides an

explanation for systematicity of relations.

An alternative view of our explanation for systematicity is

provided by the equivalent hom-set definition of adjunction (see

Text S2). From this definition, we obtain the following diagram

showing how the objects and morphisms in the two categories are

related by the adjoint functors:

This view highlights both the constructive nature of functors,

and how a particular unique relationship between constructions is

enforced by an adjunction. It also highlights the informal notion of

an adjunction as a correspondence between processes, as (in

general) each dashed arrow indicates a set of possibly several

morphisms, and there is a one-to-one correspondence between the

two sets. Adjunctions are also unique up to unique isomorphism.

The unique existence of alternative construction P
0
: (ag,pt).

Spt,agT is enforced by the commutativity property of the (D2,P
0
)

adjoint, where the correspondence is indicated in the following

diagram:

The explanation for the systematicity of relational schemas [4] is

also a special case of our general theory, albeit employing a different

category. The details of this explanation are provided in Text S3.

Quasi-systematicity: Natural relations
Our explanation for systematicity in terms of adjunctions

(universal constructions) also extends to quasi-systematicity of

relational inference (i.e., for relations that do not extend to all

possible combinations of elements) via pullbacks. We provide

several examples involving different kinds of relations, and an

explanation in terms of an adjunction employing a particular kind

of pullback for each case.

Note that our explanation for quasi-systematicity of relations

involving pullbacks subsumes our explanation for full systematicity

involving products. Recall that a pullback (A|CB,p1,p2) and the

morphisms f : A?C and g : B?C (see Figure S6) can be thought

of as a ‘‘product’’ of A and B constrained by object C and the

morphisms f and g, such that f 0p1~g0p2. In the case that C~1
(i.e., a terminal object, see Text S2), then f is the unique

morphism IA : A?1 and g is the unique morphism IB : B?1,

which are guaranteed to exist (by definition of terminal). In effect,

C~1 provides no constraint on the product. Thus, (A|B,p1,p2)
is a special case of (A|CB,p1,p2), i.e., A|B~A|1B, and so our

general explanation in terms of pullbacks subsumes our special

explanation in terms of products.

We use the relation parent (e.g., mares parent colts) to illustrate our

explanation of quasi-systematicity in terms of pullbacks. If one

knows that mares parent colts and stallions parent fillies then one also

knows that mares parent fillies and stallions parent colts. Likewise, if one

knows that cows parent steers and bulls parent heifers, then one also knows

that cows parent heifers and bulls parent steers. Yet, one would not also

think that mares parent steers, or bulls parent fillies. One also would not

think that colts parent stallions, or heifers parent bulls. An architecture

based only on a product is inadequate. Instead, the quasi-systematic

capacities associated with this relation derive from a pullback.

The pullback diagram associated with the parent relation is an

instantiation of the diagram in Figure S6. In particular, the pullback

for this relation is given in the following commutative diagram:
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where Pr is the set of valid propositions, with pg and os as the

progenitor and offspring maps (respectively), P is the set of

progenitors, F is the set of offspring, S is the set of species, sP and

sF map the progenitors and offspring to their species (respectively),

and P|SF~f(p,f )Dsp(p)~sf (f )g. Suppose P~fstallion,mare,
bull,cowg, F~fcolt,filly,steer,heiferg, and S~fequine,bovineg,
so that sp : stallion.equine, mare.equine, bull.bovine, cow.
bovine, and sf : colt.equine, filly.equine, steer.bovine, heifer

.bovine. Therefore, P|SF is the set {(stallion, colt), (stallion, filly),

(mare, colt), (mare, filly), (bull, steer), (bull, heifer), (cow, steer), (cow, heifer)},

which contains just the elements of the relation.

In Set, the elements of a pullback object A|CB can be

visualized as the main diagonal of a block matrix, whose row and

column labels are the values of f : A?C and g : B?C for each

a[A,b[B, where the blocks contain the cells, (a,b), with common

row and column labels, corresponding to f (a)~g(b). For example,

the block matrix representation of the parent pullback is shown in

Figure 1.

The adjoint for this example is (D , PS), where S is the

constraining object, and refers to constructs that are specific to

pullbacks (see Text S2). The adjunction is indicated by the

following diagram:

where sp0pg~sf 0os and Pr|PrPr%Pr, i.e., in general, the

pullback (A,1A,1A) of 1A : A?A/A: 1A has the universal

property of pullbacks, which is easy to show. The diagram in

Figure S13 simplifies to:

where a composite such as P?S/F in Figure S13 is identified by

the morphisms (i.e., sp and sf , mapping parents and offspring to

species), and a map between such composites by the corresponding

morphisms between the outer objects. For example, P and F are

the outer objects in P?S/F , and S is the inner object. Reference

to the morphism between inner objects is omitted, because it is

determined by the other morphisms.

The explanation for quasi-systematicity comprises two parts:

one part pertains to the constraints on allowable elements; and the

other part pertains to universal construction, and is essentially the

same explanation as that for full systematicity, except that the

universal construction is associated with pullbacks.

Regarding the constraints part of the explanation, there are two

sources of constraints in the form of the sets containing the possibly

related elements (i.e. P and F in this example), and the

requirement that the diagam in Figure S12 commutes. That P

contains only progenitors and F only offspring precludes pairs

corresponding to colts parent mares, for example. The fact that the

diagram in Figure S12 must commute (to be a pullback) precludes

instances corresponding to stallions parent steers, for example,

because stallion and steer belong to different species.

The universal construction part of the explanation parallels the

explanation for full systematicity, starting with the following

commutative diagrams:

and

where mediating arrow (p1,p2) : (1P|SF ,1P|SF )?(sp,sf ) is the

counit, and p1 : P|SF?P and p2 : P|SF?F (see also Text S2).

To paraphrase, given a cognitive capacity for a relation realized as a

particular pullback, then the commutativity property of the

adjunction ensures that there is one and only one way to realize

the other capacities, obviating the need for an ad hoc assumption

stipulating which pullback. In particular, (F|SP,p
0

1,p
0

2), where

p
0

1 : F|SP?F and p
0

2 : F|SP?P, is also a pullback. Thus, from

pullbacks alone an architecture can be constructed whereby mare is

correctly inferred as the progenitor in mares parent colts by

(P|SF ,p1,p2) and p1 : (mare,colt).mare, but steer is incorrectly

inferred as the progenitor in bulls parent steers since (F|SP,p
0

1,p
0

2)
and p

0

1 : (steer,bull).steer. The commutativity property of the

adjunction rules out an architecture that mixes different possible

pullbacks. As with full systematicity, quasi-systematic capacities are

indivisibly linked by a universal arrow, i.e., (p1,p2).
Figure 1. Block matrix representation of parent pullback.
doi:10.1371/journal.pcbi.1002102.g001
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This form of pullback is sufficient when the capacity subgroups

(one subgroup per species, in this example) are themselves locally,

fully systematic. In some situations, this condition may not hold.

For example, suppose we introduce whale and calf as additional

progenitor and offspring elements, respectively. By associating

whale and calf with mammal, the pullback above would yield (whale,

calf), but also (whale, steer), and (whale, heifer) where these elements

where also associated with mammal. Clearly, the term calf is being

used in two senses that need to be distinguished. One sense

pertains just to cattle, and the broader sense includes large

mammals, such as elephants and seals as the parents of calves.

These subgroups are distinguished by using another pullback that

incorporates this additional structural information.

The pullback in this new situation is indicated in the following

diagram:

where PS contains the parent-species pairs, SF contains the

species-offspring pairs, and the constraining object S~fbovine,
equine,cetaceang contains the new species information distin-

guishing the senses of calf. Morphisms pij project out the ith and

jth elements of each triple (respectively), and p1 and p2 are the

usual projections, picking out the first and second elements of each

pair (respectively). The pullback of these two morphisms is

(PSF ,f ,g), where PSF is the set of triples containing instances

such as (whale, cetacean, calf), corresponding to whales parent calves, but

no instance that includes both whale and steer, etc. The two senses

of calf are captured by pairing bovine with calf for one sense and

cetacean with calf for the other in SF , and bull and cow with bovine,

and whale with cetacean in PS. Since bull, cow, steer and heifer, etc. are

not paired with cetacean, instances corresponding to whales parent

steers are not contained within the collection of quasi-systematic

capacities.

Quasi-systematicity: Formal relations
Quasi-systematicity also occurs with formal (mathematical)

relations, such as the function square, i.e., sqr : x.x2, treat-

ed as a relation between whole numbers, i.e., the set

Sqr~f(x,y)Dx2~yg5Z|Z, where Z is the set of integers. There

are two (quasi-)systematic aspects to this relation: The first one is

illustrated as follows: if one has the capacity to infer that 9 (3) is the

square (root) from ‘‘3 square 9’’, then one also has the capacity to

infer that 16 (4) is the square (root) from ‘‘4 square 16’’, but one

would not infer that 4 (16) is the square (root) of 16 (4). The second

aspect is also illustrated: if one has the capacity to know that ‘‘3

square 9’’ and ‘‘-3 square 9’’, then one has the capacity to know

that ‘‘4 square 16’’ and ‘‘-4 square 16’’. We address each aspect in

turn.

The quasi-systematic nature of square–the fact that it does not

include all possible pairs in Z|Z–is indicated by the pullback in

the following diagram:

where the pullback object Sqr5Z|Z is at the top-left corner.

Here, and further on, we omit the other object and morphisms,

corresponding to Pr, pg, os and Spg,osT in Figure S17. As a

universal construction, (p1,p2) is a mediating arrow, and the

adjunction is the (diagonal, limit) adjoint specific to pullbacks.

Having provided a pullback and hence an adjoint, the

explanation for quasi-systematicity proceeds as before. The same

situation applies to the remaining examples, so we only provide

the universal construction (most often a pullback) in those cases

too.

The second systematic aspect results from a coequalizer (see Text

S2), such that x and {x are equivalent, under the relation absolute.

With respect to this relation, x and {x are the ‘‘same’’ and

constitute an equivalence class (½x�~fy[ZDabs(y)~xg, where x[Z

and abs : y.DyD, and the set of such equivalence classes is a quotient

set (Z=absolute). A formal definition of equivalence in terms of

category theory constructions is given in Text S4. A coequalizer is

a colimit, which is also a universal construction arising from an

adjunction (see Text S2), hence the explanation for this second

aspect of systematicity parallels the other explanations. A

coequalizer is equivalent to a particular kind of pushout (see Text

S4; dually, an equalizer is equivalent to a particular kind of pullback

[7]). The absolute equivalence relation, denoted Abs, is given in the

following diagram expressing a pushout:

where N is the set of natural numbers including 0. The pushout is

(N,abs,abs), and N is isomorphic to the quotient set Z=absolute
associated with this equivalence relation.

Since equivalence classes are familiar to cognitive scientists, one

may wonder why more elaborate category theory concepts are

necessary. The answer is that the category theory approach is

necessary to establish that these constructs (with products,

pullbacks, and coequalizers) are unique, not ad hoc. We also point

out (in Text S4) that this example of equivalence in terms of a

coequalizer also provides a formal category theory definition of

systematicity.

Another example of quasi-systematicity with respect to a

formal relation is less-than, i.e. the set LT~f(x,y)Dxvyg5Z|Z.

We detail this example because it introduces a general kind of

pullback that addresses quasi-systematicity for an arbitrary

relation. As with the square relation, if one has the capacity to

infer that 2 is the lesser number from ‘‘2 is less than 3’’, then one

also has the capacity to infer that 4 is the lesser number from ‘‘4

is less than 5’’, but one would not infer that 5 is the lesser

number. The structural difference between less-than and square

relations is that less-than is not a function, and so the previous

pullback cannot be used. Instead, quasi-systematicity for less-than

is explained using the pullback indicated in the following

diagram:
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where ILT : (x,y).1, for all (x,y)[LT, v : (x,y).1 if xvy,
else 0, and i : 1.1 is an inclusion. Again, the relation is captured

in terms of a pullback and the explanation for quasi-systematicity

proceeds as before.

In general, this kind of pullback can be employed for an

arbitrary relation R(A|B. Category theorists will recognize the

diagram in Figure S20 as similar to a subobject classifier, a critical

part of a definition of a topos–topos theory is a branch of category

theory that, among other things, provides a category-theory basis

for logic (see, for example, [16] for an introduction). Hence, topoi

are likely to be involved where an explanation for systematicity is

required for logic-related cognitive behaviours, though we do not

pursue this topic further here.

Quasi-systematicity in language
Language is another domain where quasi-systematicity is

evident, as mentioned in the Introduction. Here, we present two

examples. Other situations involving further category theory

concepts are discussed in the final section (Discussion).

Our first example is subject-verb agreement: for English

speakers, agreement between the subject and verb means that

the capacity for the dogs chase the cats and the dog chases the cats implies

the capacity for the cats chase the dogs, but not the cats chases the dogs,

nor the cat chase the dogs, etc. The present example is confined to

third-person agreement, though the explanation extends to first-

and second-person. Subject-verb agreement is enforced by a

pullback indicated in the following diagram:

where N~fdog,dogs,cat,catsg is a set of nouns, V~
fchase,chasesg is a set of verbs, S~fz3s,{3sg is the set of

attributes, and sN and sV are the morphisms mapping nouns and

verbs to their singularity attribute (respectively), indicated as z3s
({3s) meaning is (not) third-person singular. The pullback object

N|SV contains the quasi-systematic relationships, e.g., (dogs,

chase) and (cat, chases), but not (dogs, chases). Hence, quasi-

systematicity with respect to this domain is explained by an

adjunction involving this pullback.

Some nouns, such as sheep, are both singular and plural. In this case,

we need a pullback similar to the one used in the extended parent

relation (see Figure S17) that captures this additional structural

information. The corresponding pullback is indicated as follows:

where pij and pk are the usual projections. In the case of sheep,

(sheep,z3s),(sheep,{3s)[NS, so that the pullback object NSV

contains (sheep,z3s,chases) and (sheep,{3s,chase), e.g., the sheep

chases the farmer and the sheep chase the farmer, respectively.

Our second linguistic example involves the difference between

verbs drench and throw: English speakers say I drenched the flowers with

water, but not I drenched water onto the flowers, whereas they say I threw

water onto the flowers, but not I threw the flowers with water [10].

Whether or not the verb requires a preposition such as onto, or over

is considered to depend on whether or not the meaning of the verb

specifies how the water got onto the flowers [10]. Verbs that

require onto include: dripped, threw, poured, and tossed. Verbs that

require no preposition include: dampened, drenched, and wet. The

pullback for this situation is similar to the previous one, and

indicated in the following diagram:

where V is the set of verbs, P the set of prepositions {onto, over,

e}, where e indicates no preposition, A~fz,{g is the set of

attributes, and aV and aP are the morphisms mapping verbs and

prepositions to their preposition attribute (respectively), indicated

as z ({) meaning does (not) require a preposition.

Discussion

A fundamental question for cognitive science concerns the

systematic nature of human cognition–why does having certain

cognitive capacities imply having certain others? An answer to this

question speaks to the nature of human cognitive architecture–the

basic processes and modes of composition that together bring

about cognitive behaviour. In so far as cognition is systematic, our

category-theoretic answer says that systematicity is a necessary

consequence of a (categorial) cognitive architecture whose basic

processes are functors that participate in adjunctions. Thus, on this

basis, adjoint functors constitute building blocks of human

cognition.

There is common ground between our category theory

explanation and the classical compositionality one. Both theories

assume complex representations and processes that are built out of

simpler ones, and some category theory constructions generalize

classical ones, as mentioned elsewhere [4]. So, a classical theory of

systematicity may be compatible with our categorial one.

Nonetheless, the quintessential difference between the two

theories is the adjunction, which accounts for systematicity without

having to stipulate a specific correspondence between processes for

constructing representations and processes for accessing compo-

nents of those constructions. Alan Turing is credited with

providing a key advance concerning the foundations of cognitive

science, overcoming the problems with associativism by suggesting

that cognitive processes are instead (syntactic) computations [17].

Turing’s (classical) solution works well for computational systems,

because the correspondence between the processes for construct-

ing compositional representations of complex entities and the

processes for accessing the representational components corre-

sponding to their constituents is systematically maintained by the

designer of the system. However, a theory of cognitive systems

demands an explanation for such correspondences just in terms of

the system and its interaction with the world, not some third party.
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Our explanation meets this criterion, where the correspondence is

enforced by the commutativity property of the adjunction.

This conception of adjunction as a building block of cognition is

unique to our theory, and goes significantly beyond the

widespread use of isomorphism (cf. analogy models) in cognitive

science generally. A contrast of adjunction versus isomorphism

highlights our shift in perspective: a reconception of cognitive

architecture in terms of the relationships between structure-

sensitive processes, instead of the representations that those

processes transform (see also [4]). Other approaches to cognition,

including classical ones typically treat representation in terms of an

isomorphism between the representations and the entities those

representations are intended to denote. From the category theory

perspective, isomorphic domains modelled as categories are the

same apart from a change of labels. An adjunction is more general,

and potentially more useful, because two domains (involving quite

different sorts of processes) that are not isomorphic, may still be

systematically related by an adjunction, thereby affording an

explanation that is not limited to cases whose domains are only

superficially dissimilar.

The choice of adjunction will depend on the structure of the

cognitive domain of interest. Most of our examples involved two

specializations: one involving products, and the other pullbacks.

These adjunctions differ in the shape of their composition: products

involve pairs of objects, whereas pullbacks involve a third object

and associated morphisms pertaining to the interaction between

the other two. Thus, product-based adjunctions provide a natural

explanation for full systematicity where there is no restriction on

the group of intrinsically connected capacities beyond the type of

constituents, whereas pullback-based adjunctions provide a natural

explanation for quasi-systematicity, where the interaction at the

third object accounts for the more refined group of intrinsically

connected capacities.

Of course, our theory is not limited to just these kinds of

adjunctions. For the most part, we have confined ourselves to the

category Set. Category theory provides many other kinds of

categories for a wide variety of applications for mathematics and

other fields, such as computer science [18], linguistics [19], and

physics [20]. In particular, the category of pregroups with certain

morphisms interpreted as grammar rules has been used for a

hybrid distributive-symbolic model of grammar [21]. An adjunc-

tion involving this or related categories may provide explanations

for other quasi-systematic aspects of language (without ad hoc

assumptions), that we have not addressed. The reader may have

noticed that categories themselves are objects of other categories,

e.g., Cat is the category with categories for objects and functors for

morphisms. Cat also has pullbacks (see [7], p74), which may be

applicable to explanations of quasi-systematicity in other more

complex cognitive domains.

Up to this point, we have referred to universal constructions and

adjunctions synonymously with respect to our explanation of

systematicity. This is despite the fact that the two constructs are

technically different: in an adjoint situation every object in the

respective category is a (co)free object, where a universal

construction is associated with just one (co)free object (see Text

S2). That is, an adjoint situation involves a collection of universal

constructions. The difference in regard to our explanation of

systematicity only concerns scope. For example, when our interest

concerns a single (loves) relation, systematicity is explained in terms

of a (co)free object, i.e., a product on the pair of objects

constituting the relation. When our interests concern all relations

pertaining to a particular cognitive domain (modelled implicitly as

different pairs, or explicitly with a relation symbol, see [4],

Diagram 17), systematicity is explained in terms of an adjunction,

which includes all corresponding (co)free objects.

If adjunction is one of the basic components of human

cognition, then what is its corresponding neural realization? An

adjunction involves a reciprocal relationship between two functors,

though the functors may not be inverses of each other. One

possible approach to investigating neural correspondences, then, is

with the reciprocal relationships between brain regions (see [22]

for a category-theoretic integration of neural and cognitive levels,

[23] for a category theory approach to modeling hippocampal

place cells using colimits, and [24] for a category theory approach

to designing neural networks).

Our theory can be tested with tasks that involve adjoint

relationships between domains. Tasks involving isomorphic relation-

ships between their instances are candidates. The trigram prediction

task is such a task (see Text S3, and [4]). From our category theory

perspective we see how this sort of paradigm can be extended to

involve transfer between task instances that are more generally

homomorphic, not just isomorphic. (Recall that an isomorphism is a

(homo)morphism that is invertible, and so not many-to-one.) For

example, letter sequences conforming to a particular grammar are

modeled as a free category on the directed graph defining the grammar

[25]. The transfer to a new set of sequences involving a new grammar

may be homomorphic, where there is a many-to-one mapping from

the elements in the previous grammar to elements in the new one. Yet

another alternative, for testing the generality of the theory, includes

tasks best modeled in categories other than Set, where the stimuli are

continuous rather than discrete.

We close with some discussion on the relationship between

systematicity and development/learning, both as a possible point

of contact with another central concern of cognitive science (i.e.,

development and learning), and as a portent for future

development. The systematicity problem is concerned with why

does having certain cognitive capacities imply having certain

others, whereas the broader development/learning problem is

concerned with why those capacities are available in the first place.

In our case, the broader question pertains to the origins of

adjunctions and the constraints that determine object types and, in

the case of pullbacks, morphisms pertaining to the constraint

object. We note that a universal construction, and an adjunction

(particularly) are a kind of optimal solution to a problem. A

universal construction is one from which all other constructions

are composed. In an adjoint situation, the left adjoint may be

considered as the most efficient solution to the problem posed by

the right adjoint. Or, conversely, the right adjoint is the most

difficult problem that the left adjoint solves. In our context, that is

the problem of systematically representing and making inferences

about the world. Thus, learning and development may be treated,

ideally, as a process of acquiring universal cognitive constructions,

and in particular, adjoint cognitive processes. Such theoretical and

empirical possibilities await further development of our category

theory approach to cognition.
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Figure S5 Diagonal-product adjoint (counit).
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Figure S8 Diagonal-product adjoint for loves relation (unit).

(TIF)

Figure S9 Diagonal-product adjoint for loves relation (counit).

(TIF)
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(TIF)

Figure S22 Pullback for extended subject-verb agreement.

(TIF)

Figure S23 Pullback for prepositions.

(TIF)

Text S1 Definitions of category theory notations used in the

main text.

(PDF)

Text S2 Further explanation of the category theory concepts

used to explain systematicity, and how these concepts are related

to each other, their duals, more general forms, and to the unifying

concept of comma category.

(PDF)

Text S3 An explanation for systematicity in ‘‘relational schema

induction’’ using adjunction.

(PDF)

Text S4 A category theory definition of systematicity.

(PDF)
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