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Abstract

Oculometric measures have been proven to be useful markers of mind-wandering during

visual tasks such as reading. However, little is known about ocular activity during mindful-

ness meditation, a mental practice naturally involving mind-wandering episodes. In order to

explore this issue, we extracted closed-eyes ocular movement measurements via a covert

technique (EEG recordings) from expert meditators during two repetitions of a 7-minute

mindfulness meditation session, focusing on the breath, and two repetitions of a 7-minute

instructed mind-wandering task. Power spectral density was estimated on both the vertical

and horizontal components of eye movements. The results show a significantly smaller

average amplitude of eye movements in the delta band (1–4 Hz) during mindfulness medita-

tion than instructed mind-wandering. Moreover, participants’ meditation expertise correlated

significantly with this average amplitude during both tasks, with more experienced medita-

tors generally moving their eyes less than less experienced meditators. These findings sug-

gest the potential use of this measure to detect mind-wandering episodes during

mindfulness meditation and to assess meditation performance.

Introduction

Mindfulness meditation practitioners are skilled to intentionally sustain their focus on pres-

ent-moment experiences (thoughts, emotions, feelings) with a detached attitude toward their

mental contents. After an indefinite period of time, however, their minds usually drift away

from the meditation object, giving rise to spontaneous thought. Sometime during this mental

state, known as mind-wandering, which also extends for an indefinite period of time, practi-

tioners become aware that they are not focused on the meditation object (e.g., breath) and try

to shift their attention back to it.

This cyclic process [1,2], between the two poles of being effectively engaged in a task and

being off-task, appears to be common in all human activities [3]. It occurs to a degree that

probably depends on task’s mental workload [4–6], task’s perceptual load [7] and on personal

characteristics [8], and yet seemingly not on the type of task or its nature [9]. During disparate
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activities, the time spent in mind-wandering compared to the time occupied by effective task

engagement seems to range from a 1:4 to a 1:1 ratio [8–11]. It is therefore fundamental to fur-

ther understand the quality, utility and neural correlates of the mind’s duality of functioning,

as well as to better detect when we are in one operational mode or the other.

The basic detection method for mind-wandering episodes during task performance utilizes

thought sampling. This method is based on requesting the subject to report his / her mind-

wandering whenever he / she realizes that his / her attention is off-task (self-caught mind-wan-

dering), or intermittently interrupting the subject to ask about the content of his / her thoughts

(probe-caught mind-wandering). Thought sampling methods enable the investigation of

mind-wandering in terms of its frequency and content [12–14], in terms of the use or not of

intentionality in its initiation and continuation [15], and in terms of its relation with individual

characteristics [7,8,16–18], medical conditions [4,19] and its consequences on task perfor-

mance [10,20–22]. Although mind-wandering has been linked to useful mental functions such

as emotional processing [23], creative thinking [24] and autobiographical planning [12,14], it

has also been related to reductions in task performance, which frequently occur during repeti-

tive tasks [25–26].

Furthermore, neurocognitive markers of mind-wandering have been obtained through the

observation of ERP and fMRI data. In this regard, it has been discovered that sensory-level cor-

tical processing is reduced during mind-wandering episodes [27,28]. Moreover, distinct brain

networks appear to be active during mind-wandering vs on-task performance, namely during

rest or passive thought vs active cognitive processing, with the default mode network (DMN,

including anterior and posterior cingulate cortices and medial prefrontal and parietal cortices)

being particularly recruited during mind-wandering. These findings are consistent across a

variety of tasks (for review, see [29]), including meditation [1].

Another neurocognitive marker of mind-wandering is represented by ocular activity.

Indeed, one study that measured pupil diameter (PD) during working memory and reaction

time tasks has provided further evidence for the reduction of sensory processing due to mind-

wandering [30]: task-evoked responses in PD were generally observed when the task required

external focus and correct responses were produced, while spontaneous PD activity before

stimulus presentation was linked to encoding failures and slower responses in the cognitive

tasks. Eye movements, and also fixation duration, have been used as a measure of mind-wan-

dering in individuals engaged in reading tasks, i.e. as a measure to detect mindless reading vs

effective reading [11,31–34]. In other studies using reading tasks, machine learning techniques

have been combined with ocular measurements in order to predict episodes of mind-wander-

ing [35,36].

The link between eye and mind seems obvious in a reading task, whereby mind-wandering

can cause disengagement and the generation of thoughts unrelated to the written text [37].

During mindfulness meditation practice, however, the eyes are usually kept closed and, as they

do not have a functional role per se, little is known so far about ocular activity during medita-

tion. To our knowledge, the only study that has explored, indirectly, this topic is that carried

out by Braboszcz et al. [38], although their research methods and hypotheses were more

focused at discovering electroencephalographic (EEG) differences between practitioners of

three different meditation traditions (Vipassana, Himalayan Yoga and Isha Shoonya) and a

control group during execution of meditation and mind-wandering tasks. In this study, each

group engaged in a meditative session and in an “instructed mind-wandering” (IMW) session

in which participants were instructed to recall autobiographical memories. Signal components

associated with eye movements were examined by Braboszcz et al. just to rule out the possibil-

ity that the observed power differences across meditation and control conditions were of non-

neural origin, i.e. due to ocular movements. In none of the three groups of meditators were
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differences found across the two tasks in terms of EEG activity generated by closed-eye ocular

movements. However, in the control group, increased activity was found in the ocular-gener-

ated EEG activity (in the gamma band) during mind-wandering relative to breath meditation.

When comparing eye movements during meditation and mind-wandering, it would be

important to consider what closed-eye ocular activity might reflect in these mental activities.

During mind-wandering episodes, possibly also during IMW tasks in which thoughts might

be quite constrained and deliberate, there could be considerable spontaneous ocular activity,

as deduced by studies that have assessed the phenomenology and contents of mind-wandering,

particularly in the works of Stawarczyk and colleagues [39] and Song and Wang [40]. The first

mentioned research assessed the occurrence of mind-wandering episodes in individuals

engaged in an attention task and reported that visual imagery was an important phenomeno-

logical characteristic of mind-wandering. During visual imagery, elicitation of eye movements

has been indeed observed in wakefulness, with both open eyes [41–46] and closed eyes [47–

48], as well as in REM sleep [49]. Moreover, the study of Song and Wang [40] has reported

that mind-wandering thoughts are mainly episodic, i.e. the self is often projected into imag-

ined autobiographical situations within definite spatio-temporal frames. It is known that auto-

biographical thoughts involve mental imagery [50–53]. Furthermore, it is worth noting that

during a resting state—a condition known to prompt mind-wandering [54]—spontaneous

closed-eye ocular movements have been observed in individuals who did not even report expe-

riences of imagery visualizations during the experiment [55].

Turning back to meditation, it also seems plausible that ocular activity occurs during peri-

ods of mind-wandering happening during the practice, as well as during more specific medita-

tion practices involving visual imagery. In relation to this, however, it is worth keeping in

mind the wide variety of practices that are encompassed by the term meditation [56], and their

corresponding neurophysiological correlates [57]. Thus, referring to breath meditation, a kind

of practice in which practitioners try to focus their attention on a precise point of their body

such as the nostrils, it may be expected that ocular activity would be reduced compared with

resting or instructed mind-wandering states [38]. This may be suggested by the reports of

reduced ocular activity, expressed in terms of saccadic eye movements, during non-visual

attention tasks requiring focus on information available in working memory (vs. search

through long-term memory), such as in auditory vigilance or word repetition tasks [58–60].

The current study aims to further investigate ocular movements activity during focused

attention breath mindfulness meditation (FAM) in a group of expert meditators and compare

this with ocular movements activity recorded during an instructed mind-wandering task

(IMW). This latter task may elicit quite constrained and deliberate thoughts and may thus not

entirely capture the spontaneous nature of mind-wandering [61]; nonetheless, it could be par-

ticularly effective in preventing expert meditation practitioners from engaging in their usual

meditative practice when at rest, in particular when sitting in the meditative posture [38,62–

64]. More specifically, in the current study, we analyzed eye movement data while expert

mindfulness meditation practitioners were asked to either perform FAM or IMW. Based on

the difference in ocular activity during FAM vs. IMW for meditation-naive subjects [38], and

on the observation of reduced ocular activity during attention and working memory tasks

[58–60], we expected to find higher ocular activity during IMW than FAM.

Materials and methods

Participants

Thirty-two voluntary participants (19 female, 13 male, age range 22–64 years, mean = 43.66,

SD = 12.16) took part in the study. Sample size was based on similar EEG studies on meditation
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(for a review, see [65]). All participants had attended an 8-week Mindfulness-Oriented Meditation

(MOM) training course within the last 5 years and were recruited through email advertisements

and personal invitations sent out to all former MOM trainees. MOM training is based on the

Mindfulness-Based Stress Reduction program [66] and teaches participants how to practice mind-

fulness of breathing, bodily phenomena and thoughts [67–72]. Specifically, in relation to the eyes,

this training instructs participants to practice meditation with the eyes closed.

The group of participants had on average more than two years of experience with mindful-

ness meditation (mean = 2.31, SD = 1.60, in years) and self-reported to have meditated 102.59

(SD = 67.60) minutes per week in the 6 months before the recordings. During the time since

their initial exposure to mindfulness meditation during the MOM training, participants prac-

ticed meditation sessions, of roughly the same duration, including the three MOM meditation

exercises (mindfulness of breathing, body scan, mindfulness of thoughts).

Participants gave written, informed consent to participate in the research. The study was

performed in accordance with the 1964 Declaration of Helsinki and its procedures were

approved by the Ethics Committee of Azienda Ospedaliera Universitaria “Santa Maria della

Misericordia” in Udine.

Stimuli and experimental procedure

Two stimuli of equal duration (7 minutes) were used. One consisted of the practice of FAM

(mindfulness of breathing): participants were requested to bring their moment-to-moment

attention to the sensations generated by the air going in and out of the nose (“ānāpānasati” in

Pali language) [66,73,74]. Participants were requested to bring their attention back to the nose

whenever they realized that their concentration had dwindled. The second experimental stim-

ulus consisted of an instructed mind-wandering (IMW) task, whereby subjects were requested

to remember or imagine one or more events of their past or future in which they, or another

person, were the protagonist.

During each recording session, data was acquired simultaneously from two subjects at a

time, because a further aim of the study—to be reported separately in another research article—

was to investigate the potential difference between practicing meditation in pairs vs alone. For

this reason, both stimuli (FAM and IMW) were undertaken twice: participants sat side by side

in the same room (a condition called CPL) and then sat separately in two different rooms (a

condition called SEP). Both stimuli were undertaken by the two members of a couple in the

same order: the two participants simultaneously performed FAM and then simultaneously per-

formed IMW. Thus, each participant carried out two FAM and two IMW tasks. In order to con-

trol for the effect of procedural ordering, the presentation of stimuli in the two settings was

different couple by couple, counterbalanced by setting (CPL, SEP) and task (FAM, IMW).

The space used for the experiment was dimly lit and divided into two separate rooms. Data

from the members of each couple were acquired both when they were sitting side by side in

the same room and when sitting separately in two different rooms. Participants wore ear caps

(Shape: cylinder; Material: PVC; Noise Reduction Rating: 29 dB) and sat on their meditation

pillow. During data acquisition, they were requested to sit still and in silence with eyes closed.

After the task was completed, they were permitted to open their eyes, relax and move for about

2 minutes. When passing from one condition to another (from CPL to SEP or vice versa), one

member of the couple moved out of or into the room where the other member was sitting.

Instructions about the tasks were provided in written form to each participant, so that neither

participant could see the instructions fed to the other.

The 16 recording sessions were held on 16 separate days over a 7-month period. Each

recording session lasted about 2.5 hours.
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Data acquisition

We recorded data using a BrainAmp MR amplifier (Brainproducts, Munich, Germany). Sub-

jects wore a 31-electrode BrainCap cap for the electroencephalogram (EEG) (10/20 system,

with additional electrodes from the 10/10 system). They had one additional electrode placed

above the right outer canthus for the electro-oculogram (EOG) and two electrodes on each

shoulder for the electro-cardiogram (ECG). A reference electrode was located in the triangle

between FP1, FP2 and Fz, on a midline, 2cm from Fz. The sampling rate was 250Hz and

impedances were kept below 10KO.

From EEG signals, we extracted the components that do not originate from neural sources

and that are due to eye movements [75,76] (Figs 1,2 and 3) through the use of an Independent

Component Analysis (ICA) algorithm [77]. One-channel EOG allows the detection of com-

bined vertical and horizontal movements and is typically used for artifact detection in EEG

(e.g. [78,79]), rather than in eye-movement research. As in the Braboszcz and colleagues’ study

[38], we therefore derived ocular data from EEG signals instead of using a standard multiple-

electrode EOG montage to monitor ocular data. In so doing, however, we minimized partici-

pants’ awareness that their ocular movements were assessed. As oculomotor control is only

partially automatic [80], we could thus rule out any major influence of voluntary control of

participants’ eye movements.

Software

Data was acquired with a Brain Vision Recorder (Brain Products GmbH, Munich, Germany)

and then imported and processed with EEGLAB v.13.6.5b [81], an open source software envi-

ronment running on Matlab 8.5.0 (R2015a) (MathWorks Inc, Natick, MA) under a Linux

operating system (Ubuntu 16.04). The EEGLAB plug-in MARA [82,83] was used to help iden-

tify ocular activity within the EEG data.

Statistical analysis was performed using the free software environment R [84], including the

following R packages: ezAnova [85] and lme4 [86] for analysis of variance, Phia [87] for post

hoc tests, ggplot2 [88] for data plotting and DescTools [89] for effect sizes. Power analyses

were conducted using the program G�Power 3.1 [90,91].

Fig 1. Eye movement-related Independent Components’ scalp maps. The scalp maps of two sample Independent Components (ICs) extracted from EEG

data, isolating activity generated by vertical (left) and horizontal (right) eye movements.

https://doi.org/10.1371/journal.pone.0210862.g001
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Data processing and analyses

Each dataset was visually inspected and all clearly faulty channels removed (1 channel was

removed from 10 subjects, 4 channels were removed from 1 subject, all others were clean).

Data was band-pass filtered with a FIR filter (lower edge: 0.9 Hz, higher edge: 110 Hz) and

notch-filtered to remove the line noise, before being recalculated to an average reference. In a

second visual inspection of the datasets, any obvious artifactual sections caused by large mus-

cular activity were removed. Channel data was then decomposed into maximally Independent

Component (IC) processes [77] using an extended Infomax ICA algorithm [92]. An additional

visual inspection was performed on the signals generated by this data transformation in order

to detect more easily and eventually remove further artifactual sections that were not clearly

discernible from the channel data. As a result, sections that were removed in the course of

these 2 distinct manual cleaning operations, in addition to the removal of the first and last 3

seconds of each task recording, accounted for 31.4 ± 9.7 seconds for each participant, on aver-

age. Using this new data, ICA was then reapplied to obtain the conclusive ICs, among which

we identified, when present, the IC for vertical eye movements (VEM) and the IC for horizon-

tal eye movements (HEM) (Figs 1, 2 and 3).

Welch Method of Power Spectrum Estimation [93] was applied to 1 second epochs, tapered

by Hanning window and no overlap, of each ocular IC. The spectrogram was then divided and

averaged into the five characteristic EEG frequency bands, namely delta (1–4 Hz), theta (4–8

Hz), alpha (8–12 Hz), beta (12–25 Hz) and gamma (25–110 Hz).

Fig 2. Example of ocular activity extracted through ICA algorithm. A. Vertical eye movements (some of which are marked by red

arrows) are recorded on EOG channel, influence activity of Fp1, Fp2 fronto-polar electrodes (top panel) and are isolated into an

Independent Component (bottom panel). B. Horizontal eye movements (one of which is marked by blue arrows) are recorded on EOG

channel, influence activity of F7, F8 fronto-lateral electrodes (top panel) and are isolated into an Independent Component (bottom panel).

In all plots: time is depicted on the abscissa in seconds and voltage on the ordinate in microVolts.

https://doi.org/10.1371/journal.pone.0210862.g002
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Power data was log-transformed in order to extract the intra-group normality of distribu-

tion. Statistical analyses were carried out on the power of VEM and HEM ICs independently,

with two repeated measures ANOVAs on the factors of Task (FAM, IMW), Condition (CPL,

SEP) and Band (delta, theta, alpha, beta, gamma). In addition to these ANOVAs, a Pearson

correlation test was conducted for each task between an index of meditation expertise of par-

ticipants and the average power in the delta band (where we consistently found significant dif-

ferences across tasks) associated with the ocular ICs during each task’s performance. For the

meditation expertise index, we calculated the product between amount of weekly meditation

practice (in minutes) and time spent (in years) since attendance of the MOM course for each

participant. Correlation analyses were carried out separately for VEM and HEM activity.

For reasons of completeness, we also analyzed EOG data according to the same procedure

described for EEG IC data. Therefore, we performed manual data cleaning, removing on aver-

age 31.7 ± 13.8 seconds of data per subject (1.9% of entire recording), power spectrum estima-

tion and ANOVAs on average spectral power across tasks, conditions and bands.

For all statistical tests the significance threshold of p < .05 was adopted. For the ANOVAs,

the assumptions of homogeneity of variance between groups of data was tested and, in case of

violations of sphericity, the p-value was corrected with the Greenhouse–Geisser (p[GG]) esti-

mate of sphericity. All post-hoc pairwise contrasts were performed using the Holm-Bonferroni

procedure [94]. Generalized and partial eta squared (ηG
2, ηP

2) were adopted as measures of

Fig 3. Power spectra of ocular activity. Power spectra of vertical (top plot) and horizontal (bottom plot) Independent

Components of ocular activity, for a sample participant. The areas around 50 and 100 Hz have been removed from the

plots and have been omitted from the analysis due to line noise harmonics.

https://doi.org/10.1371/journal.pone.0210862.g003
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effect size [95,96]. In order to determine the minimum effect sizes to which the tests employed

were sufficiently sensitive (Minimum Detectable Effect, MDE) [97], power analyses were per-

formed based on current sample size, a power of 0.80, and an α level of 0.05. This power analy-

sis revealed (see Results for details) that the experiment was generally sensitive enough to

detect the differences of interest.

Results

We identified a VEM IC for 29 subjects and a HEM IC for 23 subjects. Descriptive statistics for

the power in band of these ICs are provided in Table 1.

For the ANOVA on the VEM ICs, a main effect of Task (F (1, 28) = 16.97, p< .001, ηG
2 =

.022, ηP
2 = .377, MDE ηP

2 = .244), with greater ocular activity during IMW vs FAM, was found

together with a main effect of Band (F (4, 112) = 198.25, p[GG] < .001, ηG
2 = .725, ηP

2 = .876,

MDE ηP
2 = .300) and an interaction effect between Task and Band (F (4, 112) = 15.55, p[GG]<

.001, ηG
2 = .015, ηP

2 = .357, MDE ηP
2 = .300). For this interaction, post-hoc tests showed that

the difference between FAM and IMW held in delta (p< .001), theta (p< .001) and gamma

(p< .05) bands, with the greatest difference in terms of average power and probability in the

delta band (Fig 4, left panel). No other effects were significant (all F< 2.62, p> .12, ηG
2 <

.001). For the delta band filtered VEM ICs, a count of eye movements was also executed. From

visual inspection of the VEM ICs data, we arbitrarily defined an eye movement when the ampli-

tude of the signal was greater than 3 standard deviations from the signal mean. The analysis

on this measure of eye movement confirmed the significant difference between the two tasks

(IMW> FAM; IMW: mean = 57.8, SD = 29.5, FAM: mean = 45.5, SD = 24.1; t(28) = -3.41, p =

.002, d = .632, MDE d = .539).

For the ANOVA on the HEM ICs, the main effect of Band (F (4, 88) = 261.40, p[GG] <

.001, ηG
2 = .733, ηP

2 = .922, MDE ηP
2 = .354) and the interaction between Task and Band

(F (4, 88) = 3.55, p[GG] = .04, ηG
2 = .003, ηP

2 = .139, MDE ηP
2 = .354) were found. Post hoc

tests for this interaction showed that there was a significant difference in average power

between FAM and IMW tasks (IMW> FAM) only in the delta band (p = .002) (Fig 4, right

panel). No other effects were significant (all F< 1.96, p > .17, ηG
2 < .001, ηP

2 < .082).

Looking at the relationship between the meditation expertise index and the average power

in the delta band of ocular activity during FAM and IMW tasks (Fig 5), we found that medita-

tion expertise was significantly negatively correlated with VEM activity during both tasks (for

Table 1. Descriptive statistics. The log-transformed power in band during the two tasks (FAM = Focused Attention Meditation on the breath; IMW = Instructed Mind-

Wandering) for the Vertical Eye Movement (VEM) and Horizontal Eye Movement (HEM) Independent Components, and for EOG (electrooculogram) data. Values are

expressed as mean ± standard deviation.

VEM (N = 29) HEM (N = 23) EOG (N = 27)

Task Task Task

FAM IMW FAM IMW FAM IMW

Band delta

(1–4 Hz)

-1.32 ± 0.56 -1.05 ± 0.59 -1.38 ± 0.35 -1.30 ± 0.38 0.48 ± 0.43 0.63 ± 0.47

theta

(4–8 Hz)

-1.71 ± 0.41 -1.57 ± 0.43 -1.70 ± 0.31 -1.67 ± 0.32 0.16 ± 0.31 0.21 ± 0.33

alpha

(8–12 Hz)

-2.04 ± 0.25 -2.01 ± 0.26 -1.90 ± 0.31 -1.90 ± 0.31 0.20 ± 0.44 0.21 ± 0.43

beta

(12–25 Hz)

-2.38 ± 0.25 -2.35 ± 0.24 -2.20 ± 0.28 -2.21 ± 0.29 -0.49 ± 0.30 -0.48 ± 0.31

gamma

(25–110 Hz)

-3.00 ± 0.27 -2.91 ± 0.27 -2.82 ± 0.25 -2.82 ± 0.24 -1.39 ± 0.21 -1.32 ± 0.22

https://doi.org/10.1371/journal.pone.0210862.t001
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FAM: r = -.48, p< .01; for IMW: r = -.52, p = .004, MDE r = -.49). This result also held for

average power computed across all bands. By contrast, the expertise index was not related to

HEM activity (for FAM: r = -.25, p = .25; for IMW: r = -.10, p = .64). Moreover, for both

VEM and HEM activity the age of participants, which is a critical factor for eye movements

metrics [98,99], was not related to average power in the delta band in either of the two tasks

(all p> .05).

Fig 4. Power in band of eye movements ICs during the two tasks. Power in band relative to the two tasks (FAM = Focused Attention Meditation on the breath;

IMW = Instructed Mind-Wandering) for the ICs that record activity of eye movements in the vertical (left panel) and horizontal axis (right panel). Circles represent

average power across subjects, with vertical error bars for standard error of the mean. � indicates a significant difference between means for the corresponding band.

https://doi.org/10.1371/journal.pone.0210862.g004

Fig 5. Participants’ Vertical Eye Movement ICs delta power as a function of their expertise in meditation. Power in delta band (1–4 Hz) of individuals’ Vertical Eye

Movement Independent Component during the two tasks (FAM = Focused Attention Meditation on the breath; IMW = Instructed Mind-Wandering) as a function of

individuals’ meditation expertise. Expertise in meditation Index was calculated for each subject as the product between amount of weekly meditation practice (in

minutes) and time spent since attendance of the Mindfulness-Oriented Meditation course (in years).

https://doi.org/10.1371/journal.pone.0210862.g005
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Finally, for EOG data, we analyzed data from 27 subjects: 5 were excluded from analysis be-

cause more than 25% of one of the their four task recordings contained artifactual EOG data.

The results showed the same pattern as that for EEG data with significant main effects of Task

(F (1, 26) = 15.05, p< .001, ηG
2 = .007, ηP

2 = .367, MDE ηP
2 = .238) and Band (F (4, 104) =

237.54, p[GG]< .001, ηG
2 = .786, ηP

2 = .901, MDE ηP
2 = .316), as well as significant interaction

between Task and Band (F (4, 104) = 12.61, p[GG] < .001, ηG
2 = .006, ηP

2 = .327, MDE ηP
2 =

.316). Again, average power was greater during IMW than FAM and this difference was signif-

icant in the gamma (p = .007), theta (p = .03) and delta band (p< .001). In this band, average

power was significantly correlated with the meditation expertise index, both for FAM (r =

−.43, p = .03, MDE r = -.51) and IMW tasks (r = −.58, p = .001, MDE r = -.51), but not with

the age factor (for both tasks p> .24).

Discussion

The aim of the present study was to assess differences in the level of spontaneous eye move-

ment activity during a focused-attention mindfulness meditation task (FAM), with focus on

the breath, and an instructed form of mind-wandering (IMW), requiring participants to

remember episodes of their past or imagine events of the future. Results from analyses focused

on two 7-minute executions of FAM and IMW showed significant differences between the

average power associated with eye movements during the two tasks. More specifically, there

was an increased level of ocular activity during IMW relative to FAM. This effect emerged for

both the vertical and horizontal component of eye movements and was especially evident in

the power recorded at lower frequencies (delta band, 1–4 Hz).

A previous study examining eye movements during mental time traveling, a mental state

similar to IMW implying an imaginal journey into the past or the future [53], disclosed diago-

nal trajectories of ocular movements during the task. This result was held to be indicative of

spatio-temporal associations that may link past events to more backwards and leftwards gazes

and future events to more forward and right-oriented gazes. With regards to eye movements

during meditation and mind-wandering, Braboszcz and colleagues [38] reported no differ-

ences between meditation and mind-wandering tasks in three groups of expert meditators,

while a difference was found for naïve controls, in that they showed reduced vertical eye move-

ments activity in gamma band (25-110Hz) during breath meditation vs IMW. In our study,

this latter finding was confirmed and extended to low frequency ocular activity, with the

important difference that in our study breath mindfulness meditation was practiced by expert

meditators. The kind of meditation examined in our study, which demands focused attention

on breathing sensations, is quite different from the three forms of meditation studied by Bra-

boszcz and colleagues in their three groups of expert practitioners: in Vipassana meditation,

participants moved their attention along their body, scanning each part of it; Isha Shoonya

meditators payed attention to their thought process, in an attempt to consciously experience

spontaneous trains of thoughts, emotions and sensations; finally, meditators practicing Hima-

layan Yoga, mentally repeated a mantra, with or without breath awareness. This last form of

meditation was classified by Braboszcz et al. as a FAM practice, despite others have questioned

this classification [57,100,101].

The present findings could be useful for assessing attention focus and meditation perfor-

mance. We can suppose that, for a particular individual practicing breath mindfulness, mind-

wandering phases may associate with a higher level of ocular movement activity than phases of

effective focus on the breath; thus, meditative sessions performed with many mind-wandering

episodes might be characterized by a higher level of ocular movement activation than medita-

tive sessions performed with fewer mind-wandering episodes and longer periods of sustained
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attention on the breath. In line with this, one could also expect a generally higher ocular move-

ments activity in less experienced meditators compared to more experienced meditators dur-

ing breath meditation. In the present study, we took into account an index of participants’

meditation expertise, as done in other meditation studies [38,102–105], also regarding oculo-

metric measures such as blink rates [106]. We found a negative relationship between mindful-

ness meditation expertise and the average power associated with vertical ocular activity during

both FAM and IMW tasks: meditators with more experience generally tended to move their

eyes less than practitioners with less experience. Since greater ocular activity may be associated

with mind-wandering, the reduced ocular activity in expert practitioners during FAM could

imply that they are better at controlling their mind-wandering during breath meditation.

Other studies have reported a relation between mindfulness meditation expertise and

reduction of mind-wandering episodes, with mind-wandering being assessed both in terms of

frequency and intensity through thought-probes and self-reports methods [107], or indexed by

deactivation of the DMN in neuroimaging studies [108]. Moreover, it has recently been found

that expert meditators show better attention and ocular sensorimotor control than novices dur-

ing smooth pursuit and antisaccade tasks [109], a finding in line with the suggestion that atten-

tion and eye movement processes could involve functionally overlapping brain areas [110].

Nonetheless, the fact that participants’ meditation expertise correlated negatively in our

study also with ocular activity during IMW could reflect a reduction of visual imagery during

this task, a finding clearly in need of future investigations. Indeed, it may be that more experi-

enced meditators in our study were more self-aware when they performed the IMW task,

undertaking the task “more slowly” than individuals with less mindfulness meditation experi-

ence, paying more attention to what they were imagining, resulting in less eye movements.

In conclusion, it is also important to consider the relevance of the present results in terms

of different types of eye movements, such as, for example, saccadic eye movements and eye fixa-

tions. During fixation periods the eye generally remains aligned with a target, but it does not

remain motionless, exhibiting drifts (patterns with activity peak in the range of 1–20 Hz), trem-

ors (with peak within 40-100Hz) or microsaccades (the largest kind of fixational eye move-

ments) [111]. During saccades, the eye moves from one point of interest to another, so the

amplitudes are larger than during fixations. Saccades are considered rapid eye movements

[112], but it is known that the size of a saccade is directly related to its duration [113], so all the

spectra we extracted in the current study from vertical and horizontal independent components

showed a decreasing course, with larger amplitudes associated to lower frequencies. The results

of our analyses, for the vertical components in particular, showed that the difference between

the two tasks (FAM and IMW) in term of average power is particularly significant for the lower

frequencies of ocular activity (1-4Hz), where the correlations with meditation expertise were

also significant. Thus, we consider the slower and larger vertical components of saccades as the

most reliable markers of the difference between the types of meditation and instructed mind-

wandering tasks taken into account in our study. In general, the present findings appear to be

in line with those reported in previous studies on the phenomenology of mind-wandering

[39,40] and on the measure of ocular activity during visual imagery [41–49]: we detected abun-

dance of eye movements during the IMW task, when subjects are likely engaged in mentally dis-

playing themselves or others in spatio-temporal scenes about the past or the future.

Limitations of the study

As already mentioned in the introduction, the IMW task used in our study to induce mind-

wandering can only approximate this particular and complex mental state in which one enters

in an indefinite and spontaneous series of thoughts. This is due to the fact that, although
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PLOS ONE | https://doi.org/10.1371/journal.pone.0210862 January 24, 2019 11 / 18

https://doi.org/10.1371/journal.pone.0210862


capturing mental time travel [114,115], thoughts in the IMW task might be fairly constrained

and deliberate. Spontaneity is indeed considered as a key characteristic of mind-wandering

[61]; nevertheless, some authors have experimentally remarked that mind-wandering can also

be intentional [15,116]. In general, in order to further clarify the relation between mindfulness

meditation and mind-wandering, future studies should consider the use of tasks tapping into

more spontaneous aspects of mind-wandering.

Future research could also confirm our results using meditators together with a control

group of non-meditators, as done in previous research [38], in order to further investigate the

impact of mind-wandering, as indexed by ocular activity, in individuals not trained in focused

attention practices. In this regard, in further studies it might be better to employ different

types of focused-attention tasks, in order to reveal whether the present results obtained for

breath meditation (vs. instructed mind-wandering) are somehow generalizable to other atten-

tion/meditation practices. This future research could also help to further examine the potential

difference across meditation and mind-wandering tasks between vertical and horizontal eye

movements, an issue still remaining largely unexplored in past research. Indeed, beside the

fact that horizontal and vertical eye movements may be linked to distinct groups of premotor

neurons [117] and may influence specific eye movement metrics [118], the current study sug-

gests that the IMW task, more than the FAM task, is associated with an evident ocular activity

in both the left/right and up/down directions.

Conclusions

The present work investigated closed-eye ocular movements of expert meditators during

instructed mind-wandering and during breath mindfulness meditation. Two main findings

were obtained: a greater eye movements activity during instructed mind-wandering than

mindfulness meditation and a negative relationship between mindfulness meditation expertise

and ocular activity in both tasks. Taken together, these data suggest that further research could

continue to explore the usefulness of using eye movement measurements during the practice

of mindfulness meditation as a marker of mind-wandering and attention focus and, conse-

quently, as an objective parameter of meditative performance.
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