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Abstract: Aging is inevitable and it is one of the major contributors to cognitive decline. However,
the mechanisms underlying age-related cognitive decline are still the object of extensive research. At
the biological level, it is unknown how the aging brain is subjected to progressive oxidative stress and
neuroinflammation which determine, among others, mitochondrial dysfunction. The link between
mitochondrial dysfunction and cognitive impairment is becoming ever more clear by the presence of
significant neurological disturbances in human mitochondrial diseases. Possibly, the most important
lifestyle factor determining mitochondrial functioning is nutrition. Therefore, with the present work,
we review the latest findings disclosing a link between nutrition, mitochondrial functioning and
cognition, and pave new ways to counteract cognitive decline in late adulthood through diet.
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1. Introduction

Cognition, broadly defined as encompassing the mental processes of learning, rea-
soning and memory, depends on the brain’s ability to undergo functional (e.g., adjusting
efficacy of synaptic transmission) and structural (e.g., forming new synapses) alterations
in response to changes in its environment—a phenomenon known as neuroplasticity. In-
ternal and external stimuli—such as new experiences and learning, trigger changes in
neuronal activity which induce re-organisation of neuronal networks and fine-tuning of
brain circuitry, with new connections between neurons made that can be strengthened, or
weakened or pruned away. The neurobiological processes underpinning both cognitive
development and functioning such as neurogenesis, synaptic remodelling and neurotrans-
mission, are energetically costly and rely on an uninterrupted supply of mitochondrial
adenosine triphosphate (ATP) [1].

With an average human cortical neuron consuming 4.7 billion ATP molecules per
second for ‘housekeeping’ activities and maintenance of its membrane potential and ion
homeostasis, mitochondria must produce a staggering 5.7 kg of ATPs each day just to
support basic brain function (that’s 5 times the brain’s own weight!) [2]. Therefore, even
though the brain accounts for just 2% of the average human body mass, it’s the most
energetically taxing, utilising 25% of total energy supplies [3]. Moreover, 70–80% of that
energy is used by neurons [2] and primarily at synapses, where mitochondria are largely
localized and needed to support the energetic expenditure associated with information
processing and propagation of electrical signals [4].

While the unproportionally high energy requirement of neurons has almost certainly
played a central role in the development of human’s uniquely superior cognitive abilities,
it has also rendered the brain highly vulnerable to perturbances in energy supply. Not
surprisingly, mitochondrial disorders, characterised by bioenergetic failure resulting from
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mutations in nuclear and/or mitochondrial genes, predominantly affect the brain and
commonly cause cognitive impairments ranging from mild to severely debilitating [5].
Even physiologically healthy aging is associated with reduced availability of glucose for
mitochondrial phosphorylation, diminished activity of electron transport chain, deficient
antioxidant capacity, and breakdown of mitochondrial energetic function. All these pro-
cesses are marked by morphological disturbances and alterations in genes regulating
mitochondrial biogenesis, which correlate with cognitive decline occurring in later life.

Therefore, the study of mitochondrial impairments is of growing interest in order to
unravel the mechanism leading to normal ageing. One of the more prominent theories
revolves around the production of reactive oxygen species (ROS). The mitochondrial
theory of ageing postulates that production of these ROS derive mainly from oxidative
phosphorylation (OXPHOS) taking place within mitochondria. An inevitable by-product
of electron transport chain (ETC) activity, responsible for OXPHOS, is the formation of
superoxide anion radicals (O2

−), mostly by complexes I and III [6] and hydroxyl (OH−)
via iron-mediated reduction, known as the Fenton reaction [7]—overviewed in Figure 1.

−

− −

−

Figure 1. Production of ROS in Mitochondria. An overview of the production of the main reactive
oxygen species (ROS) in the mitochondria. Abbreviations: Superoxide ions, •O2

−; iron ions, Fe
(II)/(III); adenosine diphosphate, ADP; adenosine triphosphate, ATP; superoxide dismutase, SOD;
hydrogen peroxide, H2O2.

Under physiological conditions, ROS are involved in processes such as immune
response, inflammation, as well as synaptic plasticity, learning, and memory [8,9]. However,
when produced in excess, ROS production may overwhelm antioxidant defences, leading
to impairments of cellular function such as damaging proteins and deoxyribonucleic
acid (DNA), and inducing lipid peroxidation which leads to mitochondrial dysfunction
observed in aging [10].

Diet has emerged as a critical component underlying aging-related cognitive deficits.
It has been proven that unhealthy diets have an effect on cognition through the induction
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of an inflammatory response in the aged brain [11–14]. Given the prevalence of neuroin-
flammation in memory impairments, highly prevalent in aged individuals, lifestyle modifi-
cations with special emphasis on diet present a promising potential intervention [15–17].
Indeed, adherence to the Mediterranean diet [18] has been associated with better cognitive
function [19,20] and slower cognitive decline [19–21], though some studies have reported
null findings [22–24].

In this review, we will discuss the role of mitochondrial dysfunction in the aging
process, with a specific focus on cognitive deterioration. We will also give some insights
into the dual role diet plays in mitochondrial dysfunction while aging, and the dietary
strategies to better understand the age-related mitochondrial impairments.

2. ROS and Its Effects on the Mitochondria

As we have previously described, the imbalance between free radical production and
detoxification leads to bioenergetic impairments as well as disturbances in the reduction-
oxidation (redox) homeostasis in the brain with increasing age. Indeed, post-mortem
brain samples from 80-year-old subjects have revealed a progressive age-related rise in
protein nitration and oxidation, together with a decrease in antioxidant defences such as
superoxidase dismutase (SOD), catalase (Cat), and glutathione (GSH) reductase activity, as
well as mitochondrial complex I activity, mainly in the hippocampus and frontal cortex [25].
Moreover, Mandal et al. (2012) [26] have found a gradual decrease in GSH content in
the human brain of 56-years-old subjects. More interestingly, this age-related increase in
brain oxidative stress was even greater in individuals with high body mass index and in
smokers, highlighting the influence of lifestyle in the processes of aging. In line with these
findings, Rebrin et al. (2007) [27] found a decrease in the reduced/oxidized glutathione
(GSH/GSSG) ratio in the cortex, striatum and the hippocampus of mice, which are brain
regions linked to age-related loss of cognitive function.

During aging, a mitochondrial depolarization process and uncoupling of the OXPHOS
have been found due to the aperture of the mitochondrial permeability transition pore
(mPTP) [28]. The mPTP allows free movement of molecules into the mitochondria that
weigh less than 1.5 kilo-Dalton. Whilst under healthy conditions this is hypothesised
to act as an immediate resource dump of ions such as calcium, prolonged opening is
associated with pathological conditions [29]. ROS may activate the mPTP, which results in
the activation of an apoptotic pathway via the release of cytochrome c oxidase and initiation
of the caspase-9 cascade [30]. mPTP activation may also result in further production
of ROS as well as in the activation of the nod-like receptor pyrin domain 3 (NLRP3)
inflammasome [31]. This latter finding is relevant since the activation of NLRP3 in microglia
and astrocytes in the brain are crucial for neuronal loss in nigrostriatal neurons and remains
a key mechanism through which motor deficits and cognitive deficits are manifested in
Parkinson’s disease and other disorders [31–33]. Moreover, it has been shown that the
mPTP is also more susceptible to activation in older mice, thus resulting in increased
apoptosis in aged animals [34]. Furthermore, tumour necrosis factor alpha (TNF-α) has
been reported to cause aberrant opening of mPTP, suggesting that agents which increase
inflammation with subsequent release of TNF-α, such as high fat diets [35,36], may also
result in an increase in mPTP. These results suggest that mitochondrial dysfunction, ROS,
and inflammatory by-products are responsible for age-related cognitive deterioration and
can be further modulated by dietary changes.

2.1. Oxidative Damage to Lipids and Protein in Aging

Aging has been shown to increase the oxidative damage to DNA, lipids [37–39] and
proteins [40,41]. Among phospholipids, cardiolipin became relevant not only for being
almost exclusively located in the inner mitochondrial membrane, where it is biosynthe-
sized [42–44], but also because evidence suggested that cardiolipin is involved in the
regulation of key mitochondrial inner membrane proteins’ activity involved in oxidative
phosphorylation [38,39,45]. Additionally, due to its location near the site of ROS produc-
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tion, cardiolipin is particularly prone to be peroxidised. Indeed, oxidative stress readily
decreases cardiolipin, which results in a decrease in cytochrome c oxidase, a key enzyme
in the ETC [46,47]. These results point out that the oxidation/depletion of cardiolipin
with aging contribute to mitochondrial dysfunction, leading to cellular dysfunction and
eventually cell death.

Lipid peroxides may themselves have a pathogenic role by attacking amino acid
residues in proteins such as cytochrome c oxidase, ATPase, and nicotinamide adenine
dinucleotide hydrogen (NADH) dehydrogenase, that are prone to oxidation [48–52]. This
results in heterogenous chemical bonding linking both the protein and lipid together
causing peroxidative damage due to loss of solubility [53]. Peroxidative damage can
reduce mitochondrial cytochrome c oxidase activity, but may have more widespread
implications through peroxidation of synaptic proteins, which impairs cognition [54–56].
Protein oxidation may also occur due to direct interaction with ROS through redox reactions.
Additionally, superoxide ions can cause iron-sulphur centres in complex I of the ETC
to expel iron, thereby increasing the concentration of labile iron molecules [57]. Iron
is necessary for the reduction of hydrogen peroxide to hydroxide ions via the Fenton
reaction [7], with an increase in iron concentration being linked to ROS production as well
as cellular death and aging [58].

2.2. Lipofuscinosis as a Mitochondrial Dysfunction Marker in Aging

Interestingly, iron accumulates in a heterogenous aggregate known as lipofuscin. Lipo-
fuscin is known as the wear and tear pigment, containing indigestible proteins, lipids and
metals, and positively correlates with aging and oxidative stress [59–67]. Despite being a
well described feature of aging, the exact mechanism through which these macromolecules
accumulate remains unknown, as well as any function or deleterious effect they may pose
to the cell [64]. For example, increased intracellular concentrations of iron increase ROS,
but it is not known whether sequestered iron in lipofuscin is catalytically active in forming
hydroxide ions. Lipofuscin may act as a protective accumulate in this instance by removing
the cell’s potential to create ROS. Moreover, a large constituent of lipofuscin is a subunit c of
mitochondrial ATP Synthase (SCMAS), the final complex in the ETC [68]. Why this particu-
lar subunit accumulates remains unexplored, however, it is hypothesised that SCMAS may
be required in the formation of the mPTP. Therefore, perhaps accumulations of SCMAS
reflect an equal increase in mPTP. This might indicate early mitochondrial dysfunction in
diseases such as the neuronal ceroid lipofuscinoses as well as lysosomal disruption [69,70].
Moreover, homologs in C. elegans have suggested that removal of this protein reduces
mitochondrial function as well as reducing lipofuscin aggregates. Despite the reduction in
mitochondrial function, lifespan was extended which may suggest that mPTP activation
and cell death is increased when SCMAS is present. Alternatively, SCMAS and lipofuscin
aggregates may have a different pathogenic role, distinct from the mPTP, in cell death that
remains unexplored [71]. Therefore, the interplay between appropriate SCMAS levels to
enable proper mitochondrial function and keeping lipofuscin to a minimum may be key to
delaying mitochondrial dysfunction in aging.

2.3. Oxidative Damage to DNA in Aging

Particularly relevant to aging is the oxidative damage to DNA, specifically mitochon-
drial DNA (mtDNA) which is localised close to where the production of ROS occurs.
Damage to mtDNA persists longer and repairs less easily than nuclear DNA, making
it particularly vulnerable to perturbation [72]. mtDNA only contains one non-coding
region and therefore makes mutations in exonic regions very high—likely to give rise to
frameshift mutations or deletions. Lesions to mitochondrial DNA such 7,8-dihydro-8-oxo-
deoxyguanosine (8-oxo-dG) caused by ROS are indicative of the extent of oxidative stress,
and its presence has been noted in mtDNA of aged animals [73–76]. As a consequence,
DNA repair mechanisms to 8-oxo-dG lesions via mitochondrial apurinic/apyridinimic
endonucleases are upregulated in aged rats compared to younger rats [77]. Whilst the
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same study reported an increase in the DNA glycosylase repair mechanism, another study
has shown reductions of DNA glycosylase in old mice, making it difficult to draw conclu-
sions [78]. Indeed, the vast majority of DNA repair mechanisms reduce in activity with
age, so it is possible that is a very specific increase to 8-oxo-dG lesions [79,80].

Accumulation of mtDNA mutations via ROS has been suggested as a central mecha-
nism driving aging and age-related diseases [81–86] due to their contribution to cellular
senescence [87], a process which halts cell division and thereby prevents new cell formation.
The cause of senescence is believed to be the shortening of telomeres, which are the caps
that protect chromosomes from damage response enzymes [88]. Telomere shortening is
directly related to oxidative stress levels with ROS, able to manipulate telomere mainte-
nance through multiple pathways [89,90]. ROS-induced 8-oxo-dG lesions in mtDNA have
been shown to reduce the ability for telomerase to bind to telomeres as well as reduce the
activity of the reverse transcriptase subunit of telomerase [91,92]. Telomerase is critical for
the extension of telomere length due to its ability to add guanine-rich repeats and increase
the length of the chromosome. Antioxidants have been shown to increase the activity of the
reverse transcriptase subunit and delay cellular senescence [92]. Furthermore, female rats
fed a telomerase activator-65 (TA-65, which increases telomerase activity), purified from
the root of Chinese herbs such as Astragalus membranaceus, after a brain injury showed
increased cognitive function, movement, and reductions in depressive-like behaviours [93].
Other studies support these findings and also show telomerase-dependent neurogenesis
and an increased lifespan, as well as the ability to supplement TA-65 through diet [94] or
increase telomerase directly through activities such as meditation [95], which may be able
to delay the onset of cellular senescence [94,96].

In addition to telomerase binding, 8-oxo-dG also reduces TTAGGG repeat binding
factor 1 (TRF1) and 2 (TRF2) binding affinities. These proteins are components of the
telomere cap, thus the presence of mtDNA lesions renders chromosomes more vulnerable
to DNA damage response enzymes [97–99]. ROS builds upon this vulnerability by also
upregulating the DNA-damage response, which increases levels of p53 [100,101]. P53 then
positively feeds back to regulate telomeric capping by ubiquitination and degradation of
TRF2, thereby destabilizing the telomere caps and causing early onset senescence [102,103].

3. Mitochondrial Dysfunction and “Inflamm-Aging”

Mitochondria are highly adapted organelles when maintaining homogeneity within
the cellular population. Through fusion and fission, mitochondria can dilute their contents,
such as mtDNA, metabolites, and proteins, as well as quality control and redistribute to
other areas of the cell [104]. Highly damaged mitochondria from ROS present a risk to the
cell, and so removal mechanisms such as mitophagy are critical. Mitophagy avoids the
accumulation of such mutations through two opposing mechanisms, fission and fusion.
Fission enables the renewal, redistribution, and proliferation of mitochondria, whereas
fusion allows them to interact and communicate with each other and facilitates mitochon-
drial movement and distribution across long distances [105]. Fusion events are particularly
important for the enrichment of mtDNA via dilution of mutations. It has been shown that
dynamin-related protein 1 (Drp1) ablation, which is a conserved dynamin-related guano-
sine triphosphate hydrolase (GTPase) involved in fission processes, caused alterations
in mitochondrial morphology, such as sphericity and general size, reductions in neuritic
mitochondria via translocation away from presynaptic terminals, and both a decrease
in oxygen consumption and ATP production [106]. On a broader scale, the loss of Drp1
affected synaptic transmission by reduced ability to generate action potentials under high-
stimulus load as well as impairing short-term hippocampal-dependent memory function,
demonstrating the critical role of mitochondrial fusion/fission activity in brain function.
Furthermore, in studying age-related cochlea degeneration, Drp-1 was decreased in aging
and senescent cells as well as mitophagy, potentially suggesting that some age-related
cognitive deficits are a result of Drp-1 insufficiency [106,107].
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Inflamm-Aging: Inflammatory-Mitochondrial Dysfunction in Aging

Whilst mitochondria may undergo fusion and fission, another alternative is to release
harmful molecules such as oxidised mtDNA, proteins, and cardiolipin into extracellular
vesicles (EV) which can then be degraded (reviewed in [108]).

Stimulation of EV formation can occur due to oxidative stress via oxidation of car-
diolipin and curvature of the mitochondrial membrane, PTEN-induced kinase 1 (PINK1)
accumulation, and subsequent Parkin recruitment. Through mediation of, as of yet, un-
known proteins, the EVs are formed following Parkin recruitment [109]. It is proposed
that mtDNA, ROS, cardiolipin, and other constituents of these EVs act as DAMPs, damage
associated molecular patterns and initiate inflammatory responses which can contribute to
aging [110–114]. Moreover, EV formation increases with age and this, along with mtDNA
release, correlates with release of pro-inflammatory cytokines [115].

Both ROS and cardiolipin can incite inflammation through Toll-Like Receptors by
the activation of nuclear factor kappa B (NF-kB), which activates the pro-inflammatory
cytokines tumour necrotic factor alpha (TNF-a), as well as activating T-lymphocytes in an
immune response through the interleukin-2 cluster of differentiation (CD28)-dependent
pathway [116,117]. With ROS and cardiolipin’s effects increasing with age they may
increase the total amount of activated T cells, which may explain the presence of increased
T cell infiltration in the aging brain [118–121].

Moreover, mtDNA acts through the NLRP3 inflammasome with oxidized variants
of mtDNA serving as the ligand, indicating that ROS-induced 8-oxo-dG lesions may be a
critical component of inflammation in aging [122,123]. Indeed, mitochondrial dysfunction
and the presence of cardiolipin is essential for activation of NLRP3 [112]. Downstream
consequences of NLRP3 induction include caspase-1 activation which cleaves Parkin
preventing mitophagy [124]. With fission and fusion no longer achievable, oxidized macro-
molecules build up causing pyroptosis—inflammation mediated cell death—via activation
of interleukin-1β (IL-1β) and interleukin-18 [125]. Following cell death, the contents of the
cell leak with mtDNA and ROS are free to interact with additional inflammasomes and
exaggerate the inflammatory response further [123].

4. Mitochondria Dysfunction and Immunity in Aging

Perturbations in mitochondria may result in decreased biosynthesis of energy. In
T-cells, there is high metabolic demand for extensive proliferation and genetic remod-
elling [126]. Inefficient mitochondria may therefore fail to reach the required energy levels.
This may be particularly key for T memory cells, which rely on the ETC, but must rapidly
activate upon pathogenic invasion. Mitochondrial dysfunction therefore may explain
the decrease in efficacious prophylaxis in the elderly [127–130]. Moreover, cytochrome
c oxidase-a complex in the ETC-is crucial in T cell proliferation with a 50% reduction
in mice that contain mutations in cytochrome c oxidase. This resulted in a 1.6 fold in-
crease of dead cells and 2.5 fold increase in dying cells [131]. Therefore, any alterations in
mtDNA encoding cytochrome c oxidase or direct protein oxidation of the enzyme may
result in the loss of T cell function and early T cell death, which might explain why the
elderly are immunocompromised [127,131]. Moreover, mitochondrial dysfunction has
been linked to immune-senescence of T-cells [132] and microglia in the brain [133]. This
may result in abnormal activation towards harmful stimuli. Both T-cells and microglia
display the propensity to both promote inflammation and attenuate it through different
pathways, however, in microglia, mitochondrial dysfunction impairs the ability to adopt
a neuroprotective role and may therefore push microglia towards a pro-inflammatory
response [134,135].

It has been suggested that microglia’s neuroinflammatory processes in aging lead to
downstream changes that damage the brain’s synaptic plasticity functions, ensuing in mem-
ory impairment. Moreover, microglial activation promotes subsequent astrocytic activation
as illustrated by Clarke et al. (2018) who demonstrate that mice lacking microglial-secreted
cytokines had reductions in reactive astrocyte genes which are normally upregulated in
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aging [136]. Therefore, astrocytes also play a central role in neuroinflammation and brain
aging [137–139]. More importantly, it has been proven that diets are able to induce a robust
inflammatory response in the aged brain, such as high-fat content diets, which not only
induce memory deficits in aged rodents, but also increase pro-inflammatory cytokines and
reduce phagocytic activity of microglia [140,141].

With the mitochondria being involved in so many pathological hallmarks of aging
(overviewed in Figure 2), there is a very strong case for the mitochondrial theory of aging.
As such, these organelles remain a key focal point for age-related disorders and disruptions
by increasing ROS and by inducing DNA mutations. As such, mitochondria position
themselves as a key therapeutic target acting as the major confluence for many age-related
disorders and deleterious aging effects.

Figure 2. The Effects of ROS on Mitochondrial Function. An overview of the effects that generation
of reactive oxygen species (ROS), classically associated with aging, have on mitochondrial function
and DNA (mtDNA). Abbreviations: Extracellular vesicles, EV; mitochondrial permeability transition
pore, mPTP.

5. Mitochondria Dysfunction and Cognitive Impairment in Aging

One of the hallmarks of brain aging, alongside cortical atrophy [142], synaptic loss [143]
and low-grade chronic inflammation [144], is cerebrovascular pathology. Alterations in
macro and microvasculature disrupt the integrity of blood vessels, resulting in diminished
cerebral blood flow (CBF), also referred to as hypoperfusion. It has been estimated that
CBF decreases by 5% with every decade of life [145], with data from imaging studies
providing evidence for reduced cerebral perfusion occurring as part of normal, healthy
aging [146–149]. Age-related hypoperfusion has important implications for mitochondrial
energy metabolism and cognitive functions as, despite high energetic demands of neurons,
the brain’s intracellular glycogen stores are particularly limited [150]. Such limitation
in glycogen availability makes the brain critically reliant on undisrupted CBF for sup-
ply of oxygen and glucose—the main energy substrate of mitochondrial OXPHOS. Not
surprisingly, reduced cerebral perfusion has been associated with hypometabolisms and
worsened cognitive performance in aged individuals, with cerebrovascular dysfunction
a commonly reported co-morbidity in dementia [151–155]. Strikingly, even in otherwise
healthy individuals, hypertension or persistently high blood pressure is known to impair
cognitive function, with potentially severe memory loss occurring in advanced age [156].
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It is also important to mention that part of the relationship between hypertension and
memory loss may relate to common cause, since factors like oxidative stress and cell energy
deficit drive both hypertension and memory loss.

On the other hand, reduced CBF resulting in inadequate delivery of oxygen to cells in
the brain induces a state of hypoxic stress, disrupting the permeability of the blood–brain
barrier (BBB) [157–159]. Breakdown of BBB’s integrity triggers a neuroinflammatory re-
sponse via upregulation of oxygen-sensitive hypoxia-inducible-factors (HIFs) transcription
factors [160], which are implicated in neurodegenerative processes [161]. Hypoxia-induced
brain damage is further propagated by neuroinflammatory changes in microglia and astro-
cytes, which undergo morphological and functional alterations known as reactive gliosis,
and which are hypothesized to exacerbate cognitive impairments associated with oxygen
depletion in the brain [162–165]. Following an ischemic insult, severe memory loss, antero-
grade amnesia, and behavioural disturbances are known to occur in humans [166–168],
with similar hypoxia-induced impairments in behaviour and cognition replicated using
animal models and associated with increase in inflammatory markers and immune cell
infiltration due to hypoxia-induced BBB leakage [162,169–172]. Notably, hypoxia inducible
factors (HIFs) are also key regulators of metabolic adaptations to hypoxia. HIF-signalling
affects mitochondrial function, determining mitochondrial mass, composition of the ETC,
and ultimately the efficacy of mitochondrial energy production [173]. However, the precise
molecular mechanisms linking neuroinflammation, mitochondrial hypometabolism, and
cognitive dysfunction resulting from acute or age-related chronic ischemia remain to be
elucidated.

5.1. Glucose Metabolism and Cognition in Aging

The internal environment of the brain is controlled by the blood–brain barrier, which
selectively regulates the passage of nutrients and chemicals into the brain and prevents
the entry of pathogens and toxins from systemic circulation. Thus, despite being a pri-
mary energy substrate, glucose must be actively transported into the brain via glucose
transporters (GLUTs) [174]. Deficits in glucose availability and abnormalities in glucose
receptors have been associated with aging, with animal models and human data support-
ing the role of disrupted brain uptake of glucose in cognitive dysfunction. For example,
imaging brain neurons in Drosophila using genetically encoded ATP biosensors, has shown
age-dependent reduction of ATP concentration in head extracts of aged flies compared to
young flies. The reduction in ATP was accompanied by reduced glucose concentration
and downregulation of glucose transporter expression [175]. Conversely, dynamic micro
positron emission tomography (PET) imaging of aged Fischer 344 rats has demonstrated
a significant reduction in glucose uptake as well as a downregulation of insulin-sensing
neuronal glucose transporter GLUT3/4 and GLUT1, which mediates transport of glucose
across the vascular endothelium [176]. In human subjects, converging evidence from MRI
and fluorodeoxyglucose (FDG)-PET imaging data has shown an age-related decline in
glucose uptake, correlating with structural and functional changes in various brain regions
associated with cognition [177–180]. Moreover, lowered glucose uptake is considered a
predictive marker of progression to mild cognitive impairment and/or Alzheimer’s disease,
as cognitively healthy individuals with reduced brain glucose uptake are at higher risk of
dementias and cognitive impairments [181,182]. Interestingly, energy deficits associated
with aging in Drosophila were linked to disruption of glycolysis [175]—the metabolic path-
way upstream of mitochondrial oxidative phosphorylation which breaks down glucose
into pyruvate, and which has been shown to become dysregulated with age in healthy
human brains [183]. However, while increasing neuronal glucose uptake by overexpression
of hGlut3 ameliorated age-related energy deficits in aged flies by restoring youth-like levels
of ATP, it did not rescue mitochondrial dysfunction which was present in the neurons
of aged flies [175]. While this finding could suggest that enhanced glycolysis indepen-
dent of mitochondrial health is sufficient to attenuating age-related energetic deficits, it
is important to note that the quality of mitochondria in this work was assessed based
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on ultrastructural imaging alone, without further analysis of any putative age-related
alterations in mitochondrial function, and thus warrants further investigation. Perhaps the
most significant finding reported in this study however, was that coupling overexpression
of hGlut3 with dietary restriction in aged flies, gave rise to more prominent beneficial
effects of longevity and locomotor performance [175]. The synergistic effects of hGlut3
overexpression and cornmeal-free diet containing 1% (w/v) of yeast and glucose in aged
flies, were mediated by upregulation of the efficiency of glucose metabolism [175]. Thus,
emphasizing the importance of dietary interventions in regulation of energy metabolism
in aging.

Conversely, dietary habits associated with high fat content (HFC), are known to im-
pair glucose tolerance and result in insulin resistance, with a plethora of animal studies
validating the HFC feeding paradigm as a model of metabolic disturbance [184]. Interest-
ingly, HFC has also been linked to disruption of BBB integrity by inducing changes in BBB
permeability reported as increased leakage of dyes such as Evans blue in the brain and
decreased expression of tight junction proteins like claudin-5 and occludin [185–187]. More-
over, not only does HFC feeding decrease expression of BBB transporter Glut1 [188,189],
thus reducing the uptake of glucose, but it has also been shown to induce changes in
mitochondrial energy metabolism [189], with proteomics analysis reporting a significant
decrease in levels of proteins involved in the ETC in the hippocampus and cerebral cortex
of mice fed HFC for two weeks [186]. However, the relationship between HFC and energy
metabolism is still poorly understood with many discrepancies in the reported results
believed to be due to differences in the duration of HFC feeding (with compensatory
mechanisms reported to occur, with initial HFC-induced alterations in for example Glut1
reported returning to normal after a period of HFC feeding) and the precise composition
of the diet the animals are fed. Similarly, the link between HFC and cognition remains
controversial. Kesby and colleagues [190] have reported no changes in spatial cognition
in adult nor aged mice fed high-fat content diet despite clear HFC-induced metabolic
dysfunction [190]. However, Kanoski et al. (2010), observed short-lived impairments in
spatial memory of mice in the first few days from the start of HFC feeding, which did
not persist in animals maintained on long-term HFC [191]. Contrarily, other studies have
reported impairments in non-spatial reference and working memory occurring 30 days
following a HFC paradigm [191], and persistent long-term cognitive dysfunction whilst
fed HFC [192,193]. Interestingly, HFC was found to improve cognitive function in a neu-
rodegenerative mouse model, thus highlighting the complex nature of the relationship
between diet, metabolism, and cognition. For an illustrative depiction of the link between
age-related cerebrovascular dysfunction associated with neuroinflammation and hypop-
erfusion, HFC-induced BBB leakage contributing to downregulation of glucose uptake,
and the deleterious implications for mitochondrial health leading to cognitive impairment,
see Figure 3.
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Figure 3. The aging brain, mitochondrial bioenergetic failure and cognition. The link be-
tween age-related cerebrovascular dysfunction associated with hypoperfusion and neuroinflamma-
tion, nutrition-induced dysregulation of blood-brain barrier permeability, breakdown of glucose
metabolism and mitochondrial dysfunction implicated in cognitive impairment in later life.

5.2. Breakdown of Mitochondrial Function in Age-Related Cognitive Decline.

Hypometabolism in age-related cognitive decline has been linked to the breakdown
of mitochondrial bioenergetics, which is characterised by decreased efficiency of oxidative
respiration resulting in diminished ATP synthesis, reduced expression of mitochondrial ‘en-
ergy genes’ involved in oxidative respiration, and dysregulation of mitochondrial biogene-
sis. In order to explore the mechanisms underlying age-related mitochondrial impairments,
animal models such as the senescence accelerated mice (SAM) strains have been devel-
oped [194,195]. Mitochondrial glucose metabolism in the brain of SAMP8 mice (accelerated
senescence prone 8), a naturally occurring mouse line that displays a phenotype of acceler-
ated aging, characterised by a memory and learning impairment phenotype, was found to
diminish with age as assessed by a decrease in incorporation of carbon 13 (C13) [196]. A
longitudinal study in NMRI mice, which tracked the cognitive performance and efficiency
of energy metabolism throughout the lifespan (3–24 months), found reduced ATP levels in
dissociated brain cells and reduced respiration of complexes I and IV in aged mice com-
pared to young controls [197]. Similarly, brains of aged rhesus monkeys were marked by a
significant reduction in the activity of mitochondrial complexes I and IV [198]. Analysis of
mitochondrial function in aging using directly reprogrammed neurons (iN) from elderly
donors demonstrated a reduction in energy production and significant downregulation in
70% of all mitochondrial genes compared to iN from young donors, with genes involved
in electron transport chain complexes I, III, IV, and V most severely affected [199]. Reduced
expression of mitochondrial phosphorylation genes was accompanied by a reduction in
abundance of the proteins they encode. Interestingly, no changes in mitochondrial biogene-
sis were reported in the old iN model [199], whereas in the aged Naval Medical Research
Institute (NMRI) mice [197] the expression of mitochondrial mass marker citrate synthase
was reduced at 18 months. Notably, genes encoding antioxidant defence enzymes superox-
ide dismutase 2 (SOD2) and catalase (Cat) were shown to progressively decline starting
from 18 months of age in those animals. Similarly, senescence accelerated mice P8 (SAMP8)
mice, when compared to age-matched accelerated senescence-resistant 1 (SAMR1) mice,
show reductions in superoxide dismutase (SOD) activity (Manganese SOD, MnSOD, and
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copper-zinc SOD, Cu/Zn-SOD) and catalase activity, as well as reductions in levels of
GSH—all three well known antioxidant defence mechanisms [200,201]. Perturbations of
these antioxidant systems resulted in disruption of OXPHOS via reductions in complex I,
complex IV, and ATP synthase activity, ultimately abrogating ATP production [201,202].
More recently, Wang and colleagues showed similar results in SAMP10 mice (a sub-strain
of SAM) with onset of pathology at 8-months characterised by decreased SOD activity
as well as an increase in lipid peroxidation [203]. Together, these may contribute to the
appearance of age-related impairments in learning and memory.

5.3. Diet Contribution to Synaptic Dysfunction in Aging

Aging has been shown to lead to cognitive impairment and dementia. Simultaneously,
there is also an increased older population that does not adopt healthy lifestyles [204,205].
In this regard, several studies have linked nutrition and aging to inflammation, mitochon-
drial dysfunction, and ROS build up in the brain [206,207]. Indeed a synergistic role of age
and Western diets (WD) has been pointed out [208]. It has been reported that consumption
of WD in rats affects synaptic plasticity, thus leading to altered neuronal morphology, den-
dritic integrity, and blood vessel structure in the hippocampus [209]. Therefore, dendritic
and synaptic plasticity changes [210,211], together with changes in the levels of neurotrans-
mitters (dopamine, norepinephrine, serotonin, γ-aminobutyric acid, acetylcholine) and
brain-derived neurotrophic factor (BDNF) in the aging brain have been reported, among
others [212–217].

Synaptic plasticity relies on the enzymatic activity of metalloproteinase-9 (MMP-
9) [218,219] and BDNF secretion [220,221]. The upregulation of MMP-9 has been suggested
to be involved in several neurodegenerative disorders [222], since higher MMP-9 activity
and concentration are related to cognitive impairment [223–225]. Additionally, it also
plays a role in inflammation [226], which we have presented as one of main causes of
mitochondrial dysfunction in aging. Moreover, peripheral BDNF concentration has been
reduced with aging [227], and due to its ability to cross the BBB, it has also been linked to
cognitive dysfunction in an age-dependent manner.

MMP-9 and BDNF have also been shown to be decreased in an age-dependent manner
which is exacerbated by WD [208]. In light of these results, a recent study from Uba Chupel
et al. (2021) [228] examined the impact of taurine supplementation on these markers and
reported a reduction of MMP-9 levels, which are increased in senescence [229], suggesting
a shift in inflammatory balance since taurine supplementation reduces the interleukin
1-beta (IL-1β)/interleukin-1 receptor antagonist (IL-1ra) ratio in elderly women [230] and
in vitro studies [231]. However, the authors did not find upregulation of BDNF expression
with taurine supplementation as it was shown in different animal models [232]. These
results could be pointing out that taurine supplementation, which acts as an inhibitory
neurotransmitter [233], mitigates neuroinflammation, mitochondrial dysfunction, and
enhances synaptic function, may benefit cognition [234] in aging, especially when subjected
to unhealthy nutritional conditions.

Another example of the relevance of the diet when improving synaptic dysfunction in
aging could be illustrated through the availability of docosahexaenoic acid (DHA), an n-3
highly unsaturated fatty acid enriched in the central nervous system, which is important
for normal brain development. DHA has been shown to promote neurite outgrowth and
synaptogenesis [235]. Moreover, in DHA-deficient mouse brains, significant alterations
of the synaptic proteome have been identified [236]. Sidhu et al. (2017) cemented the
role of DHA in synaptic function by demonstrating downregulation of synaptic proteins
during aging which was dependent on the dietary intake of DHA. Consequently, a 24 week
dietary supplement of 900 mg/day DHA, as shown by Yurko-Mauro et al. (2010) [237], was
sufficient in improving learning and memory in age-related cognitive decline of healthy
individuals. These results are providing evidence of the impact of nutrition on synaptic
integrity and cognition in aging.
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6. The Role of Diet in Aging

As we have previously suggested, the impact of nutrition on cognition has been
broadly documented in humans. Starting from studies on cognitive development, it has
been reported how nutritional intake, independent of social factors, can affect cognitive
development. For instance, early evidence showed that a high-protein calorie intake in chil-
dren’s diets (and of their mothers during lactation), is associated with a higher probability
to score better at cognitive tests [238]. Conversely, a relationship between protein-energy
malnutrition (defined by height for age) and cognitive development was found in children
of developed countries [239]. Although an evident limitation of research on the effects of
nutrition and cognitive performance resides in the paucity of longitudinal studies [240], in
general terms, it is commonly acknowledged that nutrition (and malnutrition) has a heavy
impact on brain development [241–243]. However, the importance of getting the right
nutrients extends beyond early developmental stages. Increasing evidence associates older
adults’ brain health to certain “prudent” dietary patterns, which include a high intake of
antioxidants, essential nutrients, and other food-derived bioactive compounds such as
polyphenols, through a substantial consumption of fish, fruit, vegetables, low fat dairy,
and beverages such as wine, coffee, and tea [15,244,245]. Among the many dietary patterns
which can be found around the globe, the Mediterranean diet (MeDi) is certainly one which
has been identified to bring about great health benefits. Starting with the notorious Seven
Countries Study [246], MeDi has received a significant amount of attention for its role in
preserving cardiovascular health and cognitive health too. A meta-analysis on more than
34,000 participants, with a baseline age of 45 or above, showed that the highest adherence
to MeDi was inversely linked to the development of cognitive disorders and found an
approximately linear relationship between the incident risk of cognitive disorders and
general adherence to MeDi [247]. An inverse relationship between adherence to the MeDi
and dementia was found in a sample of 1865 Greek elders, where the adherence to the
MeDi was also associated with better performance in memory, language, visuospatial
perception, and the composite cognitive score; importantly, the strongest association found
was for memory [248].

Among the various compounds sourced by MeDi, particular relevant to brain health
are the essential long chain omega-3 polyunsaturated fatty acid (LCn-3PUFA), as well as
Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA), which are not synthesized
in the body, but are present in microalgae or fatty fish [249,250]. In a recent review of cross-
sectional and longitudinal studies with healthy older adults, higher omega-3 blood levels
were consistently found to be associated with higher hippocampal volume [251]. Some of
the reviewed studies also reported a larger total grey matter, total brain volume, and lower
white matter lesion volume in association with higher omega-3 [251]. A 6-month double-
blind, randomised controlled trial (RTC) on fifty people aged >65 years with mild cognitive
impairment found that a diet supplemented with DHA increased verbal fluency [252],
and in a recent review on the effects of LCn-3PUFAs supplementation on older adults’
cognition, ten out of the fourteen RCTs reviewed were found to report a positive outcome
on at least one domain of cognitive function (working memory, executive function, verbal
memory, short-term memory, perceptual speed, etc.) [253]. The efficacy of omega-3 fatty
acids encompasses psychiatric disorders as well. Beneficial effects were found in treating
depressive symptoms in patients with major depression and, to a lesser degree, bipolar
disorder, with some efficacy also observed in early phases of schizophrenia [252,254].

Diet Interventions Targetting Aging-Mitochondrial Dysfunction

However, LCn-3PUFAs are not the only compounds which are beneficial to brain
health. Bioactive compounds like curcumin, astaxanthin, resveratrol, hydroxytyrosol,
oleuropein, and spermidine, present both in the Mediterranean and Okinawan diet, have
been found to exert their protective functions, enhancing the degradation of damaged
mitochondria (mitophagy) via the upregulation of mitophagy mediators, and promote
the generation of new mitochondria [255]. Given the role of oxidative stress in driving
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mitochondrial dysfunction and decline in mitophagy, the antioxidative properties of these
compounds would protect against premature brain ageing and neurodegenerative diseases
like Alzheimer’s disease (AD) [256]. After all, dysfunction in mitophagy may trigger or
worsen neurodegenerative diseases such as AD, where mitochondrial dysfunction plays a
central role in the pathogenesis [257,258].

The brain is a highly metabolically active tissue that relies on oxidative phospho-
rylation as a way for maintaining energy. However, as we have previously described,
such mitochondrial processes lead to the production of reactive oxygen species (ROS) that
generate oxidative damage. Beyond the initial damage inflicted by oxidative stress, more
deleterious effects are achieved through concomitant mitochondrial dysfunction and, acting
in unison, elicit alterations in cellular signalling and gene expression as well as modulating
cell death pathways, increasing the likelihood of apoptotic events and cellular death, and
reducing cellular energy availability [259]. The brain consumes a large amount of oxygen
and is highly rich in lipids which are more prone to attack from free radicals and undergo
lipid peroxidation, thus becoming prone to oxidative stress [260]. Damage accumulation by
oxidative processes is a key mechanism of the ageing progression and a common feature
of ageing brains [15,261]. Studies of human autopsy tissue show higher levels of oxida-
tive damage to DNA/RNA, proteins, and lipids in aged as compared to young human
brains [262,263]. In the human brain, both pathological and normal ageing see mitochon-
drial activity to be compromised [264]. Indeed, in normal aging, a series of functions like
mitochondrial respiration and metabolism decrease, while the rate of somatic mitochon-
drial DNA mutations increases [261]. Therefore, antioxidant supplementation therapy
could be considered as a means of prevention for normally aged subjects, or as a possible
treatment for patients with neurodegenerative disorders like Alzheimer’s and Parkinson’s
disease, where ROS and mitochondrial dysfunctions play critical roles [259,265]. However,
despite the convincingly positive outcomes in studies using animal models [266–268],
cross-sectional and case–control studies on human cognition have reported mixed findings,
with either a positive, inconclusive, or no significant effects of antioxidant supplemen-
tation. For instance, functional status and cognitive functions did not differ in a group
of elderly patients according to their vitamin B1 status [269]. Yet, vitamin B1-deficient
patients exhibited a higher proportion of Alzheimer’s disease (AD), depression, cardiac
failure, and falls [269]. Daily supplementation with high doses of oral vitamin B12 led to a
significantly smaller improvement in memory function compared with a placebo group, in
a sample of people aged 70 or over [270]. Similarly, vitamin B12 supplementation did not
prevent cognitive decline in a group of older (70 or older) diabetic patients with borderline
vitamin B12 status [271]. Moore et al. [272] investigated the association between vitamin
B12 and cognitive impairment or dementia illustrating that efficacy was only achievable, as
measured by cognitive improvement, in patients with pre-existing deficiencies in vitamin
B12. Nevertheless, low serum vitamin B12 levels were associated with neurodegenerative
disease and cognitive impairment, and small subsets of dementia receive a therapeutic
outcome when placed on vitamin B12 supplements [272]. Additionally, low plasma levels
of vitamin C are associated with cognitive decline in elderly people [273], and several
randomized controlled trials show the beneficial effect of vitamin E supplementation in
delaying the functional decline observed during AD progression [274]. Nevertheless, in
a longitudinal study with individuals aged 65–105 years, supplement use of vitamins C
and/or E did not delay the incidence of dementia or AD [275]. In accordance with this, a
recent review including 28 studies with more than 83,000 participants, did not find evi-
dence that any vitamin or mineral supplementation had a meaningful effect on cognitive
decline or dementia of healthy adults in mid or late life. Furthermore, the only positive
outcome that was noted in long-term studies was supplementation with antioxidant vita-
mins [276]. Yet, the same authors acknowledged that the studies included in their review
tended to be too short to assess the maintenance of cognitive function, that longer studies
often had other primary outcomes, and that the cognitive measures used may have lacked
sensitivity [276]. Additionally, it should be considered that the therapeutic use of most of
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these compounds is limited, since the blood–brain barrier reduces the permeability of most
antioxidants [277]. For a more extensive review on the relationship between vitamins and
dementia, we recommend the recent work by Alam [268].

Along with MeDI, other alternative diet-based interventions like Ketogenic Diet (KD),
caloric restriction (60% of the food intake), Dietary Approaches to Stop Hypertension
(DASH), and Mediterranean-DASH diet Intervention for Neurological Delay (MIND),
have been proven effective to protect against oxidative damage and possibly reduce the
pathophysiological hallmarks of neurodegenerative diseases like AD [278]. In particular, in
the last decade KD has received a fair amount of attention from human research despite the
neuroprotective role of ketosis being known since the 1920s, when physicians introduced
it to treat epilepsy [279]. KD is based on the production of ketone bodies by the liver
from fatty acids and it can be triggered by fasting or with a diet high in fats and low
poor in carbohydrates. In a state of ketosis, the body swaps from glucose to fat as its
primary source of fuel [280]. Compared to glycolysis, the metabolism of ketone bodies
has a neuroprotective action, having been associated with a lower production of ROS and
therefore lower oxidative stress [281]. In particular, the ketone body beta-hydroxybutyrate
reduces mitochondrial ROS production and inhibits histone deacetylases, upregulating the
transcription of some genes that are protective against oxidative stress [282]. Moreover,
ketone bodies contribute to the reduction of ROS production through the expression of
mitochondrial uncoupling protein (UCP), thereby decreasing mitochondrial membrane
potential [283].

The beneficial effects of KD on human cognitive function have been reported in sev-
eral studies. One method to mimic KD by enhancing ketone production is to administer
large amounts of medium-chain triglycerides (MCT) as part of the diet [284]. A RTC of
supplemental MCT showed an improvement in cognitive testing after 45 days, and up
to 90 days in those subjects who did not carry the apolipoprotein E4 (ApoE4) allele [285].
Another study directly administered ketone bodies to 20 subjects and recorded improve-
ment on the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog) on
subjects who did not carry the ApoE4 allele A, while higher ketone values were associ-
ated with greater memory improvement across all subjects [286]. A clinical intervention
in 22 Japanese patients with sporadic AD did not report any improvement in cognitive
functioning following ketone body supplementation, even in those patients without the
ApoE4 allele. However, some ApoE4-negative patients did show some improvement in
their cognitive functions [287]. Thus, some of these studies suggest that neuropsychological
effects would depend on the presence of ApoE4 genotype, which is the most prevalent
genetic risk factor for AD. Finally, a 6-week randomized cross-over study on 20 older adults
with or without a mild cognitive impairment (MCI) showed that a modified MeDi-KD
can improve AD biomarkers [288]. However, no differences were observed on memory
performance when compared to a control diet [288]. More human studies are needed to
disentangle the contribution of the different factors and to understand clearly what could
be the potential modulators of this promising intervention.

7. Future Directions

Aging is characterized by cognitive impairments where mitochondrial dysfunction
has been proved to play a central role. It is well established that a healthy diet reduces the
risk of developing cognitive decline in elderly individuals pointing out its potential as a
therapeutic. In this regard, antioxidant intake and diet supplementation have been linked
to improved cognitive functioning. Antioxidants, such as Ginkgo biloba extract (EGb 761),
known to have antioxidant properties, has been proved to decreased oxidative DNA dam-
ages and peroxide generation, parallel to an increase in mitochondrial membrane potential
in the brain of old (27 months) when compared to young (4 months) animals [289]. Further-
more, in vitro treatment of Drp1 KO cells with antioxidants such as N-acetylcysteine and
MitoQ has been shown to reduce mitochondrial swelling and cell death [290]. These results
not only point out the role of oxidative stress in age-related mitochondrial impairments,
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but also the importance of dietetic supplements while aging. Despite these results, we
would like to note that the effectiveness of antioxidant supplementation in the diets of
elderly individuals could be limited due to the inability of natural antioxidants to reach the
ROS producing organelles in the brain.

We also want to highlight the benefits of long-term fruit supplementation in aging
degenerative processes. In this regard, a study from Braidy et al. (2016) [291] has proved
that pomegranate diet administered for 15 months enhanced synaptic plasticity, inhibited
neuroinflammation and promoted autophagy. All these changes are due to the active
components contained in the pomegranate, such as significant amounts of ellagitannin,
such as punicalin and punicalagin, and flavonoids, such as kaempferol and quercetin
derivatives. Indeed, quercetin became relevant when it was proved that it can modulate
pathways associated with mitochondrial biogenesis, mitochondrial membrane potential, ox-
idative respiration and ATP anabolism, intra-mitochondrial redox status, and subsequently,
mitochondria-induced apoptosis [292], thus improving the mitochondrial dysfunction
associated to aging. These results pointed out the relevance of the active phytochemicals
present in pomegranate extracts to improve brain function and mitigate neurodegeneration
in aging.

Moreover, as previously detailed, the relevance of dietary effects on cognitive im-
provement has been proved by the development of the Mediterranean-DASH Intervention
for Neurodegenerative Delay diet (MIND diet), with a focus of improving cognition in
dementia sufferers as well as preventing normal age-related cognitive decline in the el-
derly [293]. Both the MIND and MeDi diet utilise plant-based foods with consumption of
red meats and saturated fats limited. However, the MIND diet pays special attention to
specific berries and leafy-green vegetables, which are seen to be cognition enhancers, such
as spinach and blueberries. Morris et al. (2014) showed that MIND diet was associated with
a slower rate of cognitive decline, however, more needs to be investigated regarding the
mechanisms behind this improvement. Indeed, aside from its antioxidant effects, changes
in diet may induce epigenetic and neurogenic changes [294] in elderly that should be also
explored.

Rodent models have highlighted the importance of antioxidants and exercise in im-
proving cognitive function by demonstrating that enriched diets and exercise can reduce
ROS production, enhance mitochondrial function, thereby improving bioenergetic dynam-
ics of the cell, and preserve synaptic activity to enable functioning neuronal networks.
Furthermore, the use of antioxidants in the diets of elderly individuals has shown beneficial
effects, shedding light on the need for further investigation. This review critically assessed
the current status of healthy diets on recovering mitochondrial dysfunction in elderly
individuals. We also want to highlight that healthy diets should be accompanied by regular
exercise and a better lifestyle, which are likely to delay the progression of dementia and
mitochondrial dysfunction in elderly individuals. Finally, we believe that new therapeu-
tic approaches should factor in age and unhealthy diets when assessing the efficacy of
their treatments, in order to better translate experimental findings into clinically-relevant
interventions.
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