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Microbiota have been identified as an important modulator of susceptibility in the
development of Type 1 diabetes in both animal models and humans. Collectively these
studies highlight the association of the microbiota composition with genetic risk, islet
autoantibody development and modulation of the immune responses. However, the
signaling pathways involved in mediating these changes are less well investigated,
particularly in humans. Importantly, understanding the activation of signaling pathways in
response to microbial stimulation is vital to enable further development of
immunotherapeutics, which may enable enhanced tolerance to the microbiota or prevent
the initiation of the autoimmune process. One such signaling pathway that has been poorly
studied in the context of Type 1 diabetes is the role of the inflammasomes, which are
multiprotein complexes that can initiate immune responses following detection of their
microbial ligands. In this review, we discuss the roles of the inflammasomes in modulating
Type 1 diabetes susceptibility, from genetic associations to the priming and activation of the
inflammasomes. In addition, we also summarize the available inhibitors for therapeutically
targeting the inflammasomes, which may be of future use in Type 1 diabetes.
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INTRODUCTION

Inflammasomes, a term first coined by Dr. Jurg Tschopp in 2002, are multiprotein complexes found
in the cytosol, which mediate the activation of inflammatory caspases (1). Inflammasome formation
is driven (“primed”) by activation of the pattern-recognition receptors (PRRs) in response to
pathogen-associated molecular patterns (PAMPs) or damage signals (e.g. damage-associated
molecular patterns that are also known as danger-associated molecular patterns, DAMPs) in the
cytosol (2–4) (Figure 1). In some inflammasomes, the inflammasome adaptor protein designated as
Apoptosis-associated Speck-like protein, containing a Caspase activation and recruitment domain
(ASC), aids in the oligomerization of the inflammasome components and links the upstream
inflammasome sensor molecules to procaspase 1 (21). In ASC-independent inflammasomes,
interactions occur between inflammasome components, which can alter the protein structure e.g.
NLRC4 can be activated by Neuronal apoptosis inhibitory proteins (NAIPs), resulting in the
formation of the disk-like inflammasome (22, 23). In both ASC-dependent and -independent
inflammasomes, procaspase 1 becomes dimerized and through autoproteolysis forms catalytically-
active caspase 1, which subsequently induces IL-1b and IL-18 cytokine release, as well as inducing
pyroptosis, a form of lytic cell death. There are many different types of proteins involved in the
formation of the inflammasomes, including the NBD leucine-rich repeat-containing receptor (NLR)
family (e.g. NLRP1) and the PYHIN protein families [e.g. absent in melanoma 2 (AIM2)]. In humans,
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there are 22 NLRs but only NLRP1, NLRP3, NLRP6, NLRP7,
NLRP12 and NLRC4 have been shown to form inflammasomes
(24–30). Structural and functional differences between the
inflammasome proteins result in differences in their ability to
bind their respective ligands, and thus each can be activated by
different mechanisms (Figure 2). In the case of NLRP3, multiple
types of ligands can be recognized, which induce disassembly of
the trans-Golgi network, leading to the recruitment and binding
of NLRP3 via its lysine motif (between the PYRIN and NACHT
domain) to the phosphatidylinositol-4-phosphate on the
disassembled trans face of the golgi (39). However, it is unclear
whether there are additional mechanisms, including the question
of whether other factors contribute to the Golgi network
disassembly, or protection from disassembly, or whether similar
mechanisms exist for other inflammasomes.

Inflammasomes can be activated by a number of components
released during cell/tissue damage, metabolism, infection or by
commensal bacteria. Microbial ligands from host commensals or
infectious organisms e.g. type 3 secretion system proteins,
flagellin, and DNA/RNA can all activate inflammasome
proteins. Furthermore, aggregates of Lipopolysaccharides (LPS;
specifically, the Lipid A component), an endotoxin present in the
outer membrane of gram-negative bacteria, can directly bind to
and activate non-canonical inflammasome caspases 4 and 5
(humans) and 11 (mice) (40–43). Importantly, this process 1) is
Frontiers in Immunology | www.frontiersin.org 2
independent of Toll-like receptor (TLR) 4, which can also bind
LPS (40, 42), and 2) promotes protection from cytosolic invading
pathogens (40–43). Together, these suggest an important role for
microbial modulation of inflammasome responses.

Studies using inflammasome-deficient mice have
demonstrated that inflammasomes can influence disease
susceptibility to inflammatory bowel disease (IBD) (27, 44),
cancer (44, 45), obesity (46, 47), viral/bacterial infection (38,
48–53) and type 1 diabetes (T1D) (34, 54, 55). To date, few studies
have functionally investigated the mechanistic role of
inflammasomes in T1D; however, there are studies indicating a
link to inflammasomes and susceptibility to T1D. As
susceptibility to T1D can be modulated by microbial
components, as discussed later, we highlight the role of
inflammasomes as important microbial sensors in the context
of T1D.
SINGLE NUCLEOTIDE POLYMORPHISMS
LINK INFLAMMASOMES TO TYPE 1
DIABETES SUSCEPTIBILITY

Genetic analyses often provide important insight into genes or
mutations that may be associated with disease susceptibility in
FIGURE 1 | Inflammasome priming and activationInflammasome-related genes e.g. NLRP3, NLRC4 are transcribed following PAMP/DAMP recognition by their
respective receptors e.g. bacterial Lipopolysachharide (LPS) recognition by TLR4 pathogen-associated molecular patterns. This “priming” step alerts the cells to
potential dangers and prepares the inflammasome machinery to be translated. Upon recognition of additional activating signals (Figure 2), the inflammasome
proteins oligomerize and form a wheel/disk-like structure. The formation of these inflammasome complexes enables the activation of caspase 1 from its precursor
form (procaspase 1), which in turn activates other cytokines including IL-1b and IL-18 (5, 6). Inflammasome-associated proteins can also activate other caspases
including caspase 4, 5, 8 and 11 (7–20).
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humans. Gene mutations in NLRP3, resulting in a gain of
function and thus increased IL-1b secretion, were initially
linked to a number of inherited autosomal dominant
inflammatory diseases e.g. Muckle-Wells syndrome and
familial cold autoinflammatory syndrome and chronic infantile
neurological cutaneous articular syndrome (56). Since then,
single nucleotide polymorphisms (SNPs) in NLRP1, NLRP3
and NLRC4 have been associated with many autoimmune
diseases including IBD (57), celiac disease (58), multiple
sclerosis (59) and autoimmune diabetes (60–64). Table 1
summarizes the SNPs in NLRP1, NLRP3 and NLRC4 genes
that have been investigated in individuals with Type 1 diabetes.
Of these SNPs, only 2 are within the coding region of NLRP1 and
NLRP3 genes (rs12150220 and rs35829419 respectively) and
both have been linked to a gain of function and excessive IL-
1b and IL-18 secretion in other disease settings (67, 68). The
other SNPs that are located in the promoter region may influence
gene regulation, but this has not yet been fully elucidated. As
Table 1 illustrates, not all populations studied show the same
SNP associations in individuals with Type 1 diabetes. For
example, the SNP rs12150220, located in the NLRP1 gene
region, was increased in a Norwegian population with T1D
(60); however, no associations were identified in either a Polish
(65) or Brazilian (62) population with T1D, compared to their
controls. There may be many reasons for this, including
population-based genetic differences, the presence of other
comorbidities or the microbiota composition. Two studies
Frontiers in Immunology | www.frontiersin.org 3
conducted in the Han Chinese population also showed SNP
associations in NLRP3 and NLRC4 gene regions with clinical
characteristics, including the age of diabetes onset, 2-hour
postprandial c-peptide and the presence of anti-glutamic acid
decarboxylase (GAD) autoantibodies (63, 66). These suggest a
potential link to altered immunity; however, larger scale studies
are needed to help us to better understand the association of
different allelic variants and combinations of haplotypes in the
inflammasome-related genes and susceptibility to Type 1
diabetes. Studies using knock-in mice, in which the SNPs can
be introduced into the gene, may provide valuable tools to
elucidate the functional consequences of these SNPs.
ALTERED MICROBIAL COMPOSITION
MAY DRIVE INFLAMMASOME
ACTIVATION IN TYPE 1 DIABETES

Environmental factors, e.g. the microbiota (referring to all
microorganisms including bacteria, viruses, fungi, protozoa
and archaea), have gained significant traction as modulators of
susceptibility to T1D. In turn, it is clear that genes involved in the
genetic susceptibility to T1D are important modulators of the
bacterial composition in humans and animal models (69, 70).
Furthermore, altered gut bacterial composition has been found
in individuals diagnosed with T1D (71–75), in Bio-breeding (BB)
FIGURE 2 | Inflammasome protein sensors and adaptors recognize a variety of ligands, either directly or indirectly. Upon ligand binding, the sensors and adaptors
interact via PYD-PYD domain interactions to form the oligomers prior to ASC-mediated recruitment of the Procaspase via CARD-CARD interactions (5–11, 21, 25,
31, 32). NAIP1, 2 and 5/6 bind bacterial-derived Type 3 Secretion system (T3SS) rod or needle proteins or flagellin respectively, prior to activation of the NLRC4
inflammasome (12, 13). NLRP1 can be activated by double stranded RNA (dsRNA; human only) or muramyl dipeptide (MDP) bound to the Nuclear oligomerization
domain-containing 2 (NOD2) protein (14, 33). Numerous ligands for NLRP3 have been found including K+, Ca2+, reactive oxygen species (ROS), Adenosine
triphosphate (ATP), uric acid crystals, cholesterol crystals, double-stranded RNA (dsRNA) bound by DExD/H-box helicase (Dhx) 33 and mitochondrial DNA (mtDNA)
(7, 16, 34–37). Single stranded RNA (ssRNA) bound to Dhx15, lipoteichoic acid (LTA) as well as spermine, taurine and histamine can all activate the NLRP6
inflammasome (32, 35, 38). To date, double stranded DNA is the only ligand known for AIM2 (10, 19, 20). PYD, Pyrin domain; HIN200, Hematopoietic expression,
interferon-inducible nature, and nuclear localization 200 domain; NACHT, Nucleotide binding and oligomerization domain; LRR, Leucine-rich repeat; FIIND, function
to find domain; CARD, Caspase recruitment domain; BIR, Baculovirus IAP-repeat domains.
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rats (76), and in Non-obese diabetic (NOD) mice (77, 78),
compared to non-diabetic controls. In addition, in individuals
who are at genetic risk of developing T1D, changes in gut
bacteria are associated with the early development of b-cell
autoimmunity (74, 75, 79–81). As mentioned, microbial
ligands are one activator of the inflammasomes; changes in the
microbial composition and thus the availability of microbial
ligands may alter inflammasome activation (Figure 3), and this
may be one way in which microbes influence pathogenesis of
type 1 diabetes.

Viruses have also been implicated in the pathogenesis of T1D.
Coxsackie viruses and Rotaviruses have been implicated in the
Frontiers in Immunology | www.frontiersin.org 4
development of T1D due to 1) their association with the
development of autoantibodies (82, 83), which are predictive
biomarkers for immune progression and T1D development (84);
2) viral proteins e.g. enteroviral capsid protein vp1 can be
identified in the islets (85–89); 3) susceptibility to T1D in
animal models can be modulated by viral infections (90–98);
and 4) an oral Rotavirus vaccine has shown potential to protect
individuals at risk of developing T1D from future development of
the disease (99). We recently demonstrated that a mouse
norovirus infection in NOD mice modulated susceptibility to
T1D, mediated through changes in the gut microbiota (100),
highlighting the necessity for increased understanding of
TABLE 1 | SNPs in inflammasome genes that have been investigated for associations with autoimmune diabetes in humans.

Gene and
location

SNP (and
alleles)

Study population Association Reference

NLRP1
(17p13.2)

rs12150220
(T/A)

Norwegian population; T1D: n=1086 with disease onset before 17 years
of age; Controls n=3273

rs12150220 increased in individuals with T1D vs
controls - OR=1.16, p=0.006

(60)

rs6502867
(C/T)

rs2670660
(G/A)

No differences between individuals with T1D and
controls in any of the other SNPs

rs878329
(C/G)

rs6502867
(G/A)

Polish population; T1D: n=221 with disease onset before 13 years of
age; Controls: n=254

No differences between individuals with T1D and
controls in any of the SNPs

(65)

rs12150220
(T/A)

rs2670660
(T/C)

rs878329
(C/G)

rs8182352
(A/G)

rs4790797
(C/T)

rs12150220
(A/T)

Pediatric Brazilian population; T1D: n=196 (n=136 with T1D only, n=50
with T1D and Celiac disease and/or Thyroiditis); Controls n=192

No differences between individuals with T1D and
controls in any of the SNPs

(62)

rs2670660
(G/A)

rs11651270
(C/T)

Chinese Han population; T1D: n=510; Sex-matched controls n=531 rs11651270 CT frequency lower in T1D population
vs controls – OR=0.714 p=0.002

(63)

rs2670660
(G/A)

rs2670660 GA frequency lower in T1D population
vs controls – OR=0.706 p=0.026
rs11651270 TT genotype associated with younger
age at onset vs rs11651270 CT and CC genotypes
in T1D cohort p=0.001

NLRP3
(1q44)

rs10754558
(C/G)

Pediatric Brazilian population; T1D: n=196 (n=136 with T1D only, n=50
with T1D and Celiac disease and/or Thyroiditis); Controls n=192

rs10754558 G minor allele frequency lower in T1D
population vs controls p=0.004

(62)

rs35829419
(C/A)

rs10802501
(T/A)

No differences between individuals with T1D and
controls in the other SNPs.

NLRC4
(2p22.3)

rs212704
(T/C)

Chinese Han population; T1D: n=510; Sex-matched controls n=531 No differences between individuals with T1D and
controls in any of the SNPs

(66)

rs385076
(C/T)

rs212704 genotype vs 2 hour postprandial c-
peptide, p=0.003
rs385076 genotype vs Onset age, p=0.031
rs385076 genotype vs GADA+ (%), p=0.041
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broader microbial community interactions. Changes in the viral
DNA and RNA abundance, alongside any virus-induced bacterial
changes, would also potentially alter inflammasome activation.

Both fungal glucans and parasite/helminth antigens can also
stimulate inflammasomes and these may modulate susceptibility
to T1D in animal models (101–104); however, few studies have
been conducted in humans. Individuals with T1D have greater
fungal species diversity compared with healthy controls (105).
Others demonstrated that individuals with islet autoimmunity,
who later progressed to T1D, had a higher abundance of
Sacchromyces and Candida, compared to those who did not
progress to T1D over the 8-9 years of follow up (106). There has
been much debate about whether parasitic infection modulates
autoimmunity in T1D. One study in Norwegian children showed
fewer Enterobius vermicularis (a pinworm) infections in children
at high genetic risk for T1D (107), while another study in
Sweden, suggested no association with worms and the
development of T1D in children (108). It is possible that
parasites may contribute to the reduction in autoimmunity, as
parasite-endemic areas have lower incidences of T1D in their
populations, compared to non-parasite endemic areas (109).
Whilst this may be because parasitic infections promote Th2
immune responses, other factors are likely to be involved
including the lower genetic susceptibility to T1D of the
populations living in parasite endemic areas. Thus far,
although work in animal models has suggested that helminths,
and other parasites like schistosomes or their antigenic products
(101, 102, 110) could have a beneficial effect on autoimmunity,
Frontiers in Immunology | www.frontiersin.org 5
these have not yet been translated into therapeutics for humans
with type 1 diabetes.

Most of the studies mentioned above focus on the microbiota
composition and association with the development of either islet
autoimmunity or T1D; however, understanding the mechanisms
by which the immune system is activated by the microbiota is
important. Furthermore, all of these changes in microbial
composition may have profound impacts on inflammasome
activation (Figure 3).
INFLAMMASOME PRIMING IS LINKED TO
TYPE 1 DIABETES SUSCEPTIBILITY

Microbial recognitionbyPRRsexpressedby immunecells are key to
regulating crosstalk between immune cells and the microbiota.
PRRs such as Toll-like receptors (TLRs), of which there are 10 in
humans (TLR1-10) and12 inmice (TLR1-9, 11-13), selectivelybind
to their unique microbial ligands, leading to the downstream
activation of proinflammatory cytokines (111). These TLRs can
be foundondifferent immune andnon-immune cells, including the
islet b-cells in both humans and mice (112). Studies using TLR-
deficientNODmice have identified that signaling throughTLR2, 3,
7 and 9 (97, 113–116) are important for promoting disease, while
TLR4 signaling prevents disease development (117). These TLRs
signal through one of two key adaptor proteins: Myeloid
differentiation primary response 88 (MyD88, which all TLRs
FIGURE 3 | Microbial influences on inflammasome priming and activation in type 1 diabetes. Microbial interventions e.g. fecal microbiota transplants, antibiotic, probiotic
and prebiotic usage can all influence the microbial composition, subsequently altering the availability of microbial ligands involved in both the priming, and canonical and
non-canonical activation of inflammasomes (as shown by *). Studies of single PRR or inflammasome (nlrp3) gene-deficient mice have shown that these proteins would be
needed to promote the development of T1D (shown in red); however, Tlr4-deficient and c-Rel-deficient NOD mice (c-Rel is a subunit of the NFкB protein) promote
tolerance and limit the development of T1D (shown in blue). In addition, some gene-deficient mice showed no significant effect on mediating susceptibility to T1D (shown in
purple). A number of planned studies are currently underway using a number of gene-deficient mice to assess their ability to alter susceptibility to T1D development, as shown
by the black dotted boxes. Paradoxically, the gene-deficient mice are also likely to have altered microbial composition, contributing to the protection against/susceptibility to
disease. Studies of these gene-deficient mice will need to evaluate the contribution of the gene independently from any alterations to the microbial composition.
June 2021 | Volume 12 | Article 686956
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utilize except TLR3) or TIR domain-containing adaptor inducing
IFN-b (TRIF, which only TLRs 3 and 4 utilize). Deficiencies in
either (118, 119), or both (120), of these two key genes results in
significant protection of the NOD mice from the development of
diabetes, indicating a reliance on downstream-mediated signaling
to induce the proinflammatory immune response. Interestingly,
only MyD88-deficient mice, but not MyD88 and TRIF double-
deficient mice, were protected from immune infiltration in the
islets, suggesting that TRIF-mediated signaling, most likely due to
TLR4 signaling, was responsible for inducing tolerance (120). TLR4
signaling in human monocyte-derived DCs, stimulated by E.coli
lipopolysaccharide [LPS; a TLR4 ligand (121)], induced immune
tolerance, unlike the effect seen from stimulation with LPS derived
fromB.dorei (122). As Finnish children have a higher abundance of
B.dorei, andahigher incidenceofType1diabetes, compared to their
genetically-similar Russian neighbors, it is likely that LPS-induced
tolerance is important for modulating susceptibility to T1D in
humans (122). TLR activation is also important for priming the
inflammasome proteins and thus, changes to the TLR stimulation
highlighted above are likely to modulate inflammasome activation
aswell. It is unclear, at present, whether any of these studies ofTLR-
deficient mice, or studies of TLR stimulation of cells from
individuals with Type 1 diabetes, will differentially influence the
activation of the inflammasome and how the functional
consequences of this could influence susceptibility to T1D.

In addition to the TLRs, there are also other microbial sensors
that can prime the inflammasome complexes, including the
cytosolic Nucleotide-binding oligomerization domain (NOD)
proteins, NOD1 and NOD2. NOD1 and NOD2 both recognize
bacterial peptidoglycan moieties (123, 124) and upon binding,
oligomerize and signal through the Receptor-interacting-serine/
threonine-protein kinase 2 (RIP2) resulting in the activation of
NFkB and production of inflammatory cytokines (125). Using a
streptozotocin (STZ)-induced type 1 diabetes model, NOD2
deficiency, but not NOD1 or RIP2 deficiency, protected the
mice from disease development (126). These findings were also
supported by other studies in NOD mice, demonstrating that
NOD2-deficient NOD mice were protected from type 1 diabetes
development, and this was dependent on the gut microbiota
composition (127), whereas RIP2-deficient NOD mice were not
protected (120). Interestingly, both NOD1 and NOD2 appear to
have RIP2 independent functions; NOD2 binds CARD9 to
mediate downstream signaling independent of RIP2 (128),
while NOD1 regulates MAPK signaling independent of RIP2
(129). It is still unclear what the role, if any, NOD1 has in the
immunopathogenesis of autoimmune Type 1 diabetes.
Importantly, following muramyl dipeptide (ligand) binding,
NOD2, complexed with NLRP1, promotes inflammasome
activation (33), independent of NOD1 activation (25).
Furthermore, in NOD2-deficient mice, induction of intestinal
inflammation by dextran sodium sulfate (DSS) resulted in
elevated NLRP3 inflammasome formation, suggesting that NOD2
may interact with and/or modulate NLRP3 inflammasome
formation (130). Thus, understanding NOD2 activation and its
role in modulating inflammasome formation in relation to T1D
pathogenesis will need further mechanistic investigation.
Frontiers in Immunology | www.frontiersin.org 6
It should be noted that in most studies using PRR-deficient
NOD mice, the microbiome can be altered by the gene
deficiency, which promotes a tolerizing influence and
suppression of type 1 diabetes development, as in the case with
NOD2-deficient NOD mice (127). Thus, in evaluating studies
using these models, it is vital to control for environmental
variables such as cage effects (i.e. comparisons between mice in
different cages) and legacy effects (i.e. comparisons between mice
bred from different breeders), both of which can substantially
alter the bacterial composition (131, 132). Failure to consider
these variables can promote non-reproducible data and thus
future studies need to 1. be transparent in the reporting of these
elements in their animal experiments, and 2. Control for
these variables.
INFLAMMASOME PROTEIN
DEFICIENCIES ALTER SUSCEPTIBILITY
TO TYPE 1 DIABETES

To date, only two inflammasome-associated proteins (NLRP3 and
AIM2) have been studied for their role inmodulating susceptibility
to T1D using gene-deficient mice (34, 54, 55). NLRP3-deficient
NODmicewere protected fromthe development ofT1D compared
to wild-type littermates, as were wild-type NODmice treated with
an NLRP3 inhibitor (parthenolide; 10mg/kg body weight, twice a
week for 4 weeks from 10-12 weeks of age) (54). NLRP3-deficient
C57BL/6 mice were also protected from diabetes development
following STZ treatment, whereas ASC-deficient C57BL/6 mice
were not (34). NLRP3 deficiency inNODmice was found to reduce
T cell activation and Th1 differentiation, as well as reducing T cell
expression of both the chemokinesCCR5 andCXCR3, and ccl5 and
cxcl10 gene expression from the islet b-cells, resulting in poor T cell
chemotaxis into the islets and protection from T1D development
(54). Furthermore, diabetic NOD mice exhibited increased Nlrp3
and pro-il-1b gene expression in the pancreatic lymph nodes,
compared to pre-diabetic NOD mice, suggesting an increasing
role for inflammasome activation (shown to be mediated by
circulating mitochondrial DNA) with disease progression (34). In
contrast to NLRP3-deficient C57BL/6 mice, AIM2-deficient
C57BL/6 mice had accelerated STZ-induced diabetes
development, compared to wild-type control mice (55), implying
that ASC regulates inflammasome activation. This acceleration in
STZ-induced diabetes development in AIM2-deficient mice
occurred through enhanced gut permeability and increased
bacterial translocation to the pancreatic lymph nodes. These
findings were similar to those from the STZ-induced NOD2-
deficient mouse study (126), with the inference that NOD2
activation of inflammasomes may be ASC-dependent. In humans,
Aim2 gene expression was increased in the pancreas but not in
peripheral blood mononuclear cells (PBMCs) in individuals with
T1D compared to healthy controls (55); however, the data from the
pancreaswas only available in a small group (n=4-8) and thus needs
to be confirmed in larger cohorts, ideally separating infiltrating
immune cells from the isletb-cells. Another study inhumans found
June 2021 | Volume 12 | Article 686956
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that NLRP1 and NLRP3 gene expression was reduced in PBMCs
and granulocytes in individuals with newly diagnosed T1D (less
than 6 months), compared to healthy controls (133). While these
studies indicate an important involvement of two of the
inflammasome proteins in the development of T1D, further
studies are needed to evaluate the other inflammasome-related
proteins and how different types of stimulationmay influence their
function. More studies both in animal models, particularly those
developing spontaneous autoimmune diabetes, and in humans, are
needed to better understand inflammasome involvement and
modulation during diabetes development. Finally, identifying the
role of inflammasomes in individual cell types will be pivotal for
understanding the key players in inflammasome activation and
regulation. Thus, cell-specific gene knock outmicemay be valuable
tools for such studies.
THERAPEUTIC INTERVENTION – A ROLE
FOR TARGETING INFLAMMASOMES?

Inflammasome activation induces IL-1b and IL-18 cytokine release
following Caspase activation. Both IL-1b and IL-18 cytokines
increase with progression to diabetes and destruction of the islet
b-cells (134–136). To further investigate whether blocking these
pathways could be therapeutically useful, studies targeting the IL-1
pathway were conducted in individuals with recent-onset T1D.
Two Phase 2a randomized, multicenter, double-blind, placebo-
controlled trials were carried out in which Canakinumab (a human
monoclonal anti-IL-1 antibody), or Anakinra (a human IL-1
receptor antagonist), were administered (137). Contrary to
expectations, these single immunotherapy interventions failed to
prevent the ongoing autoimmunity. This result was concordant
with data from NOD mouse models that included IL-1 receptor-
(138), Caspase-1- (139, 140), IL-1b- (140) and IL-18- (141)-
deficient NOD mice, where no significant changes to diabetes
protection were observed with any of these mutations. However,
a study combining anti-CD3 treatment with either Anakinra or an
anti-IL-1b antibody resulted in reversal of diabetes in recent-onset
T1D NODmice (142), suggesting that combined therapy may also
improve clinical efficacy in humans. Given the success of
Teplizumab (anti-CD3) in delaying the development of T1D in
relatives at risk (143, 144), a combined study evaluating the role of
Teplizumab with IL-1 blockade may further enhance clinical
efficacy. It is intriguing that NLRP3-deficient NOD mice were
protected from T1D, while IL-1 receptor-, Caspase-1/11-, IL-1b-
and IL-18-deficient NOD mice were not. There could be multiple
reasons for this including: 1. Altered microbiota caused by the gene
deficiency, influencing priming/activation of inflammasomes, 2.
Promotion of other inflammasome signaling when Nlpr3 is
deficient, 3. Effects on other caspases, for example Caspase 8 can
also regulate inflammasome activation (145, 146), 4. Effects on other
proteaseswhich canprocess IL-1b (147, 148), and 5.Other unknown
protein interactions may be involved. It is clear that further study of
multiple pathways of influence is needed to fully comprehend and
understand these differences.
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Modulation of inflammasomes has had some therapeutic
success in autoimmune diseases. A small-molecule inhibitor
(MCC950), specifically targeting NLRP3 inflammasome
activation (ASC oligomerization) but not AIM2, NLRC4 or
NLRP1 inflammasomes, was able to attenuate mouse models
of multiple sclerosis (149) and Parkinson’s disease (150).
Additional NLRP3 selective inhibitors have been developed,
which inhibit ATPase activity (151, 152), or oligomerization of
NLRP3 (153), and these inhibitors prevented or ameliorated the
development of joint inflammation in arthritis (154), metabolic
perturbation in high fat diet-fed mice (151, 153), and
autoinflammatory syndromes (151–153). There are also less
selective natural inflammasome inhibitors including Genepin, a
component of Gardenis fruits (155), which can inhibit NLRP3
and NLRC4 inflammasome activation via inhibiting autophagy,
the eicosanoid 15-deoxy-D(12,14)-PGJ2 (15d-PGJ2) and related
cyclopentenone prostaglandins (156), which inhibit the NLRP1
and NLRP3 inflammasomes and thence conversion of
procaspase 1 to caspase 1. Parthenolide inhibits NLRP1,
NLRP3 and NLRC4 inflammasomes (but not AIM2) (157–
160), by alkylating the cysteine residues in Caspase 1 and in
the ATPase domain of NLRP3 and inhibiting IkB kinase
function required for NF-kB activation. As previously
mentioned, Parthenolide prevented the development of T1D in
10-12-week old prediabetic NODmice after 4 weeks of treatment
(54). Thus, further investigation of inflammasome inhibitors as a
potential therapeutic intervention in T1D is needed. More
inflammasome regulators and inhibitors have been studied in
different diseases, and which have been reviewed elsewhere (161–
163). Future studies should focus on the more selective
inflammasome inhibitors, as these will likely have minimal
effects on other inflammasome pathways, thereby minimizing
detrimental impacts on host defense. Initiating these studies will
be vital to fully determine their potential clinical benefits and
long-term safety.

Microbes contain multiple ligands that can promote
inflammasome activation, thus, therapies targeting the
microbiome may also modulate inflammasome responses.
Therapies employing microbes or their metabolites have shown
some promise in modulating T1D development in animal models
(164–168). While supplementation with bacterial-derived
short chain fatty acids (SCFAs) protected NOD mice from
the development of T1D (164, 168), a human intervention
study in which butyrate was administered to longstanding T1D
participants was found to have minimal immunological or
metabolic effects compared to placebo-treated individuals (169).
The human studies were not comparable with the NOD mouse
studies however, and further investigation of SCFA administration
including dose, duration and timing of treatment should be
conducted in those at risk of developing T1D, if the human and
mouse investigations are to be compared. In children, early
probiotic administration (at the age of 0-27 days) was associated
with reduced islet autoimmunity (autoantibodies), compared with
children receiving probiotics later than 27 days of age, or those
who had never received them (170). A recent study showed that b-
cell function could be preserved in newly diagnosed T1D patients,
June 2021 | Volume 12 | Article 686956
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who were recipients of an autologous fecal microbiota transplant,
when compared to recipients of an allogeneic (healthy donors)
fecal microbiota transplant (171). Together, these studies highlight
the potential of harnessing the microbiota as a therapy to
modulate ongoing immunity in T1D; however, these studies
have not yet evaluated the involvement of the microbial-sensing
pathways such as inflammasomes for their ability to modulate the
development of diabetes or improved b-cell survival and function.
SUMMARY

Inflammasomes are important activators of the innate immune
response, leading to subsequent adaptive immune responses,
particularly in response to microbial ligands. There has been a
clear knowledge gap in understanding these inflammasomes in
the context of Type 1 diabetes, but more studies are emerging
highlighting the importance of the following areas - 1) single
nucleotide polymorphisms in inflammasome genes; 2) priming
of the inflammasome and 3) the function of the inflammasome
proteins in modulating susceptibility to Type 1 diabetes.
Together these studies indicate a need to better understand the
role of inflammasomes in responding to the microbiota in Type 1
diabetes. At present, to achieve this would require investigators
to 1) enlarge the sample sizes for the SNP association studies and
investigate the mechanisms behind their association with disease;
2) decipher TLR signaling and inflammasome crosstalk in
disease development; 3) investigate how inflammasomes
specifically modulate microbial composition and 4) further
Frontiers in Immunology | www.frontiersin.org 8
evaluate inflammasome inhibitors in disease development and
how these may be used therapeutically. While this is a new area
of investigation, the evidence suggests that studying the
inflammasome may provide another possible set of involved
pathways that may be amenable to therapeutic targeting to
prevent or delay Type 1 diabetes development. Finally, while
inflammasomes may have a role in modulating susceptibility to
T1D, we should not forget that they are likely to form a part of a
multi-mechanistic pathway contributing to the development of
T1D. Thus, assessing inflammasome activation in conjunction
with other mechanisms of immune activation and regulation
may be important to determine a broader picture for
clinical interventions.
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