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Background: Pancreatic cancer has a 5-year overall survival lower than 8%. Pancreatic
adenocarcinoma (PAAD) is the most common type. This study attempted to explore
novel molecular subtypes and a prognostic model through analyzing tumor
microenvironment (TME).

Materials and Methods: Single-cell RNA sequencing (scRNA-seq) data and expression
profiles from public databases were downloaded. Three PAAD samples with single-cell
data and 566 samples with gene expression data were included. Seurat was used to
identify cell subsets. SVA merged and removed batch effects from multichip datasets.
CIBERSORT was used to evaluate the components of different cells in transcriptome,
ConsensusClusterPlus was used to identify molecular subtypes, and gene set enrichment
analysis was used for functional enrichment analysis. LASSO Cox was performed to
construct dimensionality reduction and prognosis model.

Results: Memory B cells (MBCs) were identified to be significantly with PAAD prognosis.
Two immune subtypes (IS1 and IS2) with distinct overall survival were constructed. Forty-
one DEGs were identified between IS1 and IS2. Four prognostic genes (ANLN, ARNTL2,
SERPINB5, and DKK1) were screened to develop a prognostic model. The model was
effective in classifying samples into high-risk and low-risk groups with distinct prognosis.
Three subgroups of MBCs were identified, where MBC_0 and MBC_1 were differentially
distributed between IS1 and IS2, high-risk and low-risk groups.

Conclusions: MBCs were closely involved in PAAD progression, especially MBC_0 and
MBC_1 subgroups. The four-gene prognostic model was predictive of overall survival and
could guide immunotherapy for patients with PAAD.

Keywords: pancreatic adenocarcinoma, tumor microenvironment, memory B cells, immune subtype, prognostic
model, bioinformatics analysis
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INTRODUCTION

Pancreatic cancer has high death rate, and pancreatic
adenocarcinoma (PAAD) is the most common pathological type.
According to global cancer statistics, in 2020, 495,773 new cases of
pancreatic cancer were diagnosed and 466,003 deaths occurred (1).
However, the incidence varied greatly among different regions. Age-
standardized rate was the highest in Europe and North America but
the lowest in Africa and South Central Asia (2). Significant
difference of incidence is also observed between developed
countries and developing countries (3). Smoking, alcohol, obesity,
and dietary factors are main risk factors contributing to the
development of pancreatic cancer and its unfavorable survival (4).
New diagnosed patients are common at advanced stage, resulting in
a low overall survival rate of only 8% (5). Therefore, early diagnosis
for pancreatic cancer is required for improving prognosis.

Tumor microenvironment (TME) plays a critical role in
cancer development. The composition and distribution of
different immune cells affects anti-tumor immune response
and the formation of immune escape TME. Tumor-associated
macrophages (TAMs), regulatory T cells (Tregs), and myeloid-
derived suppressor cells (MDSCs) are major immunosuppressive
cells helping tumor cells to escape immune capture.
Immunosuppressive TME is involved in metastasis through
activating oncogenic pathways such as angiogenesis, epithelial–
mesenchymal transition (EMT), and transforming growth factor
(TGF)-b signaling pathways in pancreatic cancer (6). Targeting
TME is considered as a promising immunotherapy for cancer
treatment. Programmed cell death protein-1 (PD-1) and
cytotoxic T-lymphocyte–associated protein 4 (CTLA-4) are
two important immune checkpoints that can impede anti-
tumor response when combined with their receptors. The
inhibitors of PD-1 and CTLA-4 could activate immune
response of tumor cells in clinical trials of different cancer
types, including pancreatic cancer (7). However, not all
patients can benefit from immune checkpoint blockade (ICB).
Further understanding of TME and molecular features in
pancreatic cancer is needed to facilitate the exploration of new
therapeutic drugs.

Single-cell sequencing technology facilitates a deep excavation of
molecular data of TME. In this study, we introduced single-cell
RNA sequencing (Single-cell RNA sequencing) data from public
database and applied single-cell analysis to screen valuable
information. We found that a group of immune cells, memory B
cells (MBCs), was able to serve as molecular features to classify
patients with PAAD into different molecular subtypes. On the basis
of the markers of MBCs, we identified four prognostic genes and
constructed a prognostic model that could predict overall survival
for patients with PAAD. Importantly, the prognostic model was
able to identify patients who may be more sensitive to ICB therapy.
MATERIALS AND METHODS

Data Source
For the workflow of this study, see Supplementary Figure S1A.
scRNA-seq data of normal and PAAD samples were downloaded
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from Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/). Expression profiles of normal and tumor
samples were downloaded from GEO, The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/), and
International Cancer Genome Consortium (ICGC) database
(https://dcc.icgc.org/).

Data Preprocessing
GSE165399 (8) cohort contained scRNA-seq data of one normal
sample (GSM5032773) and two tumor samples (GSM5032771
and GSM5032772). Seurat R package was employed to preprocess
single-cell data (9). Data were first screened under condition that
each gene expressed at least in three cells and each cell expressed at
least 250 genes. Then, “PercentageFeatureSet” function was
conducted to calculate the percentage of mitochondria and
rRNA. Finally, single cells were filtered under the standards that
each cell expressed 500–6,000 genes, mitochondria percentage was
less than 35% and unique molecular identifiers (UMI) of each cell
was over than 1,000. Quality control of single-cell data before and
after preprocessing was shown (Supplementary Figures S1B, C,
S2A). Log-normalization was performed to normalize data of
three samples. “FindVariableFeatures” function was conducted to
excavate highly variable genes. Then, “FindIntegrationAnchors”
was used to remove batch effects, and “IntegrateData” function
was performed to combine data. Next, “ScaleData” function was
used to scale data, and principle component analysis was
performed to reduce data dimensionality (Supplementary
Figures S2B, C).

For GSE21501 (10), GSE28735 (11), GSE57495 (12),
GSE62452 (13), and GSE85916 cohorts, samples without
survival status or survival time were excluded. To combine five
cohorts, limma (14) and sva R packages were used to remove
batch effects and normalize the data (named as GEO cohort)
(Supplementary Figures S2D, E). A total of 320 PAAD samples
and 16,466 genes were remained. For TCGA-PAAD and ICGC-
AU cohort, samples without survival time or survival status were
removed. Finally, 156 and 90 tumor samples remained in TCGA-
PAAD and ICGC-AU cohort, respectively. The sample clinical
characteristics of each dataset were in Supplementary Table S1.

Single-Cell Annotation
First, “FindNeighbors” and “FindClusters” function in Seurat R
package were performed to cluster single cells under dim = 30 and
resolution = 0.5. Cells were clustered into different subgroups.
Markers of different immune cells were obtained from previous
research (15). Single-sample gene set enrichment analysis (ssGSEA)
was conducted to calculate enrichment score of immune cells and
annotate subgroups. Marker genes of different cell types related to
pancreatic tissue were obtained from CellMarker (http://biocc.
hrbmu.edu.cn/CellMarker/) (16). The top five enriched marker
genes of each subgroup were identified using “FindAllMarkers”
function under logfc = 0.5 and Minpct = 0.35 (P < 0.05).
Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) calculates enrichment
score of genes, cells, or signatures based on expression profiles
June 2022 | Volume 13 | Article 883548
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and is widely implemented in analyzing cancer data (17). The
strength of the method is to interpret biological meaning such as
functional pathways and biological process based on a series of
gene sets. GSEA was performed to assess the enrichment of
hallmark pathways based on a gene set “h.all.v7.4.symbols.gmt”
downloaded from Molecular Signatures Database (MSigDB,
https://www.gsea-msigdb.org/gsea/msigdb/). SsGSEA, which is
developed based on GSEA, allows a calculation of enrichment
score for each sample (18). We used ssGSEA to assess the
enrichment score of 10 oncogenic pathways (19).

Unsupervised Consensus Clustering
Unsupervised consensus clustering is a useful method to discover
biological characteristics in cancer study. We applied
ConsensusClusterPlus R package (20) to perform consensus
clustering for samples in TCGA-PAAD cohort based on
markers of MBCs. Expression data of markers were
normalized. partitioning around medoids (PAM) algorithm
was conducted, and “Canberra” was used as measurement
distance. Five hundred bootstraps were conducted with each
bootstrap containing 80% samples of TCGA-PAAD cohort.
Cluster number k was set from 2 to 10. Cumulative
distribution function (CDF) and area under CDF curve were
used to confirm the optimal cluster number.

Identifying Differential Expressed Genes
Between Two Subtypes
Limma R package was employed to identify differential expressed
genes (DEGs) between different subtypes (21). False discovery
rate (FDR < 0.05) and |log2(fold change(FC))| > 1 were set to
screen DEGs (both upregulated and downregulated genes).

Constructing a Prognostic Model
TCGA-PAAD cohort served as training cohort, and GEO and
ICGC-AU cohorts served as validation cohorts. Univariate Cox
regression analysis in survival R package was employed to screen
prognostic genes (P < 0.05) in TCGA-PAAD cohort. Next, least
absolute shrinkage and selection operator (LASSO) Cox
regression analysis in glmnet R package was performed to
decrease the number of genes (22). Ten-fold cross-validation
was conducted to validate the prognostic model. Receiver
operating characteristic (ROC) curve analysis in timeROC R
package was performed to evaluate the effectiveness of the
prognostic model (23).

Tumor Immune Dysfunction and
Exclusion Analysis
To predict the response to ICB, tumor immune dysfunction and
exclusion (TIDE) analysis (http://tide.dfci.harvard.edu/) was
introduced (24). Signatures, including T cell dysfunction, T cell
exclusion, and immunosuppressive cells, were used as a basis to
calculate enrichment score for high-risk and low-risk groups.
TIDE analysis was effective in predicting the mechanism of
immune escape within TME for various cancer types.
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CIBERSORT Analysis
CIBERSORT (http://cibersort.stanford.edu/) was applied to
evaluate the enrichment of 22 immune cells (25). The
CIBERSORT tool could estimate the proportion of immune
cells in TME based on gene expression data. In this study, we
applied CIBERSORT to predict the enrichment score of different
MBC subgroups.

ReactomeGSA for Analyzing
Single-Cell Data
To analyze the function of MBCs, Reactome database (https://
reactome.org/) and ReactomeGSA were introduced (26).
ReactomeGSA tool can be linked to Reactome database and
enable assessment of functional pathways on multi-omics. The
top 20 differentially enriched pathways were visualized.

Statistical Analysis
All statistical analysis was performed in R software (v4.1.0).
Student t-test was conducted between the two groups. ANOVA
was conducted among three or more than three groups. Log-rank
test was performed in Kaplan–Meier survival analysis.
Parameters were default if there was no indication. P < 0.05
was considered as significant. ns, no significant, *P < 0.05, **P <
0.01, ***P < 0.001, and ****P < 0.0001.
RESULTS

Defining Cells in PAAD Single-Cell Data
The scRNA-seq data of three samples in GSE165399 dataset were
preprocessed to screen valid data (Supplementary Figures S1B,
C, S2A). After the screening, one gene expressed at least in three
cells and one cell expressed at least 500 genes. The mitochondrial
percent was lower than 35%, and UMI of each cell was more than
1,000. Then, the screening data were normalized, and three
samples were combined to remove batch effects. Principle
component analysis was applied to diminish dimensionality
(Supplementary Figures S2B, C). Two-dimensional scRNA-
seq data of single cells were clustered using UMAP, and 14
clusters were generated (Figures 1A–C). Compared to the
normal sample (GSM5032773), tumor samples had an
obviously different distribution of cells, suggesting that normal
and tumor samples possibly had different cell types. According to
the markers of 22 immune cells from a previous study (15), we
annotated 14 subgroups, and finally, 12 cell types were identified
(Figure 1D). The top five DEGs of 12 cell types were screened
(P < 0.05, Figure 1E).
Identifying Cell Types Associated With
PAAD Prognosis
Then, we used the screened DEGs of 12 cell types to calculate
enrichment score of each sample in TCGA and GEO cohorts.
Univariate Cox regression analysis revealed that four and three
cell types were associated with PAAD prognosis in TCGA and
June 2022 | Volume 13 | Article 883548
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GEO, respectively (P < 0.05, Figure 2A). However, only MBCs
were related to prognosis in both two cohorts. Survival analysis
showed that the enrichment of MBCs was significantly associated
with PAAD overall survival in the two cohorts (P < 0.01,
Figures 2B, C). Low enrichment of MBCs had more favorable
prognosis than high enrichment of MBCs.

Constructing Molecular Subtypes Based
on Markers of Memory B Cells
As we identified that MBCs were an important cell groups in
PAAD, we considered that the expression of their markers were
associated with prognosis. Therefore, on the basis of 107 markers
of MBCs, unsupervised consensus clustering was conducted to
construct molecular subtypes. According to CDF curve and delta
area under CDF curve (Figures 3A, B), cluster number k = 2 was
determined to classify PAAD into two immune subtypes (IS1 and
IS2, Figure 3C). Survival analysis showed that IS1 had better
Frontiers in Endocrinology | www.frontiersin.org
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overall survival than IS2 in both two cohorts (P < 0.01, Figures 3D,
E). Six types of immune subtypes were obtained from previous
studies (27), namely, C1 (wound healing), C2 (inf-r dominant), C3
(inflammation), C4 (lymphocyte depletion), C5 (immunological
silencing), and C6 (TGF-b dominant). Comparison of the
relationship between the two molecular subtypes and these six
types of immune cell infiltration showed that IS1mainly accounted
for a large proportion than C3 and C6 and that IS2 mainly
enriched with C1 and C2. There were significant distribution
differences between them (p < 0.01, Figure 3F). In the relation
between subtypes and other clinical information, subtypes were
significantly associated with survival status and grade
(Supplementary Figure S3). Dead samples were more enriched
in IS2, and grade 1 was more distributed in IS1. In addition, IS2
had obviously higher proportion of high enrichment of MBCs
(Supplementary Figure S3I), which was consistent with previous
result that high enrichment of MBCs had unfavorable prognosis.
A B D

E

C

FIGURE 1 | Dimensionality reduction and subgrouping of single cells. (A) UMAP plot of three samples including GSM5032771, GSM5032772, and GSM5032773.
(B) UMAP plot of normal and tumoral samples. (C) UMAP plot of cell subgrouping. (D) UMAP plot of cell type definition. (E) The top five enriched markers of 12 cell
types. Horizontal axis indicated markers and vertical axis indicated cell types.
June 2022 | Volume 13 | Article 883548
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Tumor-Related Pathways Were More
Enriched in IS2
Next, we analyzed hallmark pathways of the two subtypes in two
cohorts. In TCGA cohort, only one pathway was enriched in IS1,
whereas 37 pathways were enriched in IS2. In GEO cohort, six
pathways were enriched in IS1, and 18 pathways were enriched
in IS2. Comparison of enriched pathways in two cohorts
demonstrated that proximal tubule bicarbonate reclamation
was enriched in IS1 in both two cohorts (Figures 4A, B).
Eighteen pathways were enriched in IS2 in both cohorts, such
as p53 signaling pathway, cell cycle, DNA replication, small cell
lung cancer, and mismatch repair (Figures 4C, D). The results
showed that tumor-related pathways were more activated in IS2,
which may contribute to its worse prognosis.
The Relation Between DEGs and
Memory B Cells
Gene expression profiles between IS1 and IS2 were compared to
screen DEGs. In TCGA cohort, 100 upregulated and 237
downregulated genes were identified from IS1 (FDR < 0.05,
|log2(FC)| > 1; Figures 5A, B). In GEO cohort, 50 upregulated
and 17 downregulated genes were identified from IS1 (FDR <
0.05, |log2(FC)| > 1; Figures 5C, D). We found that 28 DEGs
were upregulated and 13 DEGs were downregulated in IS1 in
both two cohorts (Figure 5E). Furthermore, we assessed the
Frontiers in Endocrinology | www.frontiersin.org 5
correlation between the identified DEGs and MBCs. The results
showed that 13 downregulated DEGs were positively correlated
with the enrichment of MBCs, and 28 upregulated DEGs were
negatively correlated with MBCs (Figure 6), suggesting that
these DEGs were possibly involved in the PAAD development.

Establishing a Prognostic Model
Based on DEGs
As we identified 41 DEGs associated with MBCs, a prognostic
model was established based on them. Univariate Cox regression
analysis was applied to these DEGs in TCGA cohort, and 16
DEGs were screened to be associated with prognosis. To further
decrease the number of genes, we performed LASSO Cox
regression analysis. The coefficients of DEGs close to zero
showed an increasing lambda value (Supplementary Figure
S4A). Ten-fold cross-validation calculated the confidence
interval of each lambda value (Supplementary Figure S4B).
When lambda = 0.0661, the model reached the optimal. Finally,
four genes were remained, including ANLN, ARNTL2,
SERPINB5, and DKK1. The four-gene prognostic model was
defined as risk score = 0.294*ANLN + 0.155*ARNTL2 +
0.138*SERPINB5 + 0.058*DKK1.

Risk score was calculated for each sample in TCGA cohort.
Samples were divided into high-risk and low-risk groups,
according to the cut-off of z-score = 0. High-risk group had
more dead samples than low-risk group (Figure 7A). Four genes
A B

C

FIGURE 2 | The relation between enrichment of different cell types and PAAD prognosis. (A) Forest plot of different cell types in the relation to prognosis in TCGA
and GEO cohorts. Red indicates P < 0.05. (B, C) Kaplan–Meier survival plots of high and low enrichment of MBCs in TCGA-PAAD (A) and GEO (B) cohorts.
June 2022 | Volume 13 | Article 883548
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were all high-expressed in high-risk group, compared to low-risk
group. ROC analysis revealed that the prognostic model had the
strongest performance in predicting 5-year overall survival
(AUC = 0.74, 95% CI = 0.60–0.88; Figure 7B). Survival
analysis showed differential overall survival of two groups (P =
0.00028, Figure 7C). In another two independent cohorts (GEO
and ICGC), similar results were observed, and samples could be
significantly classified into high-risk and low-risk groups
(Supplementary Figures S5, S6).

Tumor Microenvironment of High-Risk and
Low-Risk Groups
Then, we assessed the distribution of 22 immune cells in high-
risk and low-risk groups. Macrophages and CD4 T cells
contributed a large proportion in two groups (Figure 8A). In
addition, we calculated the enrichment score of 10 oncogenic
pathways, and 4 of 10 pathways were differentially enriched
between the two groups (P < 0.01, Figure 8B). Cell cycle, Hippo
signaling, NRF1, and WNT signaling pathways were more
activated in high-risk group, indicating that these pathways
were possibly involved in the PAAD development. ESTIMATE
analysis revealed that low-risk group had higher immune
infiltration than high-risk group (P = 0.018, Figure 8C),
indicating that immune infiltration degree may affect the
Frontiers in Endocrinology | www.frontiersin.org 6
prognosis. To further understand the TME of two groups, we
analyzed the expression of immune checkpoints, chemokines,
and chemokine receptors. The data revealed that 26 of 47
immune checkpoints such as LAG3, CTLA4, PDCD1, and
CD274 were differentially expressed between high-risk and
low-risk groups (P < 0.05, Figure 8D). Twenty-one of 44
chemokines and 11 of 18 chemokine receptors were
differentially expressed between the two groups (P < 0.05,
Figures 8E, F). In GEO cohort, similar results were observed
that high-risk group had higher immune infiltration than low-
risk group (Supplementary Figure S7). Cell cycle and Hippo
signaling pathway were also more activated in high-risk group.
The above results indicated that high-risk and low-risk groups
had different TME that may lead to different immune response.

Differential Immune Response to
Immunotherapy of Two Groups
As high-risk and low-risk groups displayed distinct TME and
expression of immune checkpoints, we speculated that they may
have different response to ICB. Therefore, TIDE analysis was
applied to calculate TIDE score for two groups in TCGA and
GEO cohorts. In TCGA cohort, high-risk group had higher TIDE
score than low-risk group, suggesting that low-risk group was
more sensitive to ICB (P = 0.012, Figure 9A). In addition, high-
June 2022 | Volume 13 | Article 8835
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C

FIGURE 3 | Unsupervised consensus clustering of PAAD samples based on markers of MBCs in TCGA-PAAD cohort. (A, B) Consensus CDF curve and area under
CDF curve when k = 2–10. (C) Consensus matrix when k = 2. (D, E) Kaplan–Meier survival plot of IS1 and IS2 groups in TCGA-PAAD and GEO cohorts. Log-rank
test was conducted. CDF, cumulative distribution function. (F) Intersection between two molecular subtypes and the previous six immune subtypes.*P < 0.05.
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risk group had lower score of T cell dysfunction but higher score
of T cell exclusion (P < 0.0001, Figures 9B, C), indicating the
different mechanism of immune escape of two groups. Moreover,
MDSCs, an immunosuppressive cell type, were highly enriched
in high-risk group (P < 0.0001, Figure 9D). In GEO cohort, the
same results were obtained (Figures 9E–H), demonstrating that
high-risk and low-risk groups had different immune response to
immunotherapy. The prognostic model associating with MBCs
was robust in predicting the response to immunotherapy. In
addition, we also compared the relationship between IS1-2 and
existing molecular subtypes and patients in high-risk and low-
risk groups. It can be observed that patients in high-risk group
mainly came from IS2, C1 and C2 immune subtypes, whereas
patients in low-risk group mainly came from IS1, C3 and C6
immune subtypes (Supplementary Figure S8A). By mapping
the four key genes into the string database, it can be observed that
there was no direct interaction between them, which suggested
that these genes may each perform different functions
(Supplementary Figure S8B). Analysis on the relationship
between the expression of these genes and MBCs showed that
ANLN had a significant positive correlation with MBCs, and
ARNTL2 and SERPINB5 had a significant negative correlation
with MBCs (Supplementary Figure S8C).
Frontiers in Endocrinology | www.frontiersin.org 7
Identifying Subgroups of MBCs Related to
PAAD Prognosis
In the previous section, we found that MBCs were significantly
associated with PAAD prognosis. To further evaluate the
function of MBCs in PAAD development, we used
unsupervised consensus clustering for 554 MBCs based on
markers of MBCs. MBCs were classed into three subgroups
(MBC_0, MBC_1, and MBC_2). Three subgroups expressed
different markers. MBC_0 only expressed FCGR2A; MBC_1
only expressed FCGR2A, VSIR, and CXCL1; and MBC_2 only
expressed CD40, CDK2, LTB, and CXCL16 (Supplementary
Figure S9A). The three subgroups had distinct enrichment on
the top 20 enriched pathways, possibly indicating different
function of them (Figure 10A).

To understand their development and distribution, we
performed monocle to reveal the cell trajectory of the three
subgroups (Figures 10B–D). All three classes of MBCs enriched
in tumor cells and slightly existed in normal cells (Figure 10B).
State 1 located in the early pseudotime and state 3 located in the
late pseudotime (Figures 10C, D). Of the distribution of three
classes of MBCs, MBC_2 was more enriched in the early
pseudotime, whereas MBC_1 majorly located in the late
pseudotime (Supplementary Figure S9B). The expression
A B

DC

FIGURE 4 | GSEA of hallmark pathways in TCGA-PAAD and GEO cohorts. (A, B) Enriched pathways of IS1 in TCGA-PAAD (A) and GEO (B) cohorts.
(C, D) Enriched pathways of IS2 in TCGA-PAAD (C) and GEO (D) cohorts.
June 2022 | Volume 13 | Article 883548
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A B

D

E

C

FIGURE 5 | Differential analysis between IS1 and IS2. (A) Volcano plot of DEGs in TCGA-PAAD cohort. (B) Unsupervised consensus clustering for TCGA-PAAD
samples based on DEGs. (C) Volcano plot of DEGs in GEO cohort. (D) Unsupervised consensus clustering for GEO samples based on DEGs. (E) Venn plot of
upregulated and downregulated genes in TCGA-PAAD and GEO cohorts.
A B

FIGURE 6 | Pearson correlation analysis between MBCs and 41 key DEGs in TCGA-PAAD (A) and GEO (B) cohorts. Blue indicates negative correlation and red
indicates positive correlation. *P < 0.05, **P < 0.01, and ***P < 0.001.
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trajectory of seven markers also obviously varied by pseudotime
(Supplementary Figure S9C).

We further analyzed whether the two types of classes (IS1 and
IS2, high-risk and low-risk groups) had a difference on the
distribution of different MBCs using CIBERSORT. In TCGA-
PAAD dataset, only MBC_0 and MBC_1 were observed. We
found a significant difference of both MBC_0 and MBC_1
enrichment between IS1 and IS2 (P < 0.0001, Figures 11A, B).
Specifically, IS1 had higher enrichment of MBC_0 but lower
enrichment of MBC_1, suggesting that MBC_0 may be a
protective factor of PAAD prognosis. The supposal was further
illustrated in high-risk and low-risk groups, as low-risk group
had a higher proportion of MBC_0 compared with high-risk
group (P < 0.0001, Figure 11C). However, MBC_1 was highly
enriched in high-risk group (P < 0.0001, Figure 11D), which was
consistent with the above results.
DISCUSSION

On the basis of the analysis of single-cell data, we discovered that
MBCs were significantly associated with PAAD prognosis.
Therefore, we constructed two molecular subtypes based on
the markers of MBCs. IS1 and IS2 showed differential overall
survival and clinical features, supporting that MBCs played an
important role in PAAD development. To identify functional
pathways that may be involved in prognosis, we analyzed the
enriched pathways in IS1 and IS2 through GSEA. Tumor-related
Frontiers in Endocrinology | www.frontiersin.org 9
pathways such as cell cycle, DNA replication, mismatch repair,
and p53 signaling pathway were highly enriched in IS2 group,
suggesting that these pathways may result in worse prognosis
of IS2.

A total of 41 DEGs were found between IS1 and IS2, and they
were all observed to be positively or negatively associated with
the enrichment of MBCs. It could be speculated that these DEGs
were possibly involved in PAAD development and MBC
regulation. With this hypothesis, we screened four prognostic
genes (ANLN, ARNTL2, SERPINB5, and DKK1) based on 41
DEGs and constructed a four-gene prognostic model. According
to the expression of four genes, risk score was calculated for each
sample. PAAD samples were divided into high-risk and low-risk
groups with distinct overall survival, which demonstrated that
four genes were involved in cancer progression. It was worth
mentioning that the prognostic relationship of these four genes
in pancancer can be assessed by SangerBox online analysis
platform (http://vip.sangerbox.com). We observed that these
genes not only were significantly related to prognosis in
pancreatic cancer but also were associated with poor prognosis
in many tumors, especially lung cancer. These genes showed
significant prognostic differences in lung cancer. Moreover,
ANLN, SERPINB5, and ARNTL2 were also associated with
poor prognosis of RCC. DDK1 and ARNTL2 were significantly
associated with poor prognosis of low-grade gliomas
(Supplementary Figures S10A–D). Previous studies have
reported that these four genes biomarkers for predicting
prognosis in various cancer types. Especially, DKK1 was widely
A B

C

FIGURE 7 | Evaluation of the four-gene prognostic model in TCGA-PAAD cohort. (A) The distribution of PAAD samples and expression of prognostic genes ranking
by risk score. (B) ROC curve of the prognostic model in predicting 1-, 3-, and 5-year overall survival. (C) Kaplan–Meier survival plot of high-risk and low-risk groups.
Log-rank test was conducted.
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reported to participate cancer development and metastasis. In
breast cancer, DKK1 stimulates the metastasis of breast-to-bone
through regulating WNT signaling pathway (28). However,
DKK1 inhibits lung metastasis through suppressing
WNT/Ca2+-CaMKII-NF-kB signaling, indicating a dual role of
DKK1 in the metastasis of breast cancer (28). DKK1 is
commonly overexpressed in many cancer types. Betella et al.
proposed that DKK1 overexpression may contribute to
exhaustion of effective T cells and advanced clinical stages and
unfavorable prognosis in ovarian cancer (29). In our study,
DKK1 was also higher-expressed in high-risk group. Moreover,
a strong correlation was also found between DKK1 and MDSCs
(30), where DKK1 targeted b-catenin in MDSCs in pancreatic
cancer. High-risk group had a higher infiltration of MDSCs,
indicating that DKK1 may have an immunomodulatory role by
targeting MDSCs.
Frontiers in Endocrinology | www.frontiersin.org 10
ARNTL2 was identified as a potential biomarker to predict
cancer progression of colorectal cancer (31). In clear cell renal
cell carcinoma, high expression of ARNTL2 is correlated with
worse overall survival (32), which is consistent with our research.
In addition, the group presenting high expression of ARNTL2
manifested high immune infiltration and high expression of
immune checkpoints such as PD-L1 and CTLA4 (32).
However, our result showed that high-risk group with high
ARNTL2 expression had lower immune infiltration and lower
expression of immune checkpoints, suggesting that ARNTL2
may function differentially across cancer types.

ANLN was considered to play an oncogenic role in cancer
development. Zhou et al. demonstrated that knockdown of
ANLN in breast cancer cell lines inhibits the proliferation of
cancer cells and blocked cell cycle progression (33). Wang et al.
found that ANLN expressed was significantly upregulated in
June 2022 | Volume 13 | Article 88354
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FIGURE 8 | Comparison of TME between high-risk and low-risk groups in TCGA-PAAD cohort. (A) A heatmap describing distribution of 22 immune cells in high-risk
and low-risk groups. (B) Enrichment score of 10 oncogenic pathways in high-risk and low-risk groups. (C) Immune score of high-risk and low-risk groups.
(D–F) Expression of immune checkpoints (D), chemokines (E), and chemokine receptors (F) in two groups. Student t-test was performed between two groups. ns,
no significance. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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A B D
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C

FIGURE 9 | TIDE analysis of high-risk and low-risk groups. (A–H) Comparison of TIDE score (A, E), T cell dysfunction (B, F), T cell exclusion (C, G) and enrichment
score of MDSCs (D, H) between high-risk and low-risk groups in TCGA-PAAD (A–D) and GEO (E–H) cohorts. *P < 0.05, **P < 0.01, and ****P < 0.0001.
A B

DC

FIGURE 10 | Identification of three MBC subgroups. (A) The top 20 enriched pathways of three MBC subgroups. Blue indicates low enrichment and red indicates
high enrichment. (B) The distribution of MBC_0, MBC_1, and MBC_2 in normal and tumor samples. (C, D) Cell trajectory of state1, state2, and state3. Red to blue
indicates pseudotime from early to late.
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pancreatic cancer, and its downregulation greatly suppresses cell
proliferation and migration (34), which illustrated the prognostic
value of ANLN in pancreatic cancer.

SERPINB5 has both suppressive and promotive function on
cancer progression, according to previous research. In colorectal
cancer, SERPINB5 overexpression is associated with poor overall
survival and progression-free survival (35). Mardin et al.
illustrated that upregulated SERPINB5 expression was
correlated with increased metastasis resulted from SERPINB5
methylation in pancreatic ductal adenocarcinoma (36). The
above observations provided evidence that SERPINB5 can
serve as a prognostic biomarker for pancreatic cancer.

Overall, these four prognostic genes identified in our research
have been reported to be involved in cancer development. They all
could serve as prognostic biomarkers in pancreatic cancer. Our
study constructed the four-gene prognostic signature that was
more accurate to predict prognosis. In addition, TIDE analysis
proved that the signature has the potential to guide ICB and that
patients with PAAD could benefit more from personalized therapy.

Furthermore, we identified three subgroups of MBCs that had
differential molecular features. MBC_0 and MBC_1 had
Frontiers in Endocrinology | www.frontiersin.org 12
differential enrichment in IS1 and IS2, high-risk and low-risk
groups. Although we found that higher enrichment of MBCs was
associated with more favorable prognosis, it was not applicable to
all MBCs. MBC_0 was identified as a group of protective cells for
inhibiting cancer progression as its higher enrichment in IS1 and
low-risk group. However, further assessment and experiments are
needed to further analyze the role of MBCs in pancreatic cancer.
CONCLUSIONS

In conclusion, by exploring TME of pancreatic cancer using
single-cell analysis, we found that MBCs were an important
group of cells involved in cancer development of pancreatic
cancer. The four-gene prognostic model based on markers of
MBCs could predict overall survival and guide personalized
therapy for pancreatic cancer patients. Importantly, we
discovered two subgroups of MBCs (MBC_0 and MBC_1)
with strong correlation with PAAD prognosis. Further studies
are needed to explore the mechanism of MBC_0 and MBC_1 in
PAAD progression.
A B

DC

FIGURE 11 | MBC enrichment of different groups in TCGA-PAAD cohort. (A, B) Comparison of the enrichment of MBC_0 and MBC_1 between IS1 and IS2.
(C, D) Comparison of the enrichment of MBC_0 and MBC_1 between high-risk and low-risk groups. ****P < 0.0001.
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0.0661.

Supplementary Figure 5. | Evaluation of the 4-gene prognostic model in GEO
cohort. (A) The distribution of PAAD samples and expression of prognostic genes
ranking by risk score. (B) ROC curve of the prognostic model in predicting 1-year,
3-year and 5-year overall survival. (C) Kaplan-Meier survival plot of high-risk and
low-risk groups. Log-rank test was conducted.

Supplementary Figure 6. | Evaluation of the 4-gene prognostic model in ICGC-
AU cohort. (A) The distribution of PAAD samples and expression of prognostic
genes ranking by risk score. (B) ROC curve of the prognostic model in predicting 1-
year, 3-year and 5-year overall survival. (C) Kaplan-Meier survival plot of high-risk
and low-risk groups. Log-rank test was conducted.

Supplementary Figure 7. | Comparison of TME between high-risk and low-risk
groups in GEO cohort. (A) A heatmap describing distribution of 22 immune cells in
high-risk and low-risk groups. (B) Enrichment score of 10 oncogenic pathways in
high-risk and low-risk groups. (C) Immune score of high-risk and low-risk groups.
(D–F) Expression of immune checkpoints (D), chemokines (E) and chemokine
receptors (F) in two groups. Student t test was performed between two groups. ns,
no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Supplementary Figure 8. | (A) Association between IS1-2 and existing
molecular subtypes and patients in high-risk and low-risk groups. (B) Interaction
between four key genes. (C) Relationship between the expression of four key genes
and memory B cells.

Supplementary Figure 9. | (A)Markers of MBC_0, MBC_1 and MBC_2. (B) The
distribution of three MBC subgroups in different pseudotime. (C) The distribution of
seven markers in different pseudotime.

Supplementary Figure 10. | (A) Prognostic difference forest map of DDK1 in
Pan cancer. (B) Prognostic difference forest map of ANLN in Pan cancer. (C)
Prognostic difference forest map of SERPINB5 in Pan cancer. (D) Prognostic
difference forest map of ARNTL2 in Pan cancer.
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