Molecular Psychiatry (2021) 26:1432-1435
https://doi.org/10.1038/541380-020-0773-x

CORRESPONDENCE

Check for
updates

Ribosomal protein genes in post-mortem cortical tissue and iPSC-
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To the Editor

In a recent paper, Griesi-Oliveira et al. [1] identified a gene
co-expression module in induced pluripotent stem cell
(iPSC)-derived neural progenitor cells (NPCs) that is
upregulated in expression in autism. The authors also show
proteomic evidence to suggest that these earlier disruptions
in translation in NPCs may lead to dysregulation of gene
expression relevant to synaptic processes in neurons. These
are valuable insights to contribute to the literature, parti-
cularly because iPSC models can be a useful model of early
prenatal periods of development. Griesi-Oliveira et al. [1]
also attempted to assess how similar this kind of tran-
scriptomic dysregulation is to previously reported studies
using gene expression data in post-mortem cortical tissue.
As the authors rightly note, the papers they utilized for this
analysis [2, 3] did not themselves report any co-expression
modules with differential module eigengene expression in
modules enriched for translation processes. However, in our
recent paper [4], we re-analyzed data from these studies
[2, 3] and indeed identified two consensus co-expression
modules enriched in translation processes (M1 and M25)
that were replicably upregulated in autism in both datasets.
When we examine whether Mypc10-blue heavily overlaps
with these translation-enriched modules, we indeed find
high overlap with the translation-enriched M25 co-
expression module (odds ratio (OR) = 15.52, p =1.24e —
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14). Evidence from a later study by Gandal et al. [5] also
showed the presence of a co-expression module (geneM15)
that is localized to the ribosome and enriched in excitatory
neuronal cell types. This autism-upregulated geneM15
module from post-mortem cortical tissue highly overlaps
with Mypc10-blue (OR =19.10, p =3.26e — 34) and the
M25 module from our study (OR = 140.27, p =1.09¢e —
54). Nearly all of the overlapping genes in Mypc10-blue and
Lombardo et al.’s [4] M25 and Gandal et al.’s [5] geneM15
are ribosomal protein genes (e.g., RPL and RPS). See Fig. 1
for a graphical depiction of these gene sets and the overlap.
The data and code that reproduces these results can be
found here: https:/github.com/mvlombardo/ipsc_transla
tion. Thus, rather than there being no prior evidence of
upregulated translation co-expression modules in post-
mortem cortical tissue, there is such evidence from multi-
ple studies [4, 5], as well as evidence to support that many
of the same genes in MypclO-blue are also those found
within those translation-enriched co-expression modules
from post-mortem cortical tissue.

A second point of interest is that our prior paper makes a
statement about how the cortical transcriptome is hier-
archically disorganized in autism [4]. Evidence to support
this comes from the result that eigengenes from upregulated
and downregulated co-expression modules are highly cor-
related, with increases in the expression of translation
modules being associated with decreased expression of
synaptic-enriched modules. In addition, dysregulated co-
expression modules show a high degree of physical inter-
actions at the protein level—that is, translation-enriched
modules like M25 show a high level of protein—protein
interactions with proteins from genes from synaptic-
enriched co-expression modules. Thus, the statement that
upregulated Mypc10-blue might be linked to dysregulation
of neuronal co-expression modules in this iPSC dataset is
indeed foreshadowed and predicted by our observations of
this same kind of emergent disorganization across co-
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Fig. 1 Graphs showing protein—protein interactions from STRING
(https://string-db.org) for genes within co-expression modules
Mpnpcl0-blue from Griesi-Oliveira et al. [1] (top left), M25 from
Lombardo et al. [4] (top middle), and geneM15 from Gandal et al.

expression modules observed in post-mortem cortical
tissue.

Finally, it is worth discussing the potential importance of
these upregulated co-expression modules enriched in
translation processes with respect to evidence already in the
literature. The authors have cited that protein synthesis is a
cellular process of interest in autism. Indeed, translational
control has been of broad long-standing interest in autism
research as many of the earliest known single gene muta-
tions with high penetrance for autism are those that affect
translational control (e.g., FMRI, TSC2, PTEN) [6]. These
genes, along with others (e.g., EIF4E, UBE3A, NFI,
MECP2, SHANK3), all affect AKT-PI3K-mTOR signaling
pathways [7-11] and these pathways are known to be
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[5] (top right). Ribosomal proteins are highlighted in red. In the
bottom left are genes that overlap between Mypcl10-blue and M25,
while on the bottom right are genes that overlap between Mypc10-blue
and geneM15.

affected in idiopathic cases of autism [12, 13]. While these
are important prior starting points for talking about protein
synthesis in autism, there is a missed opportunity here to
expand beyond this evidence. For example, the Mypc10-
blue co-expression module has a large number of genes
coding for 40S and 60S ribosomal subunits (RPL and
RPS genes) and these genes are key members of our pre-
viously reported M25-upregulated translation-enriched co-
expression module [4] as well as the autism-upregulated
geneM15 module from Gandal et al. [5]. These genes as
well as the ribosome cellular component itself are largely
not focused on in the literature. The evidence from our
paper [4] and others [14], as well as this new evidence from
Griesi-Oliveira et al. [1] should underscore the idea that
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future work should focus more heavily on this type of
translation-relevant biology. Furthermore, such upregula-
tion of translation-relevant biology (e.g., genes for riboso-
mal proteins) are known to be similarly upregulated in
maternal immune activation [15] and in non-neural cell
types such as blood leukocytes from patients with autism
[16, 17]. Finally, similar co-expression modules identified
in blood leukocytes are associated with functional neural
phenotypes relevant to receptive speech processing in aut-
ism with poor language outcome [18].

These insights raise questions for how future work might
expand on the relevance of upregulated ribosomal protein
genes in brain development in autism? Here I suggest a
couple of routes that could be examined. First, the upre-
gulated expression of ribosomal protein genes could suggest
that ribosome biogenesis is enhanced, and thus protein
synthesis is also enhanced. Therefore, examination of
ribosome biogenesis could be an important avenue of future
work in autism, particularly if enhanced ribosome biogen-
esis affects specific cell types (e.g., excitatory neurons,
radial glia). Second, enhanced protein synthesis—be it
through enhanced ribosome biogenesis or other known
autism-associated mechanisms (e.g., FMRI, TSC2, PTEN,
mTOR signaling)—could lead to enhanced cell prolifera-
tion. It is also known that cell proliferation and protein
synthesis are tightly linked [19], and in cancer research,
many mechanisms relevant to suppressing or enhancing cell
growth and proliferation affect ribosome biogenesis and
protein synthesis [20]. This route may be relevant for
examining molecular mechanisms that could underlie
accelerated early brain overgrowth in autism [11, 21] and/or
subtypes of patients with much larger brains [22]. Given
the insights from Griesi-Oliveira et al. [1] for showing this
process is already upregulated in NPCs, this avenue
could be interesting from the standpoint that specific types
of progenitor cells (e.g., ventricular or outer radial glia)
in very early fetal brain development are implicated in
the expansion of cortical surface area [23, 24]. Third,
ribosomal proteins can have non-ribosomal functions, such
as involvement in the immune system [20]. These functions
can emerge because steps in ribosome biogenesis can
be disturbed (i.e. ribosomal stress) and lead to an accumu-
lation of ribosome-free ribosomal proteins in the cell.
Whether these extra-ribosome functions are a factor in
autism is unknown, but this could be another route for how
enhanced ribosomal proteins could potentially affect autistic
patients.

In conclusion, the discoveries of Griesi-Oliveria et al. [1]
are important and highlight the idea that upregulated
translation processes and their interaction with other
important biological processes taking place at the synapse
be prioritized as a fruitful area for future discoveries. While
translational control is itself an area of much interest in
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autism [6-10], there is likely more to this topic than cur-
rently understood and more emphasis could also be placed
on the importance of ribosomal proteins.
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