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Background: Tumor microenvironment, especially infiltrating immune cell, is crucial for
solid tumors including glioma. However, the hub genes as well as their effects on patient
prognosis and immunotherapy efficacy remain obscure.

Methods: We employed a total of 952 lower grade glioma (LGG) patients from The
Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases,
and 24 samples in our hospital for subsequent analyses. Abundances of immune
infiltrates were evaluated using CIBERSORT and ImmuCellAI. Their correlations with
prognosis were assessed by log-rank test. Immune infiltration-related hub genes were
obtained from overlapped differential expressed genes (DEGs) in various subsets
of survival-related immune cell types. The risk signature was constructed by Least
Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis. The
functional analyses were estimated by GVSA and Gene Set Enrichment Analysis (GSEA)
algorithms. And protein–protein interaction enrichment analysis was carried out with the
Metascape database integrating STRING, BioGrid, OmniPath, and InWeb_IM.

Results: Among the 21 infiltrates, the abundances of five immune infiltrates were
correlated with overall survival (OS) in LGG patients. Higher abundances of naïve
CD4+ T cells (p = 0.002), activated mast cells (p = 0.015), and monocytes (p = 0.014)
were correlated with better prognosis, while higher abundances of resting memory
CD4+ T cells (p = 0.015) and M1 macrophages (p = 0.020) correlated with poorer
OS. We finally obtained 44 hub genes and constructed an immune infiltration-related
signature (IIRS). The IIRS correlates with clinicopathological characteristics and exhibited
potential power in predicting the immunotherapy efficacy. The IRRS correlates with
cancer related pathways, especially “epithelial-mesenchymal transition (EMT),” and
cytotoxic T lymphocytes.

Conclusion: Our study constructed and validated a novel signature for risk stratification
and prediction of immunotherapy response in grade II and III gliomas, which was closely
associated with glioma immune microenvironment and could serve as a promising
prognostic biomarker for glioma patients.
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INTRODUCTION

Gliomas are the most common primary tumors of the central
nervous system that arise from the intrinsic constituent cells of
the brain (Sanai et al., 2005). They have historically been classified
on the basis of their microscopic and immunohistochemical
resemblance and have been graded according to histological
features indicative of biological aggressiveness.

Genome-wide molecular-profiling studies have revealed
comprehensive genomic landscapes for major types of gliomas
(Suzuki et al., 2015). These developments have identified novel
biomarkers for improved tumor classification and promising
therapeutic targets. Predictive biomarkers recognized and used
in clinics mainly included isocitrate dehydrogenase (IDH)
mutation, the discovery of which constituted a key breakthrough
in the understanding of WHO grade II/III gliomas (Yan
et al., 2009). Besides, the presence of O6-methylguanine-
DNA methyltransferase (MGMT) promoter methylation is
predictive of response to temozolomide-based chemotherapy
in patients with IDH-wild-type glioma (Wick et al., 2012).
Furthermore, 1p/19q codeletion is suggested as a predictive
marker of benefit from upfront combined radiotherapy and
chemotherapy in two phase III trials (Bent et al., 2013;
Cairncross et al., 2013). Novel pathogenesis-based treatments
targeting oncogenic signaling pathways such as BRAF mutation
(Robinson et al., 2014), epidermal growth factor receptor
(EGFR) amplification (Phillips et al., 2016), and fibroblast
growth factor receptor (FGFR)-TACC fusion demonstrate a
potential for lower grade gliomas (LGG) elimination (Stefano
et al., 2015). Despite a deconstruction at molecular level that
furthered our understanding of tumorigenesis and personalized
therapy, a certain LGG population acquired resistant to these
targeted therapies.

For solid tumors, the tumor microenvironment, composed
of extracellular matrix, stromal cells, and immune cells, plays
a crucial role in the initiation and progression of cancer. The
infiltrating immune cells there are very vital as they were
associated with patient prognosis in various cancers (Yang
et al., 2019; Huang et al., 2020; Zhang et al., 2020, 2021).
Exploration of the glioma microenvironment will provide a
better understanding of the occurrence and development of
glioma. It is, however, worth noting that gliomas are not
considered highly immunogenic since mutational loads are
typically low, and gliomas are characterized by profound
immunosuppression mediated by immune-inhibitory factors
(Nduom et al., 2015). Therefore, we hope to decode the unique
immune microenvironment and identify novel biomarkers
to overcome immunosuppression, exploit antitumor immune
responses, and guide individualized treatments.

We herein conducted a comprehensive analysis based on
two independent cohorts, plus our own samples to explore the
profile of infiltrating immune cells in gliomas in order to better
understand its biological functions there. Furthermore, a risk
signature based on immune infiltration (IIRS) was constructed
to predict the prognosis of patients diagnosed with LGGs.
Multifaceted performance of the IIRS was also examined to reveal
its superior predictive ability for response to immunotherapy.

MATERIALS AND METHODS

Data Extraction
All transcriptomic and clinical characteristics of enrolled samples
were extracted from The Cancer Genome Atlas (TCGA) and
Chinese Glioma Genome Atlas (CGGA) databases (Brat et al.,
2015; Zhao et al., 2021). A total of 952 primary LGG samples with
detailed clinical information were enrolled in our study, in which
508 samples extracted from the TCGA database were defined as
the training set; 444 samples extracted from the CGGA database
were defined as the validation set. Normal or glioblastoma (GBM,
grade IV glioma) samples were excluded.

Immune Infiltration and Survival Analysis
in Lower Grade Gliomas
CIBERSORT algorithm was employed for evaluating the
percentage of 21 human hematopoietic cell phenotypes,
including seven T cell types, naïve and memory B cells, plasma
cells, natural killer cells, and myeloid subsets (Newman et al.,
2015). The associations between infiltrating abundance and
overall survival (OS) in TCGA LGG cohort were evaluated
using univariate Cox analysis, and the survival curves were
correspondingly established by Kaplan–Meier analysis.

Construction and Validation of the
Immune Infiltration-Related Signature
Considering that the abundance of these infiltrating cells was
mostly low, we used the mean abundance to divide the entire
LGG population into high- and low-infiltrating groups for each
infiltrate. For the immune infiltrates that were significantly
correlated to the outcomes of LGG patients, we conducted a
differential expression analysis using the R package “limma” and
obtained fold change and p-value for each gene. Subsequently, for
those infiltrating cells that were detrimental to patient prognosis,
we selected genes ranked in the top 500 by fold change; whereas
for those with a beneficial effect on patient prognosis, we selected
genes whose fold change ranked in the bottom 500. Finally, we
got five gene sets with 500 gene in each one.

Hub genes are derived from the intersection of the above gene
sets, which were screened by using univariate Cox regression
analysis. Thereafter, we used the R package “glmnet” to conduct
Least Absolute Shrinkage and Selection Operator (LASSO) Cox
regression analysis (with the penalty parameter estimated by
10-fold cross-validation), we developed an immune infiltration-
related signature (IIRS) for the LGG patients. The risk score
calculating formula is:

Risk score =
n∑

i = 1

(βi × xi)

where “n” means the number of genes included in the model,
“βi” means the LASSO coefficients, “xi” is the expression level of
each model gene.

Risk scores were subsequently computed for all patients
included in our study. For both cohorts, the patients were
divided into high- and low-risk groups according to the median
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risk score. Then risk plots, scatter diagrams, heatmaps, survival
curves, and time-dependent receiver operating characteristic
curves (ROC) were plotted using the R package “ggplot2.”
The relationships between risk signature and survival as well
as other clinicopathological characteristics were also assessed.
We calculated the correlations among the signature genes,
as well as the correlations between individual gene and OS
and progression free survival (PFS) in LGG populations.
A principal components analysis (PCA) analysis, based on Gene
Expression Profiling Interactive Analysis (GEPIA21) webtool
(Tang et al., 2019), was performed to examine the resolving
power of the IRRS.

Sample Collection and RNA Sequencing
Twenty-four samples were collected and then immediately stored
in liquid nitrogen. Total RNA was extracted from the tissues
using TRIzol (Invitrogen, Carlsbad, CA, United States) following
the instructions. The mRNA library was then constructed after
quantification using NanoDrop and Agilent 2100 bioanalyzer
(Thermo Fisher Scientific, MA, United States). Total RNA
was purified and fragmented into small pieces for cDNA
synthetization. The cDNA fragments were further amplified
by polymerase chain reaction after incubating with A-tailing
mix and RNA Adapter Index for end repair. The qualified
double-stranded PCR products were then used to construct the
final library. Eventually, the 24 qualified glioma samples were
further sequenced on a BGISEQ-500 platform (BGI-Shenzhen,
China). The gene expression levels were calculated using RSEM
(v1.2.12). The sequencing and clinical data of these samples were
summarized in Supplementary Table 1.

Prediction of Therapy Efficacy and Drug
Response
The efficacies of four therapies (radiotherapy, chemotherapy,
targeted therapy, and immunotherapy) in high-risk and low-risk
groups were evaluated. We used Tumor Immune Dysfunction
and Exclusion (TIDE2) algorithm to assess the ability of the IIRS
in predicating response to the immunotherapy.

Two resources for therapeutic biomarker discovery in
cancer cells, including Cancer Therapeutics Response Portal
(CTRP) and Genomics of Drug Sensitivity in Cancer (GDSC)
(Yang et al., 2012; Rees et al., 2016), were employed to
evaluate the relationship between drug sensitivity (IC50) and
mRNA expression.

Gene Set Variation Analysis, Cancer
Related Pathway, and Infiltrating
Immune Cells
The Gene Set Variation Analysis (GSVA) score represents the
integrated level of the expression of model gene set. The GSVA
score of each patient was calculated using R package “GSVA”
(Hänzelmann et al., 2013).

1http://gepia2.cancer-pku.cn
2http://tide.dfci.harvard.edu

Data of reverse phase protein array (RPPA), a high-
throughput antibody-based technique with the procedures
similar to that of western blots, were used to calculate
pathway activity score of 10 cancer related pathways, including
TSC/mTOR, RTK, RAS/MAPK, PI3K/AKT, Hormone ER,
Hormone AR, EMT, DNA Damage Response, Cell Cycle,
Apoptosis pathways.

The infiltrates of 24 immune cells were evaluated
through Immune Cell Abundance Identifier (ImmuCellAI)
(Miao et al., 2020).

Gene Set Enrichment Analysis,
Mutational Profiles, and Protein–Protein
Interaction
We calculated the degree to which the inputted gene set is
overrepresented at the top or bottom of all genes ranked by
gene expression fold change between high- and low-risk groups.
The GSEA calculation was performed based on R package
“fgsea.” The mutational profiles of model genes were assessed in
cBioPortal website.3

For the differential expressed genes (DEGs) between high- and
low-risk groups, protein–protein interaction enrichment analysis
has been carried out with the Metascape databases integrating
STRING (Szklarczyk et al., 2019), BioGrid (Stark et al., 2006),
OmniPath (Türei et al., 2016), and InWeb_IM (Li et al., 2017).
The resultant network contains the subset of proteins that form
physical interactions with at least one other member in the list.
The Molecular Complex Detection (MCODE) algorithm (Bader
and Hogue, 2003) has been applied to identify densely connected
network components.

Statistical Analysis
Kaplan–Meier curve and log-rank test were used to compare
the survival between various subgroups. The Student’s t-test
was used to compare the risk scores between pairs of
subgroups based on the following clinicopathologic features:
age at initial pathologic diagnosis (≤40 vs. > 40 years old),
gender (male vs. female), WHO grade (II vs. III), histological
type (astrocytoma, oligoastrocytoma, and oligodendroglioma),
and IDH1 status (mutant vs. wild-type). Wilcoxon test and
Kruskal–Wallis test were used for comparison between two
groups, and for comparison among more than two groups,
respectively. p < 0.05 was the significance threshold in most
analyses. The statistical analyses were achieved by using R
language (version 4.0.3).

RESULTS

The Abundances of Five Immune
Infiltrates Were Correlated With Overall
Survival in Lower Grade Glioma Patients
We obtained data from two databases (TCGA, n = 508; CGGA,
n = 444) to evaluate the abundances of immune infiltrates

3https://www.cbioportal.org
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TABLE 1 | Detailed characteristics of included patients.

Characteristics TCGA (n = 508) CGGA (n = 444)

N % N %

Age (year)

≤40 251 49.41 229 51.58

>40 257 50.59 214 48.20

NA 0 0.00 1 0.23

Gender

Female 282 55.51 193 43.47

Male 226 44.49 251 56.53

Grade

II 246 48.43 189 42.57

III 262 51.57 255 57.43

Histological type

A 128 25.20 271 61.04

OA 188 37.01 30 6.76

O 192 37.80 142 31.98

NA 0 0.00 1 0.23

IDH1 status

Wild-type 34 6.69 96 21.62

Mutant 91 17.91 307 69.14

NA 383 75.39 41 9.23

Radiation therapy

With 142 27.95 315 70.95

Without 119 23.43 102 22.97

NA 247 48.62 27 6.08

Chemotherapy

With 277 54.53 285 64.19

Without 229 45.08 132 29.73

NA 2 0.39 27 6.08

A, astrocytoma; IDH1, isocitrate dehydrogenase-1; NA, not available; O,
oligodendroglioma; OA, oligoastrocytoma.

in LGGs. The characteristics of patients in the two cohorts
were summarized in Table 1. The distribution and correlations
of immune infiltrates in the TCGA cohort was displayed as
Figures 1A,B. Among the 21 infiltrates, the abundances of
five immune infiltrates were correlated with OS in grade II
and III glioma patients (Figures 1C–G). Specifically, higher
abundances of naïve CD4+ T cells (p = 0.002), activated mast
cells (p = 0.015), and monocytes (p = 0.014) were related to better
prognosis, while higher abundances of resting memory CD4+ T
cells (p = 0.015) and M1 macrophages (p = 0.020) correlated
with poorer OS.

Identification of Candidate Genes and
Construction of the Risk Signature
According to the mean value of abundances of the five immune
infiltrates, DEGs were obtained, respectively (Figures 2A–E). We
profiled 500 candidate genes in these five groups, respectively.
And 44 hub genes were finally obtained when overlapping
the five sets containing 2,500 genes (Figure 2F). All 44 genes
were significantly associated with patient outcome, and 10 genes
were profiled by LASSO regression analysis to construct the
IIRS (Figures 2G,H). Detailed descriptions, LASSO coefficients,

and hazard ratios for all model genes are summarized in
Table 2. And we exhibited the detailed expression levels as
well as prognostic curves of these genes in Supplementary
Figure 1. Briefly, all ten genes except ACTN1 were differentially
expressed between tumor and normal tissues. Among the
remaining nine genes, FABP and PLAT were decreased in tumor
tissues, while the others exhibited the opposite distribution
(Supplementary Figure 1A). Regarding survival, these model
genes were risk factors for OS, PFS, and disease specific survival
(DSS) in patients with LGG (Supplementary Figure 1B). And the
specific Kaplan–Meier survival curves (for OS) were displayed in
Supplementary Figure 1C.

External and Subgroup Validation
Demonstrates Stability of the Immune
Infiltration-Related Signature
Risk plots, survival distributions, and model gene expressions
were plotted in Figure 3A. Kaplan–Meier survival curve
indicated that LGG patients with higher risk scores had
significantly worse outcomes in the training set (p < 0.0001,
Figure 3B). The time-dependent ROC curve demonstrated
a promising ability of the model to predict OS in the
training cohort (1-year AUC = 0.66, 3-year AUC = 0.69,
5-year AUC = 0.78; Figure 3C). The results were similar in
the external CGGA cohort (Figure 3D). Higher risk scores
also indicated poorer OS (p < 0.0001, Figure 3E). The risk
model retained stable and high predication ability (1-year
AUC = 0.69, 3-year AUC = 0.70, 5-year AUC = 0.74;
Figure 3F). These results showed that the IIRS had a robust and
stable OS-predictive ability for LGG patients. Furthermore, we
performed a stratification analysis and found that the risk model
maintained the ability to predict OS in most subgroups in both
cohorts (Figures 3G,H).

The IRRS Correlates With
Clinicopathological Characteristics and
Predicts Immunotherapy Efficacy
Sankey diagrams were displayed showing the distribution
of risk scores and clinicopathologic characteristics among
LGG patients (Figures 4A,B). In the TCGA cohort, LGG
patients with higher WHO grade had higher risk scores,
while the risk score was not associated with gender. Besides,
an individual patient would have a higher risk score if
he had a pathologic type of astrocytoma (Figure 4C). In
the CGGA cohort, risk scores were higher in patients with
1p/19q codeletion (Figure 4D). Importantly, LGG patients
with wild-type IDH1 would have higher risk scores in both
cohorts. Further Cox analyses showed that higher age, higher
grade, pathological type (astrocytoma), and higher risk score
were significantly associated with worse survival in both
cohorts (Figures 4E,F).

Using samples from Xiangya hospital, we found the consistent
results that glioma patients with histological type of astrocytoma,
wild-type IDH1, and unmethylated MGMT had higher risk
scores (Figure 5A). Although no differences in tumor purity
were observed between low- and high-risk groups (Figure 5B),
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FIGURE 1 | Immune infiltration profile and its relationship to survival in gliomas. (A) Proportions of various immune infiltrates. (B) The correlations among various
immune infiltrates (non-significant values were omitted). (C–G) Kaplan–Meier survival curves based on immune infiltrates that were significantly related to patient
prognosis.

we found that, in our samples, high risk patients had higher
abundances of M0 macrophages and activated mast cells, and
lower abundances of naïve B cells, monocytes, M2 macrophages,
resting mast cells, and neutrophils (Figure 5C).

Furthermore, we investigated the efficacies of multiple
treatments in low- and high- risk groups (Figures 5D,E).
Chemotherapies demonstrated high efficacies in both groups,
while radiation and targeted therapies did not improve
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FIGURE 2 | Identification of immune infiltration-related hub genes and LASSO analysis. (A–E) Volcano plot of DEGs based on the mean abundances of
survival-related infiltrates in glioma. (F) Forty-four hub genes identified by overlapping the five gene sets. (G) LASSO coefficient profiles of the 44 hub genes. Each
curve represents a coefficient, and the x-axis represents the regularization penalty parameter. As λ changes, a coefficient that becomes non-zero enters the LASSO
regression model. (H) Cross-validation to select the optimal tuning parameter (λ). The left dotted vertical line crosses over the optimal log λ, which corresponds to
the minimum value for multivariate Cox modeling.

patients’ outcome. Intriguingly, patients in the low-risk
group uniquely responded well to immunotherapy. To better
evaluate the potential of our IIRS in predicting patients’
responses to immunotherapies, we employed TIDE algorithm

to compare our model with other published biomarkers in
immunotherapy response prediction (Figure 5F). Compared
with recognized signatures (or genes) including Merck18,
TIDE score, microsatellite instability (MSI) score, tumor
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TABLE 2 | Detailed information of model genes.

Model genes Description Coefficient p-Value HR Lower 95% CI Higher 95% CI

IGFBP2 Insulin-like growth factor binding protein 2 −0.09331651 9.05E-29 1.63 1.50 1.78

PLAT Plasminogen activator 0.10371271 1.34E-19 1.61 1.45 1.78

TOP2A Topoisomerase (DNA) II alpha 0.07377614 4.86E-12 1.50 1.34 1.69

ACTN1 Actinin, alpha 1 0.1394003 3.01E-10 1.54 1.35 1.76

LGALS3 Lectin, galactoside-binding, soluble, 3 −0.06051677 2.33E-11 1.59 1.38 1.81

BGN Biglycan −0.11792178 7.56E-12 1.57 1.38 1.79

FMOD Fibromodulin 0.12075655 2.49E-15 1.42 1.30 1.54

FABP5 Fatty acid binding protein 5 −0.05734956 2.18E-19 1.74 1.54 1.96

BCAT1 Branched chain amino-acid transaminase 1 0.22682052 1.14E-16 1.80 1.57 2.07

COL1A2 Collagen, type I, alpha 2 0.02175721 2.18E-09 1.49 1.31 1.70

CI, confidence interval; HR, hazard ratio.

mutation burden (TMB), CD274, CD8, IFNG, T clonality,
and B clonality, the IIRS showed robust ability in predicting
the response to immunotherapies in patients with different
cancers. Besides, the correlations between drug sensitivity
and model gene mRNA expressions were exhibited in
Supplementary Figures 2A,B.

The IRRS Correlates With Cancer
Related Pathways and Cytotoxic T
Lymphocytes
To better understand how the IRRS participates in oncologic
processes, we analyzed our model both intrinsically and
extrinsically. Strong and significant correlations existed among
the model genes (Figure 6A), all of which were risk factors for
the OS in the LGG cohort (Figure 6B). Besides, the expressions
of all genes, except for LGALS3, were correlated with poorer
PFS in patients with LGG (Figure 6B). The comprehensive
investigation in the mutational profiles of model genes was
displayed as Supplementary Figure 3, where we found BGN
was most likely to mutate in LGGs. These mutations were
significantly related to molecular status including IDH, 1p,
and 19q. A subsequent PCA analysis suggested the IRRS
could distinguish LGG from normal cerebral cortex tissues and
glioblastomas (Figure 6C).

Next, we evaluated the involvement of individual genes
in various cancer related pathways, and found that all genes
participated in activated “epithelial-mesenchymal transition
(EMT)” pathway while five of them were involved in inhibited
“DNA damage” pathway (Figure 6D). Furthermore, GVSA
score was significantly and positively correlated with EMT
pathway (r = 0.27, p = 9.6e-9) while negatively correlated
with “Hormone androgen/androgen receptor (AR)” pathway
(r =−0.16, p = 5.1e-4) (Figure 6E).

We then focused on the association of the IRRS and
multiple immune cell types (Figure 6F). Strong and positive
associations were observed between GVSA scores and
activated T lymphocytes including cytotoxic T lymphocytes
(r = 0.61, p = 3.6e-60) and type 1 helper T cells (r = 0.51,
p = 1.3e-39). In contrary, the GVSA score was strongly
and negatively correlated with the abundance of neutrophil
(r =−0.47, p = 2.4e-33).

Functional Analysis Reveals Deep
Involvement of Immune
Infiltration-Related Signature in the
Glioma Immune Microenvironment
We obtained DEGs between low- and high-risk groups
(Figure 7A), which were displayed as volcano plot (Figure 7B).
Functional analysis indicated these DEGs were mainly located
in extracellular matrix and were involved in binding functions
such calcium ion, kinase, and cell adhesion molecule binding
(Figure 7C). As for biological processes, they participated
in responses to wounding and inflammatory responses
(Figure 7D). Furthermore, the gene sets were mainly enriched
in several Reactome pathways including “cytokine signaling in
immune system,” “hemostasis,” and “neutrophil degranulation”
(Figure 7E). To further capture the relationships between the
terms, a subset of enriched terms has been selected and rendered
as a network plot, where terms with a similarity above 0.3 are
connected by edges. We select the terms with the best p-values
from each of the 20 clusters and visualized the network as
Supplementary Figures 2C,D (Shannon et al., 2003).

The MCODE networks identified for individual gene lists have
been gathered and are shown in Figures 7F,G. Pathway and
process enrichment analysis has been applied to each MCODE
component independently, and the three best-scoring terms
by p-value have been retained as the functional description of
the corresponding components: (1) GO:0002399, MHC class II
protein complex assembly (log10p = −15.7); (2) GO:0002503,
peptide antigen assembly with MHC class II protein complex
(log10p = −15.7); and (3) GO:0009611, response to wounding
(log10p =−15.4).

DISCUSSION

Glioma is a common tumor in human central nervous system.
Over the past decades, surgical section with radiotherapy
and chemotherapy still represented the mainstream treatment
against glioma. Due to the unique microenvironment, gliomas
acquire immunosuppressive phenotypes and poorly response to
established immunotherapies. Therefore, novel targets are in
urgent need for the hope to predict response rate and improve
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FIGURE 3 | Construction and validation of the IIRS. (A) Risk score, survival status, and expression pattern of model genes in each patient in the training cohort.
(B) Kaplan–Meier analysis of patients in the high- and low-risk groups. (C) Time-dependent ROC analysis of the IIRS in predicting prognosis. (D–F) Validation of the
IIRS in the CGGA cohort. (G,H) Kaplan–Meier analysis of patients in the high- and low-risk groups in stratified subgroups in the TCGA and CGGA cohorts.

patient outcome. We employed comprehensive bioinformatic
analyses to build an IIRS, which helps clinicians to optimize
the management of LGGs. We believe that the IRRS is a good
predictor of outcomes in LGG, and targeting the model genes
there will demonstrate encouraging efficacy in future preclinical
and clinical practice.

Immune infiltration has gained widespread attention in the
last decade, especially its unique involvement in malignant
processes such as tumor progression and immunotherapy

resistance, making it a promising target in tumor
microenvironment (Hinshaw and Shevde, 2019). Previous
studies have investigated the relationships between immune
infiltration and prognosis in various cancer types. High
abundance of M2 macrophages was reported to be related to
poorer survival in patients with bladder cancers, while CD8+ T
cells were related to improved prognosis in this cancer type
(Zhang et al., 2020). In addition, CD4+ naive T cells, regulatory
T cells, M2 macrophages, resting mast cells were identified as risk
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FIGURE 4 | Exploration the relationship between clinicopathologic characteristics and the IIRS. (A,B) Sankey diagrams exhibiting the distribution of clinicopathologic
characteristics in high- and low-risk groups in the two cohorts. (C,D) The risk score in different subgroups stratified by age, gender, grade, histological type, IDH1
status, and 1p/19q codeletion status in the TCGA and CGGA cohorts. (E,F) Cox analyses examining different variables for LGG patient survival in the TCGA and
CGGA cohorts.

immune cells in digestive system cancers, while the abundances
of naive B cells, CD8+ T cells, CD4 memory activated T cells,
follicular helper T cells, and eosinophils were correlated with
better relapse free survival (Yang et al., 2019). To the best our
knowledge, this study is the first to comprehensively evaluate the
effects of various immune infiltrates on glioma patients’ survival.
We assessed the profile of immune infiltration, and found that

naïve CD4+ T cells, activated mast cells, and monocytes were
protective factors, while resting memory CD4+ T cells and M1
macrophages were risk factors for the prognosis of patients with
grade II and III gliomas.

More recent studies have reported that myeloid cells
and B cells in the meninges mainly originate from the
calvaria bone marrow, rather than the peripheral circulation
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FIGURE 5 | Validation using collected samples and prediction of therapy efficacy. (A) The risk score in different subgroups stratified by age, gender, grade,
histological type, IDH1 status, and MGMT status using own samples. (B) Stromal, immune, and ESTIMATE scores compared between high- and low-risk groups.
(C) The abundances of various immune cells in the high- and low-risk groups. (D,E) The efficacies of chemotherapy, radiation therapy, targeted therapy, and
immunotherapy in the low- and high-risk groups. (F) Comparison of the abilities in predicting the response to immunotherapy with recognized biomarkers or genes.
*p < 0.05, **p < 0.01, ***p < 0.001, ns: not significant.
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FIGURE 6 | Comprehensive analysis of model genes in the IIRS. (A) Spearman correlations among the model genes. (B) Cox analyses exhibiting the relationships
between the expressions of model genes and OS and PFS. (C) PCA analysis. (D) Involvement of individual model genes in cancer related pathways. (E) Correlation
between GSVA score and cancer related pathways. (F) Correlation between GSVA score and immune cell types.
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FIGURE 7 | Functional analysis of the IRRS. (A) Heatmap of differential expressed genes between high- and low-risk groups. (B) Volcano plot of differential
expressed genes (log10FDR < 0.05, | log2(fold change)| > 1). (C) GO and Reactome enrichment analysis. (D,E) GSEA analysis for KEGG and HALLMARK terms.
(F,G) Protein–protein interaction displayed by enriched MCODE networks.

(Brioschi et al., 2021; Cugurra et al., 2021). Here, B cells
mature and develop in the meninges rather than in the
bone marrow as recognized (Brioschi et al., 2021). Immune
cells may be directly transported through vessels present

between the skull and dura. These findings collectively
point to the fact that the brain, unlike peripheral organs,
has a “self-sufficient” and relatively independent immune
system. Further studies should be conducted to assess
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whether these cells elicit similar effects as we estimated.
Meanwhile, studies should be conducted to examine whether
these effects are mediated by cytotoxic T lymphocytes or
helper T cells.

Forty-four hub genes were selected and used to establish
the IIRS. The signature retained stability in different dataset
and subgroups. For the model genes in the IIRS, previous
studies had provided evidence for their effects in malignancies.
Insulin like growth factor (IGF)-binding protein 2 (IGFBP2) is
an IGF system regulator and a developmentally regulated gene.
Accumulating evidence indicates that in solid tumors, IGFBP2 is
upregulated and promotes several key oncogenic processes, such
as epithelial mesenchymal transition, cell migration, invasion,
angiogenesis, stemness, transcriptional activation, and epigenetic
programming through signaling, thus being a hub of oncogenic
networks and a potential therapeutic target for cancer treatment
(Li T. et al., 2020). Furthermore, in a study including 2447
glioma samples with gene expression profiles, IGFBP2 was
found to be involved in immunosuppressive activities and was
an independent unfavorable prognostic biomarker (Cai et al.,
2018). Actinin alpha 1 (ACTN1) has been identified as a
glioma microenvironment-related gene with prognostic value
in malignant gliomas (Li Y. et al., 2020). Moreover, lectin,
galactoside-binding, soluble, 3 (LGALS3) is a poor prognostic
factor in diffuse glioma (Hu et al., 2020), and it can promote
therapeutic resistance there (Wang et al., 2019). Fibromodulin
(FMOD) was upregulated in glioma and could promote glioma
cell migration by inducing the formation of filamentous actin
stress fibers. Both FMOD promoter methylation and transcript
levels predict prognosis in gliomas (Mondal et al., 2017).
Furthermore, fatty acid binding protein 5 (FABP5) was identified
as one of the most enriched genes and its elevation revealed severe
outcomes in malignant LGGs. And the malignant properties of
LGGs were promoted by exogenous overexpression of FABP5
through tumor necrosis factor α-dependent NF-κB signaling
(Wang et al., 2021). Importantly, a high-quality study linked
metabolism and tumors, where it found that gliomas expressed
high levels of branched chain amino-acid transaminase 1
(BCAT1). Inhibition of BCAT1 in glioma cell lines blocked
glutamate excretion and resulted in decreased proliferation
and invasiveness in vitro, as well as a significant decrease
in tumor growth in a glioma xenograft model, indicating
a central role of BCAT1 in glioma pathogenesis (Tönjes
et al., 2013). Additionally, collagen, type I, alpha 2 (COL1A2)
was identified as a hub gene in glioma in several studies
(Yin et al., 2021). These findings comprehensively supported
our IRRS in glioma, as most model genes were elaborated
to be involved in the initiation, progression, or treatment
resistance in gliomas.

A key finding in our study is that glioma patients in the low-
risk group exhibited a unique response to immunotherapy, as
those who received immunotherapy had significantly improved
survival compared with those who did not. Taken together with
the TIDE algorithm showing the excellent predictive ability of
our model for immunotherapy response, we conclude that the
IIRS can reflect the sensitivity of LGGs to immunotherapy and
recommend this model to guide clinical decisions.

There were several limitations in our study. First, the size
of samples for validation was too small, thus the accuracy of
the validation is open to question. Second, we included 10
genes in the IIRS, proposing a great challenge for experimental
validation. Although we used patients from the CGGA database
(validation set) to validate the results obtained from the
TCGA database (training set) and showed good concordance,
multicenter cohorts with large sample size and complete
clinical data are still needed to elaborate our conclusions.
Third, there is no LGG cohort in the TIDE database, so
the prediction of response to immunotherapy in LGG needs
further validation.

CONCLUSION

In summary, our study establishes a model based on glioma
immune infiltration profiles that accurately predicts patient
prognosis and response to immunotherapy, with the expectation
of aiding decision making in clinics.
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