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Simple Summary: Lung cancer is the most dreadful cancer type and has the worst cancer-related
clinical outcomes. This study used specimens from the in-house lung cancer cohort and public
cohort to verify the roles of downregulated ADAMTS], a protease remodeling extracellular matrix, to
facilitate cancer promotion and progress. Based on the clinical specimens, cell and animal study with
the aid of the public databases, we concluded that downregulated expression of ADAMTS1 might
promote tumor progression and metastasis and modify the tumor microenvironment in lung cancer.

Further investigation would be required for its application in treating lung cancer.

Abstract: Lung adenocarcinoma (LUAD) still holds the most dreadful clinical outcomes worldwide.
Despite advanced treatment strategies, there are still some unmet needs. Next-generation sequencing
of large-scale cancer genomics discovery projects combined with bioinformatics provides the opportu-
nity to take a step forward in meeting clinical conditions. Based on in-house and The Cancer Genome
Atlas (TCGA) cohorts, the results showed decreased levels of ADAMTS1 conferred poor survival
compared with normal parts. Gene set enrichment analyses (GSEA) indicated the negative correlation
between ADAMTSI and the potential roles of epithelial-mesenchymal transition (EMT), metastasis,
and poor prognosis in LUAD patients. With the knockdown of ADAMTS1, A549 lung cancer cells
exhibited more aggressive behaviors such as EMT and increased migration, resulting in cancer metas-
tasis in a mouse model. The pathway interaction network disclosed the linkage of downregulated
«2-macroglobulin (A2M), which regulates EMT and metastasis. Furthermore, immune components
analysis indicated a positive relationship between ADAMTS1 and the infiltrating levels of multiple
immune cells, especially anticancer CD4* T cells in LUAD. Notably, ADAMTS1 expression was
also inversely correlated with the accumulation of immunosuppressive myeloid-derived suppressor
cells and regulatory T cells, implying the downregulated ADAMTS1 mediated immune adjustment
to fit the tumor survival disadvantages in LUAD patients. In conclusion, our study indicates that
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ADAMTSI interacts with A2M in regulating EMT and metastasis in LUAD. Additionally, ADAMTS1
contributes to poor prognosis and immune infiltration in LUAD patients

Keywords: A2M; ADAMTS1; EMT; immunity; LUAD; metastasis

1. Introduction

According to Global Cancer Statistics 2020, lung cancer is still the leading cause of
cancer-related mortality and the second most diagnosed cancer among all cancer types
worldwide [1]. Among the two major pathologic categories of lung cancer, non-small
cell lung cancer (NSCLC) and small cell lung cancer, NSCLC accounts for 85% and is
often diagnosed at an advanced stage. The most common subtype of NSCLC is lung
adenocarcinoma (LUAD). Even with multiple therapeutic strategies, the 5-year survival is
around 10-20% in the patients with stage IV LUAD [1,2], conferring a substantial medical
and economic burden. Therefore, a novel therapeutic strategy is desired to improve
patient outcomes.

In the advanced stage, cancer cells can remodel the host tissue microenvironment
(TME) through extracellular matrix (ECM) protease to destroy the normal structure of
ECM [3]. This aberrant remodeling process plays a crucial role in cancer development and
invasion [4]. A disintegrin and metalloprotease with thrombospondin motifs (ADAMTS)
family is a group of metalloproteases that polymerize or catalyze ECM [5]. ADAMTS], a
member of the ADAMTS family, remodels chondroitin sulfated proteoglycans and collagen
by catalyzing proteoglycan degradation [6]. It can also inhibit angiogenesis by sequestering
vascular epithelial growth factor (VEGF) in physiological status [7,8]. Moreover, ADAMTS1
is widely distributed across various tissues or organs to maintain ECM metabolism, in-
cluding old protein degradation and new protein formation. Therefore, dysregulation
of ADAMTSI has been shown to contribute to various pathological processes of human
diseases [9,10]. Many studies have shown the dysregulated activity of ADAMTS1 in tumori-
genesis. ADAMTSI gene is differentially expressed low in various cancer types, including
NSCLC, prostate, liver, colorectal, and breast cancers [7,11]. Epigenetic modulation of
low ADAMTS1 expression through promoter hypermethylation has also been studied in
prostate, colorectal, and lung cancers [7]. However, the role of ADAMTS1 downregulation
in lung cancer remains unknown.

ECM is a basic constituent of all tissues and acts as a highly dynamic structure in
interactions within a microenvironment, including cancer cell-cancer cell interaction and
cancer-non-malignant cell interaction. In addition, the turnover of ECM, such as collagen
degradation, is associated with the change of anticancer immunity of TME [12,13]. The cur-
rent study aimed to investigate the role of ADAMTS] on cancer progression and immunity
of TME. We found that the expression of ADAMTS]1 was low in the primary tumors from
our patients and public databases. Through next-generation sequencing (NGS), bioinfor-
matic technologies, and functional assays, the ADAMTS]1 in advanced LUAD might play
a role in the tumor progression and metastasis by changing the host microenvironment.
Herein, ADAMTS1 provides an alternative target as a biomarker or therapeutic focus.

2. Materials and Methods
2.1. Cell Lines

Human lung adenocarcinoma cell line H2087 (CRL-5922™) and A549 cells were
obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) and
cultured in RPMI-1640 (for H2087) or F-12K Medium (for A549) supplemented with 10%
fetal bovine serum (FBS), 100 U/mL penicillin and 100 pg/mL streptomycin (Thermo
Fisher Scientific, Boston, MA, USA). H2087 and A549 cells were authenticated by a short
tandem repeat (Promega, Madison, WI, USA) and detected to be negative for mycoplasma
contamination by the MycoAlert™ mycoplasma detection kit (Lonza, Switzerland) every
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3 months. Lung cancer cells were cultured under normoxic (20% Oy), hypoxic (2% O,)
conditions for 24 h (short-term hypoxia) or 100 days (long-term hypoxia), respectively.

2.2. Bioinformatics

The differential expressions of ADAMTSI and other selected mRNAs between LUAD
and normal lung tissue were extracted from the Oncomine database (http://www.oncomine.
org (accessed on 1 September 2021), Compendia biosciences, Ann Arbor, MI, USA) [14] or
The Cancer Genome Atlas (TCGA) using UALCAN website (http://ualcan.path.uab.edu/
(accessed on 1 September 2021)) [15]. The criteria for the significant mRNAs in the anal-
ysis were a fold change (tumor/normal) of expression level > 2 and a p-value < 0.05,
which was calculated using the Oncomine or UALCAN website. The KM plotter database
(http:/ /kmplot.com/analysis/ (accessed on 1 September 2021)) [16] was used to analyze
the association of the mRNA expression with overall survival (OS), time to first pro-
gression (FP), and post-progression survival (PPS). Patients were divided into 2 groups
by median value, which was computed with median survival. The hazard ratios (HR)
with 95% confidence intervals (CI) and p-values were extracted from the KM plotter web-
page and considered significant with p-values < 0.05. The functional states of the se-
lected genes of interest in LUAD were assessed by the CancerSEA website (http:/ /biocc.
hrbmu.edu.cn/CancerSEA/ (accessed on 29 March 2022)) [17]. GSVA (Gene Set Varia-
tion Analysis) score of ADAMTS1 and A2M was calculated by the GSCAL website (http:
/ /bioinfo.life.hust.edu.cn/GSCA (accessed on 11 January 2022)) [18]. The Pathway Com-
mons was utilized to acquire the protein interaction (https://www.pathwaycommons.org/
(accessed on 1 September 2021)) [19].

2.3. NGS and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

The pairs of adjacent non-tumor lungs and tumors were harvested from the Division of
Thoracic Surgery and Division of Pulmonary and Critical Care Medicine, Kaohsiung Medi-
cal University Hospital (Kaohsiung, Taiwan, KMUH-IRB-20130054; KMUH-IRB-20180023).
The RNA sequencing for the pairs of LUAD and lung normal tissue was performed by
the Welgene biotechnology company (Taipei, Taiwan). The criteria for differentially ex-
pressed mRNA by NGS analysis were fold change > 2 and fragments per kilobase million
(FPKM) > 0.3.

Total RNA was isolated from cells using the TRIzol Reagent (Life Technologies,
Carlsbad, CA, USA), and cDNA was reverse transcribed using reverse transcriptase kits
(Takara, Shiga, Japan). RNA levels were detected using real-time analysis with SYBR
Green on a QuantStudio 5 machine (Thermo Scientific, CA, USA). The relative expres-
sion levels of the specific mRNAs were normalized to glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH). The relative standard method (2-2AC was used to calculate
relative RNA expression. The following primers were used: ADAMTS] (forward, 5/-
CGGAAGTGACCTCCAATGCT-3' and reverse, 5'-CTGCTCGGATCACACACAGT-3'), and
GAPDH (forward, 5-TTCACCACCATGGAGAAGGC-3' and reverse, 5'-GGCATGGACTGT
GGTCATGA-3').

2.4. Immunoblot

The total protein of A549 cells was extracted using the radio-immunoprecipitation
assay (RIPA) (EMD Millipore, Billerica, MA, USA) supplemented by a protease inhibitor
cocktail (Sigma-Aldrich, St. Louis, MO, USA). An equal volume of total protein was
denatured by heating and then separated by a sodium dodecyl-sulfate polyacrylamide
gel electrophoresis. Proteins in the gel were transferred onto polyvinylidene difluoride
membranes (EMD Millipore) by electroblotting, which was probed with various primary
antibodies overnight after blocking in 5% nonfat dry milk/TBST, followed by incuba-
tion with horseradish peroxidase (HRP)-conjugated secondary antibodies (Cell-Signaling
Technology, Danvers, MA, USA). The signal of the specific protein was detected using a
chemiluminescence kit (EMD Millipore). Primary antibodies used include those against
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Slug (catalog# 9585) and Snail (catalog#3879) were obtained from Cell Signaling Technology
(Carlsbad, CA, USA). Anti-N-cadherin (catalog#610921), E-cadherin (catalog#610182), and
Vimentin (catalog#550513) antibodies were purchased from Becton Dickinson biosciences.
Anti-a-smooth muscle actin antibody (catalog#A5228) and GAPDH (catalog#MAB374)
antibodies were acquired from EMD Millipore. The western blot was quantified by Image].

2.5. Characterization of the Tumor Immune Microenvironment

TIMER (http:/ /timer.cistrome.org/ (accessed on 29 March 2022)) [20] was used to
predict the immune profile of LUAD. It is a comprehensive resource including three
modules for exploring the association between infiltrating immune cells and genes across
various cancer types. We evaluated the association between the ADAMTS1 expression and
the infiltration levels of immune cells in LUAD using the “Immune Association” module.
The criteria for the positive or negative correlation between ADAMTS1 and immune cells
was a p value < 0.05.

2.6. ADAMTS1 Knockdown

Knockdown of ADAMTS] in A549 cells was performed by using shRNA plasmids (#1,
TRCNO0000052110, CGAGTGTGCAAAGGAAGTGAA; #2, TRCN0000052112; CCACAGGA
ACTGGAAGCATAA; #3, TRCN0000052108, GCCTACATGATTACATCATTT) expression
system obtained from the National RNAi Core Facility (Taipei, Taiwan). The stable clone
of ADAMTS1 knockdown cells by shRNA (clone ID: TRCN0000052110) was established
by the puromycin selection. The knockdown efficacy of ADAMTS1 shRNA plasmid was
determined by qRT-PCR.

2.7. Wound Healing Analysis

Control vector and ADAMTS1-knockdown A549 cells were seeded onto a 12 well-
plate at 100% confluence, and the cell migration ability was determined by measuring the
movement of cells into the acellular area created by a sterile tip. The cells at each well were
observed at 0 and 24 hours after wound making under a microscope.

2.8. Animal Model

Control plasmid transfected and ADAMTS1-knockdown A549 cells (1 x 10°) were
transplanted into nude mice by tail vein injection [21]. Animals were sacrificed on week 12,
and the number of tumor nodules in the lungs was counted. The lungs of mice were fixed
and embedded in paraffin for histological hematoxylin and eosin staining. The whole
field images of lungs were acquired using a TissueFAXS system by TissueFAXS instrument
(TissueGnostics, Vienna, Austria). All mice (8 weeks, n = 6 for each group) were purchased
from the National Laboratory Animal Center Taiwan and housed in a specific pathogen-
free environment. All mice were housed in a specific pathogen-free environment. Two
experiments were conducted in accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory. The animals used were approved by the KMU Animal
Care and Use Committee (KMU—108158).

2.9. Statistical Analysis

Results were presented as mean =+ standard deviation (SD). Multiple group compar-
isons were calculated by one-way analysis of variance (one-way ANOVA) with a Tukey’s
post hoc test used with the assistance of the GraphPad Prism program (9.02 version, Graph-
pad Software, San Diego, CA, USA). Two tested groups were compared using a Student’s
t-test. Results were considered statistically significant when the p-value was less than
0.05. Pearson correlation and multiple linear regression by R package (estimatr) were used
for correlation.
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3. Results
3.1. Lung Tumors Expressed Lower Levels of ADAMTS1

Hypoxia potentiates malignant potential in cancer. Therefore, we exposed cancer cells
to hypoxia conditions, which allowed us to figure out the targets related to aggressive
phenotypes [22]. Our results showed that the expression of ADAMTS1 in H2087 cells was
decreased under both short-term hypoxia and long-term hypoxia conditions (Figure 1A).
In addition, lower levels of ADAMTS1 were found in five out of eight LUAD samples
compared with those in matched non-tumorous lung tissues (Figure 1B). The downreg-
ulation of ADAMTS]1 was also proven at both mRNA and protein levels in the TCGA
cohort (Figure 1C,D). Similarly, seven out of eight patients in the lung cancer cohort from
Oncomine also supported ADAMTS1 being reduced in lung tumor tissue (Figure 1E). These
data suggest that reduced ADAMTS1 may be associated with lung cancer development.
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Figure 1. The expression of ADAMTS1 in lung adenocarcinoma (LUAD). (A) Fold change of
ADAMTS]1 expression from the lung cancer cells H2087 cultured in normoxia and hypoxia con-
ditions for 24 h (short) or 100 days (long). The RNA levels of ADAMTS1 were determined by
qRT—PCR. (B) Fold change of ADAMTS1 expression in the paired tumor and normal tissue from
eight patients with LUAD (in—house cohort). ADAMTS1 mRNA (C) and protein (D) expression in
the normal tissue and tumor from TCGA cohort. (E) ADAMTS1 mRNA expression in the normal
tissue and tumor of eight datasets from the Oncomine datasets. Data shown represent the mean 3 SD

(* p <0.05, ***p < 0.001).

3.2. The Phenotypic Association and Survival Significance of ADAMTS1

Various clinical features based on the transcriptional level of ADAMTS1 in 515 samples
in the TCGA LUAD cohort were elucidated. The ADAMTS1 transcriptomic level was
significantly lower in tumor parts throughout different extents of lymph node (NO—N3)
metastasis and pathological stages (stage I to IV), but were not lymph node metastasis or
stage dependent (Figure 2A,B). Similarly, the levels of ADAMTS1 protein were also reduced
in tumor tissue across different extents of lymph node metastasis and histologic grades
(grade 1 to grade 3) of cancer cells, but were not lymph node metastasis or grade dependent
(Figure 2C,D). Next, we assessed the prognostic implication of ADAMTS] in LUAD patients
using the Kaplan—Meier Plotter database. Our results showed that the LUAD patients with
downregulated ADAMTS1 mRNA levels carried unfavorable overall survival (OS), time
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to first progression (FP), and post-progression survival (PPS) (Figure 2E-G). These results
showed that ADAMTS1 is positively correlated with survival in lung cancer patients.
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Figure 2. Tumor characteristics and survival analysis of ADAMTS1 expression in LUAD. The
mRNA expression of ADAMTS1 among the tumor nodal metastasis (A) and stages (B) in the TCGA
cohort. The protein expression among the tumor stages (C) and grade (D) in the CPTAC cohort.
Overall survival (OS) (E), time to first progression (FP) (F), and post-progression survival (PPS)
(G) with ADAMTS1 expression level were analyzed using Kaplan—-Meier methods in the public
microarray and TCGA dataset. (*** p < 0.005).

3.3. Protein Interaction Network of ADAMTS1

The Pathway Interaction Database provided the molecular interactions with ADAMTSI.
The 24 proteins interacting with ADAMTS1 were predicted based on binding, expression
regulation, and modification (Figure 3A). We evaluated the possible cooperation of can-
didate proteins with ADAMTSI by assessing the expression correlation in the tumor of
in-house and TCGA cohorts. As shown in Figure 3B,C, the expressions of A2M, CER1,
KRTAP10-8, VEGFA, and SPI1 exhibited significant correlations with ADAMTSI in our
in-house tissue bank (Figure 3B), while A2M, ACAN, HPX, IFNA21, MAZ, PLA2G10, PY-
HINT1, SPI1, and ZIC2 were significantly correlated with ADAMTS1 expression in the TCGA
LUAD cohort (Figure 3C). In addition, when inputting specific protein~ADAMTS1 with 1:1
weight into the survival analysis, it was revealed that higher expression of A2M-ADAMTS1
offered a survival advantage (Figure 3D). Additionally, the multiple linear regression sug-
gested that the strongest correlation with ADAMTS1 was A2M (Appendix A). Moreover,
GSVA analysis showed that the GSVA score of ADAMTSI plus A2M was lower in tumors
than in normal parts in the TCGA LUAD cohort (Figure 3F). The results suggest that
co-existing ADAMTS]1 and A2M is a positive prognostic factor for patients with LUAD.

3.4. The Impact of A2M in Patients with LUAD

Next, we explored the prognostic role of A2M in LUAD patients. The expression of
A2M mRNA was low in tumor parts compared with normal parts, and so were lymph
node metastasis and tumor stages. However, they were not lymph node metastasis nor
stage dependent (Figure 4A). In addition, the expression levels of the A2M protein were
low in tumor parts compared to normal ones. The A2M protein levels were lower based
on stages and tumor histologic grades, but were not stage or grade dependent (Figure 4B).
The expression of A2M also decreased in five out of the eight LUAD patients in the in-
house cohort (Figure 4C). The survival analysis revealed a shorter OS, FP, and PPS when
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expressing low-level A2ZM in LUAD patients (Figure 4D-F). It is suggested that decreased
A2M expression was a strong predictor of worse prognoses among LUAD patients.
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Figure 4. Tumor characteristics of A2M expression and survival analysis of ADAMTS1-A2M
expression in LUAD. (A) The expression of A2M mRNA among the normal tissue and tumor (left),
the tumor stages (middle), and the nodal metastasis (right) in the TCGA cohort. (B) The expression
of A2M protein expression among the normal tissue and tumor (left), the tumor stages (middle), and
the tumor grades (right) in the CPTAC cohort. (C) The level of A2M in the tumor and normal tissue
from eight patients with LUAD (in-house cohort). Correlation of OS (D), FP (E), and PPS (F) with
A2M expression in patients with LUAD. (NS not significant, ** p < 0.01, *** p < 0.005).

3.5. GSEA Analysis of ADAMTS1

To gain insight into the functional roles of ADAMTS1 and A2M in LUAD, we per-
formed two gene enrichment analyses, GSEA and CancerSEA. The GSEA results suggested
that decreased ADAMTS]1 in lung cancer was associated with poor survival and cancer
metastasis (Figure 5A). Consistent with ADAMTS]1, enrichment analysis also revealed
that tumors with lower levels of A2M were strongly associated with poor survival and
cancer metastasis (Figure 5B). In addition, CancerSEA analysis, which was empowered
to evaluate the functional assays of a selected gene, showed a strong correlation between
ADAMTS1 and A2M, with phenotype changes contributing to cancer spreading, including
EMT, metastasis, and quiescence in lung cancer (Figure 5C,D). These bioinformatics data
suggest that decreased ADAMTS1 and A2M levels are associated with more aggressive
phenotype in LUAD.
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Figure 5. Functional states associated with ADAMTS1 and A2M. (A) Functional analyses of cancer
metastasis and poor survival via gene set enrichment analysis (GSEA) in TCGA LUAD patients
with high or low ADAMTS1 levels (p < 0.05). (B) Functional analyses of cancer metastasis and
poor survival via GSEA analysis in TCGA LUAD patients with high or low A2M levels (p < 0.05).
(C) The analysis of functional states of ADAMTS1 using CancerSEA. (p < 0.05). (D) The analysis of
functional states of A2M using CancerSEA (p < 0.05). NES, normalized enrichment score. ** p < 0.01,
*** p < 0.001.

3.6. The Role of ADAMTS1 in the Tumor Microenvironment

Because ADAMTS] is an extracellular protease, which is required for a balanced
immune cell repertoire and tumor inflammatory response [23], we assessed the role of
ADAMTSI in the tumor immune microenvironment using the Timer 2.0 website. Our results
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showed that CD8" and CD4* T cells were the main populations of immune cells affected
by ADAMTS1 expression. Among them, CD4" and CD8* T cells exhibited a positive
correlation with the level of ADAMTS1 (Figure 6A). Conversely, Treg and MDSC were
the immune populations with a significantly negative correlation with the expression of
ADAMTS1 (Figure 6B). We further assessed the immune landscape of tumors in the in-house
database using Timer 2.0 (Figure 6C). Results showed that CD4" T cells and hematopoietic
stem cells have a positive correlation with the level of ADAMTSI. Interestingly, most
types of immune cells, including Treg, have a negative correlation with the expression of
ADAMTS] (Figure 6D).
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Figure 6. Correlation of immune or stroma score with ADAMTS1 and A2M in LUAD. Positive (A)
and negative (B) correlation of immune cell population with ADAMTSI. (C) The immune cells
population of the LUAD patients from our 8 in—house LUAD patients. (D) The correlation of the
immune population with the level of ADAMTS1 in 8 in—house LUAD patients.

3.7. Knockdown of ATAMDS1 Promotes Cancer Migration, EMT, and Metastasis In Vitro and In
Vivo Models

To further validate the roles of ADAMTSI in mediating lung cancer progression and
promotion, this study used the shRNA technique to knock down ADAMTS1 in A549
cells. Because shRNA#1 exhibited the highest efficacy of ADAMTS1 knockdown in A549
cells, we chose this clone for functional analysis (Figure 7A). The wound-healing assay by
control-shRNA and ADAMTS1-shRNA showed an enhanced healing process (Figure 7B).
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Additionally, when ADAMTS1 was knocked down, the A549 cells shifted from the ep-
ithelial (E-cadherin) to the mesenchymal (N-cadherin, x-SMA, Vimentin, Snail, and Slug)
phenotype (Figure 7C). Concerning metastasis, the tail vein injection model was used.
The ADAMTS1-plasmid transfected A549 cells were injected into the nude mice to verify
lung cancer metastasis. The result suggested more metastatic nodules occurred in the
ADAMTS1-shRNA group (Figure 7D). These results imply that the low-level ADAMTS1
mediates a more aggressive phenotype in LUAD.
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Figure 7. Functional analysis of ADAMTSI1 in lung adenocarcinoma. (A) The knockdown efficacy
of shRNA transfection. (B) Cell migration of ADAMTS1 knockdown A549 cells, as determined by
wound-healing. (C) EMT markers in the ADAMTS1 knockdown A549 cells. The uncropped western
blot figures were presented in Figure S1. (D) Tumor metastasis in mice lung after injection of control
plasmid transfected and ADAMTS1-knockdown A549 cells. A549 cells were transfected with a control
vector or ADAMTS1 shRNA plasmid and selected by puromycin. The cells were implanted into nude
mice by tail vein injection, and the tumor nodules were counted after 21 days of inoculation. The
data showed represent the mean + SD (* p < 0.05, ** p < 0.01, *** p < 0.001). ns, not significant.
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4. Discussion

Although the diagnosis and treatment of LUAD are constantly improving, LUAD is
a high-risk disease with a 5-year survival rate of 16% [2], and the potential mechanisms
underlying the development and progression of LUAD are still remaining to be determined.
Over the past decade, an increasing number of microarray and next-generation sequencing
technologies applied in comprehensive genomic atlases, such as TCGA, have been used to
explore novel prognostic biomarkers and therapeutic targets in various cancers. Herein, we
investigated the clinical significance of ADAMTSI in LUAD using multiple bioinformatic
tools as well as clinical samples. We found that ADAMTS1 could be exploited as a prog-
nostic predictor and therapeutic target due to its effect on the mesenchymal phenotypic
transition and cancer immune microenvironment.

The role of ADAMTS1 in oncology has been investigated in various cancers in the past
decade. However, controversy regarding cancer and ADAMTSI exists, and its role is still
under debate, since it could act as either a tumor suppressor or an oncogene depending on
the cellular context or specific cancers. There is increasingly abundant evidence that the
metalloprotease ADAMTSI is strongly correlated with metastasis of breast cancer [24]. In
contrast, ADAMTS1 may have a suppressive activity in tumor cell growth and progression
in protease-dependent and -independent manners. ADAMTS1 decreases fibrosarcoma cell
proliferation and migration velocity by disrupting HGF/c-MET signaling [25]. In addition,
Wang et al. reported that ADAMTS]1 inhibits angiogenesis in lung cancer by regulating
VEGF expression through a PI3K/AKT inhibition mechanism [26]. A recent study also
showed that ADAMTS] decreases cancer migration by regulating the spatiotemporal
dynamics of Cdc42 activity [27]. This discrepancy might be due to cleavage or to an
auto-proteolytic mechanism [28]. Our findings revealed that ADAMTS1 was a target of
hypoxia, which acts as a pivotal regulator in stimulating the development of an aggressive
phenotype in cancer [29,30]. In this study, we found that the expression of ADAMTS1
dramatically decreased in LUAD patients, who have poor clinical outcomes, supporting the
notion that ADAMTSI holds great promise for the improvement of prognostic prediction
in LUAD. Additionally, GSEA analysis showed the enrichment of EMT and metastatic
signaling pathways with low ADAMTS1 expression of lung cancer in the TCGA cohort.
Meanwhile, CancerSEA analysis also indicated that ADAMTS1 expression was negatively
associated with metastasis, supporting the suppressive role of ADAMTS1 in LUAD. The
in vitro and in vivo functional assays also demonstrated that knockdown of ADAMTS1
transformed A549 cells to the mesenchymal phenotype, resulting in the enhancement of
lung metastasis in the mice model. All of the results above indicate that ADAMTS1 has a
tumor suppressive role on LUAD.

As for the downstream target, we suggested that ADAMTS]1 decreased cancer develop-
ment of LUAD by incorporating «2-macroglobulin (A2M). A2M could inactivate a variety
of proteases by inhibiting plasmin and kallikrein, and could also act as the carrier protein
that binds to various growth factors, hormones, and cytokines such as platelet-derived
growth factor, basic fibroblast growth factor, insulin-like growth factor, interleukin and
TGF-B1 [31]. A2M is also indicated to impede [3-catenin signaling, thus consequently
inhibiting the malignant properties of astrocytoma cells [32]. Other tumorigenesis-related
signaling pathways, such as PI3K/AKT and microRNA-21, have also been reported as
inhibitory targets of A2M [33]. ADAMTS]1 has been indicated to be able to form a covalent
binding complex with A2M by zinc-binding motif interaction [8]. In our study, we found
that the expression of ADAMTS1 had a strong association with the level of A2M in LUAD
patients. Similar to the impact of ADAMTS], patients with lower levels of ADAMTS1 were
closely related to a poor prognosis of LUAD. Function enrichment analysis by computa-
tional algorithms also showed that downregulated A2M was related to EMT and metastasis
in LUAD. However, the interaction between A2M and ADAMTS1 in LUAD has not been
fully understood, and it is necessary to explore the molecular mechanism further.

The tumor microenvironment (TME) plays important roles in the immunity, pro-
gression, and metastasis of various cancers, including LUAD. The presence of a chronic
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inflammatory status alters immune cell differentiation and activity, resulting in an im-
balance of anti-cancer activity, thus favoring malignant evasion [34]. Myeloid-derived
suppressor cells (MDSCs) and regulatory T lymphocytes (Treg) are involved in tumor-
associated immunosuppression and associated with poor clinical outcomes in lung cancer
patients [35]. MDSCs, a heterogeneous population of pathologically activated myeloid cells,
promote angiogenesis, facilitate EMT, enhance cancer stemness capabilities, protect circu-
lating tumor cells from host immunity, and contribute to resistance to immunotherapy [36].
Treg reduces the co-stimulation ability of an antigen-presenting cell or direct inactivation
effector T cell by expressing PD ligand 1 or cytotoxic T-lymphocyte-associated protein 4.
In addition, both MDSCs and Treg produce various immunosuppressive cytokines or
mediators, such as IL-10, TGF-3, and ROS, which can interact with nearby T cells or other
immune cells and prevent their anticancer activation of immune cells [37]. ADAMTS1 has
been indicated to alter the infiltration of immune cells in B16F1 cancer by increasing CD3* T
cells and CD11b* myeloid cells with a decreased CD163 expression in ADAMTS1-deficient
mice [23]. In this study, we found that ADAMTSI] influenced the infiltration of immune
cells in the lung cancer microenvironment. High ADAMTS]1 expression was associated
with a high percentage of CD8" T cells and CD4* T cells. In contrast, low ADAMTS1
expression was related to a high percentage of MDSCs and Treg. Among immune cell
types, ADAMTS]1 had the strongest and most consistent correlation with CD8" T cells.
Upregulation of ADAMTS1 may increase T cell immune infiltration and function of lung
cancer, thereby improving the disease outcome of LUAD patients.

5. Conclusions

In conclusion, our study found ADAMTS1 downregulation accompanied by A2M
downregulation could promote the LUAD metastasis by activating EMT and changing the
immune microenvironment. This study provides crucial clues to the mechanism of LUAD
metastasis. Moreover, as a prognostic indicator, ADAMTSI and its co-operator A2M could
be potential therapeutic targets for patients with LUAD.
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Appendix A

Table A1. Multiple linear regression analysis of ADAMTS1 in TCGA-LUAD.

Factors Coefficient  Standard Error p-Value 95% Confidential Interval
A2M 0.713 0.044 o 0.626 t0 0.8
ACAN 0.096 0.025 o 0.047 to 0.145
HPX —0.040 0.023 0.076 —0.084 to 0.004
IFNA21 0.227 0.151 0.134 —0.07 to 0.524
MAZ —0.139 0.056 * —0.249 to —0.028
PLA2G10 -0.111 0.022 ok —0.154 to —0.068
PYHIN1 —0.026 0.035 0.458 —0.094 to 0.042
SPI1 —0.082 0.046 0.076 —0.172 to 0.008
ZIc2 —0.051 0.017 ** —0.084 to —0.018

¥p<0.05, 7 p<0.01, " p<0.001.
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