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Abstract: Antimicrobial peptides (AMPs) are essential components of the mucosal barrier of the fe-
male reproductive tract (FRT) and are involved in many important physiological processes, including
shaping the microbiota and maintaining normal reproduction and pregnancy. Gynecological cancers
seriously threaten women’s health and bring a heavy burden to society so that new strategies are
needed to deal with these diseases. Recent studies have suggested that AMPs also have a complex
yet intriguing relationship with gynecological cancers. The expression level of AMPs changes during
tumor progression and they may act as promising biomarkers in cancer detection and prognosis
prediction. Although AMPs have long been considered as host protective, they actually play a
“double-edged sword” role in gynecological cancers, either tumorigenic or antitumor, depending
on factors such as AMP and cancer types, as well as AMP concentrations. Moreover, AMPs are
associated with chemoresistance and regulation of AMPs’ expression may alter sensitivity of cancer
cells to chemotherapy. However, more work is needed, especially on the identification of molecular
mechanisms of AMPs in the FRT, as well as the clinical application of these AMPs in detection,
diagnosis and treatment of gynecological malignancies.
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1. Introduction

Antimicrobial peptides (AMPs) represent ancient host defense molecules present in all
life forms [1,2]. The vast majority are cationic peptides which can directly target negatively
charged surfaces of specific organisms. Anionic AMPs are rare and they may act by using
metal ions to form cationic salt bridges with negatively charged components of microbial
membranes [3]. Besides, AMPs may exert antimicrobial effects through intracellular target-
ing such as binding to the nucleic acid and proteins, affecting cell cycles and disrupting
energy metabolism [4]. In addition to the microbicidal and anti-inflammatory functions,
AMPs also have immunomodulatory properties including enhancing chemotaxis of im-
mune cells, activating immune cell differentiation, stimulating angiogenesis, improving
wound healing and reducing scar formation [5,6].

Recently, the relationship of AMPs and cancers has attracted extensive attention of
researchers [6,7]. The expression of AMPs is altered in tumors [8,9], which may serve as
biomarkers for detecting tumors at an early stage [10]. Several studies have found that
AMPs exhibit tumorigenic effects, such as conferring resistance to apoptosis in tumor
cells [11], stimulating tumor migration [12,13], enhancing angiogenesis and promoting
lymphatic invasions [14,15]. AMPs also act as chemotactic factors that recruit monocytes,
immature dendritic cells, memory T cells, mast cells and tumor-associated macrophages
(TAMs) to cancerous lesions, thereby altering the tumor environment and promoting tumor
progression [16–18]. However, many studies indicated that AMPs exert antitumor effects.
AMPs kill cancer cells through electrostatic interactions [19] or by activating necrosis or
apoptosis through various signaling pathways [20,21]. AMPs also inhibit tumorigenesis by
activating the immune system [22], inhibiting DNA synthesis [23], and reducing angiogen-
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esis [24]. Moreover, as some cancers are induced by specific organisms [25,26], a complex
relationship may exist between AMPs, local microbiota, and malignancy.

Gynecological cancers, mainly including ovarian, uterine, cervical, vaginal and vulvar,
place a heavy burden on society and patients. It was reported that in 2020, there were
1,398,601 new cases and 671,875 deaths from gynecological cancers worldwide. While
the incidence and mortality rate of cervical cancer is decreasing rapidly in high-income
countries due to human papillary virus (HPV) vaccination and screening, the incidence rate
of uterine corpus cancer is increasing in some of these areas because of body overweight
and lack of exercise. According to the growth and aging of the population, by the year of
2040, the total global cancer burden is expected to be 28.4 million new cases [27]. Gyne-
cological cancer patients often experience severe anxiety and depression, as well as poor
quality of life [28]. To reduce morbidity and mortality, studies are needed to improve or
complement existing screening, diagnosis and treatment strategies and to further explore
the pathogenesis. The association between AMPs and gynecological cancers has received
much attention in recent 15 years, but has not been well summarized. In this review, we
provide a critical analysis of the relevant literature to underpin a better understanding of
the role of female reproductive tract (FRT)-derived AMPs in gynecological malignancies
and elucidate the potential application of AMPs in these diseases.

2. Antimicrobial Peptides in the Female Reproductive Tract (FRT)

AMPs have been found in different human excretions, tissues and cell types. Likewise,
a set of AMPs have been identified in the FRT. These AMPs not only function as primary
barrier against pathogen invasion, but also help shape the microbiota composition [29].
During evolution, commensals have developed resistance strategies against host-derived
AMPs, secreted their own AMPs to compete with potential pathogens, and finally survived
as symbionts [30]. In addition, AMPs are important in dampening inflammation and
maintaining immune homeostasis in the FRT [29]. During pregnancy, AMPs are distributed
throughout the FRT and the antimicrobial, anti-inflammatory and immunoregulatory
activities of the AMPs are essential in protecting and maintaining pregnancy. It has been
demonstrated that abnormal expression of AMPs is associated with ectopic pregnancy,
preterm labor, intra-amniotic infection/inflammation, premature rupture of membranes,
and cervical insufficiency [31,32]. The activities of AMPs are influenced by the proteases,
protease inhibitors, pH and hormonal changes [33] and AMPs usually display synergistic
effects rather than work individually [34]. However, a large number of AMPs in the
FRT remain to be discovered. For this reason, several studies have used proteomes and
peptidomes to reveal potential AMPs in human cervical-vaginal fluid and endometrial
fluid in order to complement the composition as well as functions of AMPs in FRT [35–38].

We have summarized the general information on AMPs associated with gynecological
cancers in Table 1. All of these tumor-related AMPs exert antimicrobial and immunoregu-
latory functions and some of them have other specific activities. For example, secretory
leukocyte protease inhibitor (SLPI) and elafin confer protease inhibition activity which
plays an important role in tissue integrity [39] and low expression of elafin is associated
with pelvic organ prolapse and urinary stress incontinence [40,41].
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Table 1. General information on AMPs in female reproductive tract (FRT).

AMPs Encoded Gene General Structures Expression Sites in
Normal FRT Refs

HBD2
(Beta-defensin 2) DEFB4

64 amino acids. Amphiphilic
monomer. Triple-stranded,
antiparallel beta sheet with strands 2
and 3 in a beta hairpin conformation.

All sites of FRT except
the fallopian tubes. [42]

HBD3
(Beta-defensin 3) DEFB3

45 amino acids. Amphiphilic
symmetrical dimer formed through
strand beta2 of the beta-sheet.

Endometrium, vagina
and cervix. [43]

HNP2
(Human neutrophil

peptide 2)
DEFA1

29 amino acids. An N-terminal
truncated structure containing three
pairs of intramolecular
disulfide bond.

Cervix. [44]

HD5
(Human α-defensin 5) DEFA5

94 amino acids. A cationic peptide
which is linked by three
intra-molecular disulfide bridges,
and contains six intra-molecular
cysteine residues.

Endometrial, cervical
and vaginal. [45,46]

hCAP-18/LL-37
(Cathelicidin) CAMP 37 amino acids. Amphiphilic,

monomeric, α-helical peptide.
Endometrium, vagina,
cervix and ovary. [47]

SLPI
(secretory leukocyte
protease inhibitor)

SLPI
132 amino acids. A single-chain
protein with eight intramolecular
disulfide bonds.

Fallopian tube,
endometrium,
cervix and
cervicovaginal fluid.

[48]

Elafin PI3

117 amino acids. A structure
maintained by four conserved
disulfide bridges characteristic of
WAP (whey acidic protein) family.

All epithelial cells
lining the FRT. [49]

HE4
(Human Epididymis

Protein 4)
WFDC2

124 amino acids. A glycoprotein
containing a WAP domain
(4-disulfide core domain 2).

Fallopian tubes, uterus,
cervix and
bartholin glands.

[50]

Lysozyme LYZ 129 amino acids. A single
polypeptide. Cervix and vagina. [33]

Calprotectin S100A8
S100A9

A complex of proteins S100A8
(93 amino acids) and S100A9
(113 amino acids).

Cervix and
cervicovaginal fluid. [36]

Psoriasin
(S100A7) S100A7

101 amino acids. A member of the
S100 family of proteins containing 2
EF-hand calcium-binding motifs.

Vulva, vagina
and ectocervix. [51]

SP-A
(surfactant
protein A)

SFTPA

248 amino acids. The mature form of
SP-A includes: an N-terminal
segment, a collagen region, a neck
region and a carbohydrate
recognition domain(CRD).

Vagina. [52]

SP-D SFTPD

375 amino acids. Each SP-D subunit
is composed of an N-terminal
domain, a collagenous region, a
nucleating neck region, and a
C-terminal lectin domain.

Endometrium, cervix,
vagina and
fallopian tubes.

[53]

Lactoferrin LTF

710 amino acids. A simple
polypeptide chain folded into two
symmetrical lobes (N and C lobes),
which are highly homologous with
one another.

Ovary, fallopian tubes
and endometrium. [54]
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3. Expression of AMPs in Gynecological Cancers

Through a literature review, we found that the expression of AMPs is altered in
gynecologic cancers and details are shown in Table 2. In these studies, protein or/and
mRNA expression was evaluated in different samples including patient-derived tumor
samples, cancer cell lines, xenograft tumor tissues, serum, circulating tumor cells and cystic
fluid. It can be found that the expression of a certain AMP can be elevated or decreased
in different types of tumors, indicating that the expression of AMP depends on the tumor
type and is not specific. Moreover, even in the same tumor type, AMP expression varies
by specimen types. For example, HBD3 protein, which is highly expressed in cervical
cancer tissues, is not expressed in cervical cancer cell lines [12]. This inconsistency may
suggest that the signaling and metabolic pathways in transformed cell lines differ markedly
from tumor tissues, whose microenvironment may be involved in the regulation of AMP
expression. Therefore, studies on cell lines cannot fully represent the actual situation of
the tumors. More realistic studies based on the tumor itself can reveal more about the role
of AMPs. Meanwhile, the AMP expression levels are found to be correlated with tumor
progression [12,55–60], clinical stages [59,61–65], tumor grading [55,66–68], lymph node
metastasis [58,68,69] and even the amount of ascites [69]. Prognostic indicators such as
progression-free survival (PFS) and overall survival (OS), were also found to be associated
with AMP expression [61–64,70–72]. In addition, AMPs, alone or in combination with other
molecules, are potential biomarkers in indicating malignancies, predicting early cancers
and monitoring recurrence [61–63,73–81]. Particularly and interestingly, when expressed in
nuclei and cytoplasm, elafin is a biomarker of more aggressive cervical cancer. In contrast,
elafin expression in cell membrane indicates a more conservative cervical cancer [57].

Table 2. AMP expression in gynecological cancers.

Gynecological Cancers
Expression Increased Expression Decreased

Refs.
Protein mRNA Protein mRNA

Epithelial ovarian cancer- tissues

HD5,
hCAP-18/LL-37,
SLPI, elafin, HE4,

S100A7, lactoferrin

HD5, SLPI, elafin,
calprotectin, HE4,

S100A7, SP-D

[59,66,68,70,71,
73,82–87]

Epithelial ovarian cancer-
serum samples

SLPI, calprotectin,
HE4 [59,61–63,88]

Epithelial ovarian
cancer-circulating tumor cells SP-D [71]

Clear cell ovarian cancer- tissues HE4 HE4 [85]

Ovarian cancer cell lines (HEY
cells, SKOV-3 cells and

OV-90 cells)
hCAP-18/LL-37 [87]

Ovarian cancer cell lines (Caov3
cells and SKOV3 cells) S100A7 [68]

Cystic fluid of epithelial
ovarian cancer S100A8/S100A9 [86]

SCC
(Squamous cervical

cancer) –biopsies

HBD3, S100A9,
S100A7 HBD2, elafin HBD2, elafin [12,57,58,89,90]

HSIL
(high-grade squamous

intraepithelial lesions)- biopsies
HBD2 HBD2 [89]

Cervical cancer cell lines (SiHa,
CasKi and KT1 cells) HBD2 HBD2 [89]

Cervical cancer cell lines (HeLa,
CaSki, and SiHa cells) HBD3 HBD3 [12]

Cervical adenocarcinoma-tissues SLPI [56]

Endometrioid cancer-tissues HE4 HE4 [60]
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Table 2. Cont.

Gynecological Cancers
Expression Increased Expression Decreased

Refs.
Protein mRNA Protein mRNA

Papillary serous endometrial
cancer-tissues HE4 HE4 [60,67]

Clear cell carcinoma of the
uterus-tissues HE4 HE4 [60]

Xenograft endometrial
cancer-tissues HE4 HE4 [91]

Endometrial carcinoma
-serum samples calprotectin [64],

Vulvar Paget’s Disease-related
vulvar cancer tissues HE4 [76]

Vulvar squamous cell
cancer-tissues S100A7, SLPI [65,72]

Leiomyosarcoma-
serum samples HE4 [80,81]

AMP expression in gynecological cancers is tumor-type specific and correlates with
various clinical features and outcomes. However, the mechanism by which AMP expression
changes in gynecological cancers is unclear. Only one study mentioned that the overexpres-
sion of elafin in ovarian cancers is mediated by inflammatory cytokines through nuclear
factor kappa B (NF-κB) pathway [70]. Moreover, whether altered AMP expression is a cause
or a consequence of tumors is currently unknown. Nevertheless, AMPs are promising
biomarkers for identifying cancers, indicating aggressiveness and assessing prognosis.

4. Tumorigenic and Pro-Metastatic Functions of AMPs

To turn normal cells into cancer cells, genes that regulate cell growth and differentiation
must be altered and several signaling pathways are involved. Recent comprehensive studies
in the Cancer Genome Atlas (TCGA) have revealed that there are twelve driver events
per tumor [92], and there is considerable variation in the genes and signaling pathways
altered across different tumor types and individual samples [93]. Therefore, knowledge
of the molecular subtype is essential in cancer management. For example, molecular
classification is now encouraged as clinical routine and as determinants for treatment
decisions in uterine endometrial cancer. As for metastasis, there are currently three theories
that explain the mechanisms [94]: (1) the epithelial-mesenchymal transition (EMT) and
mesenchymal-epithelial transition (MET) hypothesis, (2) the cancer stem cell hypothesis,
and (3) the macrophage–cancer cell fusion hybrid hypothesis. Likewise, in gynecological
cancers, AMPs exert tumorigenic activities through diverse oncogenic signaling pathways
and promote metastasis via EMT and macrophage participation. The mechanisms have
been summarized and shown in Figure 1. In addition, copy number variation (CNV) and
distribution polymorphisms of the AMP gene are also associated with tumorigenesis.

HBD3 enhances proliferation and migration of cervical cancer cells both in vitro and
in vivo by activating the NF-κB signaling pathway [12]. NF-κB is known to not only activate
the genes that keep the cell proliferating and protect the cell from apoptosis, but also lead
to metastasis and inefficient eradication of the tumor by the immune system.

S100A7 promotes the migration, invasion and metastasis of cervical cancer cells via
activating extracellular signal-regulated kinases (ERK) pathway both in vitro and in vivo.
Moreover, S100A7 enhances cell mesenchymal properties and induces EMT, which enables
cancer cells to invade surrounding tissues and disseminate to distant organs, resulting in
invasion and metastasis [58]. Knocking down of S100A7 reduces the ability of proliferation,
migration, and invasion of ovarian cancer cells [68].
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Figure 1. Tumorigenic and pro-metastatic mechanisms of AMPs on gynecological cancers: (1) HBD3 
and elafin activate NF-κB pathway [12,95]; (2) Elafin, S100A7 and SLPI induce MEK/ERK pathway 
[58,68,87,95,96]; (3) SLPI promotes extracellular matrix remodeling and angiogenesis [68,97]; (4) LL-
37 and S100A7 induce epithelial-mesenchymal transition (EMT) [58,98]; (5) HE4 controls cell cycle 
[91]; (6) A vicious circle between macrophages and ovarian cancer cells by interaction between LL-
37 and versican V1 [99]. MEK, Mitogen-activated protein kinases; ERK, Extracellular signal-regu-
lated kinases; RAGE, Receptor for advanced glycation end-products; EMT, Epithelial–mesenchymal 
transition; VDR, vitamin D receptor; TLR, Toll-like receptor; MMP, Matrix metalloproteinases; 
CYP27B1, Cytochrome P450 family 27 subfamily B member 1. 
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LL-37 contributes to ovarian tumorigenesis through stimulation of tumor cell 
growth, angiogenesis and recruitment of immune cells [87]. LL-37 may activate mitogen-
activated protein kinase (MAPK) and Janus-activated kinase/signal transducers and acti-
vators of transcription (JAK-STAT) signaling cascades in ovarian cancer cells, upregulate 
a number of transcription factors related to tumorigenesis such as CREB and STAT4, and 
regulate the expression of several genes associated with tumor progression, such as egf, 
mmp2 and upa [98]. Studies have shown that mesenchymal stem cells (MSCs) contribute 
to progression and metastasis of ovarian cancers [100]. LL-37 may mediate MSCs migra-
tion and invasion through formyl peptide receptor like-1(FPRL1) and MSCs exposure to 
LL-37 leads to secretion of angiogenic and inflammatory molecules such as interleukin 
(IL)-1 receptor antagonist, IL-6, IL-10, vascular endothelial growth factor (VEGF) and 

Figure 1. Tumorigenic and pro-metastatic mechanisms of AMPs on gynecological cancers: (1) HBD3
and elafin activate NF-κB pathway [12,95]; (2) Elafin, S100A7 and SLPI induce MEK/ERK
pathway [58,68,87,95,96]; (3) SLPI promotes extracellular matrix remodeling and angiogenesis [68,97];
(4) LL-37 and S100A7 induce epithelial-mesenchymal transition (EMT) [58,98]; (5) HE4 controls cell cy-
cle [91]; (6) A vicious circle between macrophages and ovarian cancer cells by interaction between LL-
37 and versican V1 [99]. MEK, Mitogen-activated protein kinases; ERK, Extracellular signal-regulated
kinases; RAGE, Receptor for advanced glycation end-products; EMT, Epithelial–mesenchymal transi-
tion; VDR, vitamin D receptor; TLR, Toll-like receptor; MMP, Matrix metalloproteinases; CYP27B1,
Cytochrome P450 family 27 subfamily B member 1.

LL-37 contributes to ovarian tumorigenesis through stimulation of tumor cell growth,
angiogenesis and recruitment of immune cells [87]. LL-37 may activate mitogen-activated
protein kinase (MAPK) and Janus-activated kinase/signal transducers and activators of
transcription (JAK-STAT) signaling cascades in ovarian cancer cells, upregulate a number
of transcription factors related to tumorigenesis such as CREB and STAT4, and regulate
the expression of several genes associated with tumor progression, such as egf, mmp2 and
upa [98]. Studies have shown that mesenchymal stem cells (MSCs) contribute to progres-
sion and metastasis of ovarian cancers [100]. LL-37 may mediate MSCs migration and
invasion through formyl peptide receptor like-1(FPRL1) and MSCs exposure to LL-37
leads to secretion of angiogenic and inflammatory molecules such as interleukin (IL)-1
receptor antagonist, IL-6, IL-10, vascular endothelial growth factor (VEGF) and matrix
metalloproteinase-2 (MMP-2), all of which are associated closely with tumorigenesis and
metastasis [101]. Moreover, neutralization of LL-37 reduces ovarian tumor growth by
decreasing recruitment of MSCs in a xenograft mouse model [101]. Macrophages are also
shown to be associated with tumor growth. A co-culture model, containing macrophages
and ovarian cancer cells, demonstrates that versican V1, a chondroitin sulfate proteo-
glycan produced by ovarian cancer cells, can induce hCAP18/LL-37 overexpression in
macrophages through activation of toll-like receptor 2 (TLR2) and TLR6 and subsequent
vitamin D-dependent mechanisms, leading to proliferation and invasiveness of ovarian
cancer cells. Meanwhile, proliferation of ovarian cancer cells leads to elevated expres-
sion of versican V1 [99]. As a result, a vicious circle is formed. We have noted that in
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these studies, the concentrations of LL-37 are between 0.1 µg/mL and 10 µg/mL, which
show tumorigenic effects, while in another study described later in this review, LL-37
at a concentration of 50 µg/mL helped increase cell membrane permeability, so that the
CpG-oligodeoxynucleotides (CpG-ODN) could easily enter the cell to exert subsequent
effects [102]. This demonstrates that the effects of LL-37 are concentration-dependent.

SLPI promotes ovarian cancer cell growth, prevents apoptosis in vitro and exerts a
pro-metastatic function via increasing MMP-9 production in vivo [97]. SLPI protects the
survival factor progranulin, partly through inhibition of elastase-induced degradation or
independently of protease inhibition [103,104]. However, a quite opposite result shows
that SLPI inhibits cell proliferation, increases apoptosis and decreases the invasive ability
of ovarian cancer cells in vitro through tumor necrosis factor (TNF)-related apoptosis-
inducing ligand (TRAIL), death receptor (DR)-4, DR-5, TNF-α, and TNF receptor (TNFR)-I
expression, all of which may lead to activation of the apoptosis pathway through Caspase-2,
Caspase-8 and Caspase-9 [69]. The reasons for the conflicting results are not clear, but may
be due to the different cancer cell lines the study chose and the data obtained in vitro or
in vivo. In uterine neoplasm, SLPI activates proliferation of endometrial adenocarcinoma
cells directly through its control of cyclin D1 gene expression. Meanwhile, SLPI inhibits the
expression of the growth suppressors insulin-like growth factor-binding protein 3(IGFBP-3)
and transforming growth factor beta 1(TGF-β1) in an indirect pathway. Furthermore, SLPI
negatively regulates lysyl oxidase (a tumor suppressor) gene expression. The results of
these multiple regulations are the synergistic induction of cancer cell proliferation [105].

HE4 is currently used as a biomarker for ovarian and endometrial cancer, but its
relationship with tumors is unclear. HE4 is shown to enhance endometrial cancer cell
proliferation, both in vitro and in vivo, possibly by cell cycle control. HE4 also promotes
invasion and metastasis although the mechanism is not clear [91].

TCGA data has shown that somatic copy number alterations (SCNAs) are pervasive
across cancers although the exact relationship between SCNAs and cancers is largely
unknown. Copy number variation (CNV) in the DEFB4 gene (encoding HBD4) exists
in both cervical cancer and healthy control groups, and a lower DEFB4 copy number is
possibly associated with susceptibility to cervical cancers [106]. In addition, lower copy
number of DEFB4 is also associated with susceptibility to human immunodeficiency virus
infection (HIV) [107] and decreased antimicrobial activity [108]. Since the majority of the
cervical cancers are HPV-related, whether lower copy number of DEFB4 also contributes to
susceptibility to HPV infections is an open question.

It is known that a polymorphic variant of a gene can lead to the abnormal expression
or to the production of an abnormal form of the protein, which may cause or be associated
with disease. The distribution of lactoferrin gene polymorphisms (rs1126477, rs1126478,
rs2073495, and rs9110) was investigated and it was shown that rs1126477 was significantly
associated with ovarian cancer in the Chinese Han population. In addition, the frequency
of the A allele of rs1126477 was significantly higher in ovarian cancer patients than in
controls. Therefore, rs1126477 may play a role in physiological processes of ovarian cancers
in the Chinese [109].

The carcinogenic mechanisms of AMPs are complex and vary by tumors, research
subjects, AMP concentrations and in vitro or in vivo studies. In addition, for anticancer
purposes, whether neutralization of AMPs or anti-AMPs strategies can be used as cancer
therapy is still a concern for researchers.

5. Anti-Tumor Functions of AMPs

The antitumor property of AMPs is mainly based upon selective binding to cancer
cells via electrostatic interactions. Most AMPs are cationic peptides that specifically target
negatively charged cell membranes. Cancer cell membranes typically carry a net negative
charge due to a higher expression of anionic molecules such as phosphatidylserine and O-
glycosylated mucins compared to normal cells [110,111]. However, the density of negative
charge on cancer cells is relatively lower when compared to bacterial cell membranes.
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Consequently, the affinity of AMPs to cancer cells is between that of normal cells and
bacteria [112]. In addition, cancer cells contain less cholesterol and more microvilli than
normal cells, which makes them more susceptible to killing and binding by AMPs [113,114].
Therefore, the cell membrane composition, fluidity, and surface area in different cancer
cells may account for the selective killing efficacy observed in different AMPs.

HBD-2 kills Hela cells through acute lytic cell death [115]. The cell-killing effect of
HBD-2 is concentration-dependent, with low concentrations promoting proliferation and
high concentrations causing death [55]. Unfortunately, when compared to other defensins,
HBD-2 requires much higher concentrations to kill tumor cells due to its relatively lower
net positive charge [115]. However, higher concentrations may exert higher toxicity and
kill normal cells as well. Furthermore, the action of HBD-2 could be severely compromised
in serum [116], making intravenous delivery of this potential drug problematic. HBD-2
is more effective when delivered directly into tumor cells [117] although successful and
safe delivery is still a challenge. However, recent studies have made progress in delivery
of AMPs by conjugating with nano carriers [118], which brings AMP targeting therapy a
promising future.

In addition to cell membrane lytic function, AMPs can penetrate cancer cells and
attack the mitochondria, leading to apoptosis [119]. A recombinant fragment of human
SP-D (rfhSP-D) decreases the motility and proliferation of ovarian cancer cells by inhibiting
the mammalian target of rapamycin (mTOR) activity, increasing caspase 3 cleavage, and
inducing pro-apoptotic genes Fas and TNF-α [120]. When rfhSP-D was immobilized on
carbon nanotubes (CNTs) and added to culture system of ovarian cancer cells, apoptosis of
the cells was induced [121].

Currently, while vaccines can greatly prevent some HPV infections, vaccination rates
show geographic disparities, so that HPV prevalence remains high in some regions [122].
Therefore, preventing or blocking HPV infection remains important in terms of cervical
cancer prevention. HD5 has been shown to potently prevent infection from multiple
serotypes of HPV, including HPV16 [123–126], which, together with HPV18, accounts for
about 70% of all the cervical cancers [127]. HD5 binds HPV capsid outside the host cell and
the binding virus is internalized into the cell. After that, HD5 prevents dissociation of the
viral capsid from the genome, reduces viral trafficking to the trans-Golgi network, leads
the viral particle to the lysosome, and accelerates the degradation of internalized capsid
proteins [128,129]. Likewise, HD5 has the same effect on adenoviruses [130], which seems
to suggest that HD5 has the same effect on non-enveloped viruses. Although HD5 only
reduces the likelihood of HPV infection, rather than completely blocking the process, it is
still effective in preventing HPV-related cervical cancer.

Under normal conditions, the immune system is involved in identifying and killing
cancer cells, while during tumorigenesis, immunosurveillance occasionally fails and cancer
grows [131]. Dendritic cells (DC) play an important role in cervical immunity and have been
shown to be deficient in cervical cancer [132,133]. Human neutrophil peptide 2(HNP2) can
recruit DC in organotypic cultures of HPV-transformed keratinocytes maintained in vitro
or grafted in vivo and then restore the immune functions altered by DC deficiency [89]. It
is suggested that DC vaccination may activate the adaptive immune system to detect and
eliminate the cancer cells [134]. Therefore, restoring the immune balance altered in cancers
may be a promising option for fighting cancers.

AMPs can also be combined with other molecules to enhance anticancer effects. The
combination of LL-37 and CpG-oligodeoxynucleotides (CpG-ODN), a toll-like receptor
(TLR9) ligand, increases the delivery of CpG-ODN into endosomes and elevates interferon
γ (INFγ) expression. Consequently, this process induces proliferation and activation of NK
cells and subsequently inhibits the cancer cells in murine ovarian cancer models [102]. In
this study, LL-37 is used to provide synergistic molecules to increase the uptake of CpG-
ODN into immune cells and thus enhance antitumor effects. The study demonstrates that
at higher concentrations (50 µg/mL and 100 µg/mL), LL-37 makes the cell membrane more
permeable, allowing other molecules to enter the cell more easily to perform their functions.
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By regulating cyclinD1, MMP9 and p27, knockdown of S100A7 reduces epithelial
ovarian cancer (EOC) cell proliferation, migration and invasion, and enhances chemosensi-
tivity to cisplatin. It is shown that microRNA(miRNAs) can be used as biomarkers of early
detection of cancers, as well as tools or targets for treatment of different cancers [135–138].
The miR-330-5p, a suppressor of oncogenesis and chemoresistance [139–141], can reduce
S100A7 expression and subsequently inhibit the MAPK signaling pathway [68], thereby
preventing EOC progression.

However, as anticancer candidates, AMPs still face many challenges and their ability
to be used in vivo is doubtful. Several problems need to be solved, such as the cytotoxicity
to normal cells at high concentrations, decreased activity in serum, the delivery of these
molecules into target tumors and high cost of production.

6. AMPs and Chemoresistance

It is known that chemoresistance causes cancer relapse, dissemination and death and is
an obstacle to long-term survival. AMPs are shown to be associated with chemoresistance
of many tumors [142] including gynecological cancers.

AMP expression may alter the sensitivity of cancer cells to chemotherapy through
diverse signaling pathways. SLPI is upregulated in human ovarian cancer cells upon
exposure to paclitaxel and overexpression of SLPI is associated with paclitaxel resistance
via MEK/ERK-dependent pathway [96]. Patient-derived EOC cells with high-level elafin
expression show high levels of proteins previously reported to be linked to platinum
chemoresistance, in particular B-cell lymphoma-extra large (Bcl-xL) and Cyclin E1 [95].
Knockdown of the elafin gene (WFDC14) increases the sensitivity of ovarian cancer cells to
cisplatin, carboplatin, cyclophosphamide and 5-fluorouracil, but not paclitaxel. Particularly,
caspase-3 activation and apoptosis are significantly enhanced in elafin-silenced ovarian
cancer cells under cisplatin treatment [143]. S100A7-knockdown ovarian cancer cells show
increased sensitivity to cisplatin although the mechanism is not clear [68].

Exogenous HBD3 is shown to protect squamous cell carcinoma of head and neck cells
against cisplatin-induced apoptosis via activating the PI3K/AKT pathway [16]. In contrast,
HBD3 does not protect cervical cancer cells against cisplatin- or paclitaxel-induced cell
death, but instead slightly promotes cell death in vitro [12].

The expression level of AMPs in vivo is complex and seems to be closely related to
the sensitivity of cancer cells to chemotherapy. However, AMPs are potential therapeutics
in overcoming chemoresistance. One of the mechanisms of chemoresistance is that cancer
cells pump out the corresponding chemotherapeutic drugs, whereas AMPs can avoid this
mechanism by destroying the cancer cell membrane directly and rapidly. Since this mecha-
nism is quite different from that of conventional chemotherapeutics, it seems reasonable
that the combination of AMPs and conventional chemotherapeutics can synergistically
enhance anticancer effect as well as reduce chemoresistance.

7. Concluding Remarks and Future Perspectives

The relationship between FRT-derived AMPs and gynecological cancers is complex yet
intriguing. AMP expression varies by tumor and specimen type and cannot be generalized.
Although the underlying mechanisms of expression changes are unknown, AMPs are
potential biomarkers for detecting early cancers and predicting prognosis. Furthermore,
AMP expression may act as risk factors indicative of aggressiveness of tumors, which may
help determine the most beneficial treatment for the patients.

AMPs actually play a “double-edged sword” role in gynecological cancers. On one
hand, AMPs have wide range of antitumor activities, they rapidly kill cancer cells, de-
stroy primary tumors and prevent metastasis. In addition, AMPs are unlikely to induce
chemoresistance due to their unique mode of action. On the other hand, AMPs are tu-
morigenic, pro-metastatic and closely associated to chemoresistance. This dual function
of AMPs makes them potential tools or targets in clinical applications. The activities of
AMPs are summarized and tabulated in Table 3. From Tables 2 and 3, it can be seen that
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AMP overexpression is mainly carcinogenic, while AMP underexpression is carcinogenic or
anti-tumorigenic. This result is consistent with another article based on elucidating the re-
lationship between beta defensins and cancers [144]. However, the underlying mechanism
is now unknown.

Table 3. Activities of AMPs in gynecological cancers.

AMPs Cancers Functions Mechanisms Refs.

HBD3 Cervical Tumorigenic; pro-metastatic Inducing cell cycle regulators and NF-κB
signaling pathway. [12]

S100A7 Cervical Tumorigenic; pro-metastatic Inducing ERK signaling pathway and
mediating EMT. [58]

S100A7 Ovarian Tumorigenic; pro-metastatic;
chemoresistance

Activating p38, JNK and ERK and
regulating cyclin D1, MMP9 and p27. [68]

LL-37 Ovarian
Tumorigenic, pro-metastatic

(low concentrations: 0, 1, 5 and
10 µg/mL)

Activating MAPK signaling pathway and
enzymes to degrade extracellular matrix. [87,98]

LL-37 Ovarian Anticancer (high concentrations:
50 and 100 µg/mL)

Increasing the uptake of CpG-ODN into
immune cells to enhance

antitumor effects.
[102]

SLPI Ovarian Tumorigenic; pro-metastatic;
chemoresistance

Preventing cell apoptosis, inducing
MMP9 and activating MAPK/ERK. [96,97,103],

SLPI Ovarian Anticancer Activating apoptosis through Caspase-2,
Caspase-8 and Caspase-9. [69]

SLPI Endometrial Tumorigenic Activating cell proliferation and inhibiting
growth suppressors. [105]

HE4 Endometrial Tumorigenic; pro-metastatic Cell cycle control. [91]

elafin Ovarian Tumorigenic and
chemoresistance

Activating MAPK/ERK and NF-κB
signaling pathway. [95]

HBD-2 Cervical

Concentration-dependent: 1.
0.01–2 µg/mL, proliferation;
2.3–5 µg/mL, inhibition; 3.
>20–40 µg/mL, cell lysis.

Unknown [55]

SP-D Ovarian Anticancer Inducing apoptosis. [120]

HD5 Cervical Reducing HPV16 infection Directing the viral genome to the
lysosome instead of trans-Golgi network. [128]

HNP2 Cervical Restoring normal
immune function.

Inducing recruitment of dendritic cells to
neoplastic lesions. [89]

However, despite the important roles of AMPs in gynecological cancers, many uncer-
tainties remain.

1. The relationship between the expression level of AMPs and gynecological cancers is
yet to be identified.

2. There are several clinical trials of use of AMPs against infections [145]. In contrast,
few clinical trials are designed for the use of AMPs on cancers [146] and none of them
is related to gynecology. This may be due to the complexity of AMPs’ activities and
poor understanding of the associated mechanisms.

Therefore, research on the relationship between gynecological cancers and AMPs is
still in its infancy and intensive work is needed.
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