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Abstract

Objective: The aim of this study was to develop an artificial intelligence–based model to detect the presence of acute respira-
tory distress syndrome (ARDS) using clinical data and chest X-ray (CXR) data.

Method: The transfer learning method was used to train a convolutional neural network (CNN) model with an external image
dataset to extract the image features. Then, the last layer of the model was fine-tuned to determine the probability of ARDS.
The clinical data were trained using three machine learning algorithms—eXtreme Gradient Boosting (XGB), random forest
(RF), and logistic regression (LR)—to estimate the probability of ARDS. Finally, ensemble-weighted methods were proposed
that combined the image model and the clinical data model to estimate the probability of ARDS. An analysis of the import-
ance of clinical features was performed to explore the most important features in detecting ARDS. A gradient-weighted class
activation mapping (Grad-CAM) model was used to explain what our CNN sees and understands when making a decision.

Results: The proposed ensemble-weighted methods improved the performances of the ARDS classifiers (XGB+ CNN, area
under the curve [AUC]= 0.916; RF+ CNN, AUC= 0.920; LR+ CNN, AUC= 0.920; XGB+ RF+ LR+ CNN, AUC= 0.925). In add-
ition, the ML model using clinical data to present the top 15 important features to identify the risk factors of ARDS.

Conclusion: This study developed combined machine learning models with clinical data and CXR images to detect ARDS.
According to the results of the Shapley Additive exPlanations values and the Grad-CAM techniques, an explicable ARDS diag-
nosis model is suitable for a real-life scenario.
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Introduction
Acute respiratory distress syndrome (ARDS) is common
among critically ill patients in the intensive care unit
(ICU), but mortality remains high.1,2 ARDS is defined by
acute-onset hypoxemia with bilateral infiltrates on chest
X-ray (CXR) and the exclusion of fluid overload. ARDS
may result from several causes, both pulmonary and extra-
pulmonary. It is characterized pathologically by alveolar
inflammation and flooding that may result in non-
cardiogenic pulmonary edema and loss of aeratio,3–5

which may lead to the clinical presentation of hypoxemia.
Thus, patients with ARDS often need mechanical ventila-
tion. Prevention of ventilator-induced lung injury (VILI)6

by timely recognition7,8 of ARDS and implementation of
a protective strategy9 is key to improving the survival of
ARDS patients. However, ARDS is often unrecognized
and undertreated1 in real-life practice, and there is an
urgent need to assist intensive care clinicians in early recog-
nition of ARDS and appropriate patient management.

Previous studies have developed artificial intelligence (AI)
models for predicting ARDS using machine learning or deep
learning algorithms. Most studies have attempted to identify
ARDS based on clinical data, including vital signs, laboratory
tests, ventilator-derived parameters, etc.10–12 For example, two
studies developed prediction models for ARDS severity using
machine models based on the Light Gradient Boosting
Machine (LightGBM), random forest (RF), and eXtreme
Gradient Boosting (XGBoost).10,12 Le et al. also developed
a model for the early prediction of ARDS using XGBoost.11

In another study, Sayed et al. developed ARDS predictive
models using LightGBM, XGBoost, and RF. Overall, the
models in these studies showed acceptable or good perform-
ance. However, it is difficult to help clinicians to identify
ARDS accurately and explicably according to the Berlin def-
inition of ARDs5 because of the lack of chest radiographs.

Convolutional neural networks (CNNs) have been tested
in different domains and have shown that they can be suc-
cessfully trained to identify a wide range of relevant find-
ings on chest radiographs. For example, Zaglam et al.
used CXR data alone to develop a computer-aided diagno-
sis system for identifying ARDS. They used a semi-
automatic segmentation method to extract the CXR features
and then classified them using a support vector machine
classifier. A total of 321 images were analyzed for model-
ing, and 90 images were evaluated. The results showed a
sensitivity of 90.6% and a specificity of 86.5%.13 It
remains challenging to develop a classification model for
ARDS based on CXRs because a large training image
dataset is needed when using CNNs. A few studies have
tried to diagnose ARDS using deep learning neural net-
works. For instance, Sjoding et al. developed a classifica-
tion model for detecting ARDS findings on CXRs using a
deep CNN. They used transfer learning to learn the

general features of CXRs with bilateral airspace disease
from large datasets, including 595,506 images, and then
trained the network on 8073 radiographs annotated for
ARDS. The results of the model performance were consist-
ent with or higher than those of intensivist physicians.14

Recently, several studies have developed COVID-19
detection models based on CXRs and associated clinical
information.15,16 Comparing the performance of different
models, the results showed that the joint models (clinical
data combined with computed tomography [CT] images)
outperformed the models trained on clinical data only or
on CT images only and had higher areas under the curve
(AUC). In view of the results of previous studies, our
goal was to develop a real-time model to detect the presence
of ARDS in critically ill patients by integrating clinical
information from electronic health records and the features
of CXR images through AI calculation.

Materials and methods

Study setting

Taichung Veterans General Hospital (TCVGH) is a teach-
ing hospital and tertiary referral medical center in central
Taiwan. TCVGH has six intensive care units with a total
of 105 beds for medical, surgical, cardiovascular, and
neurological critically ill patients. There are approximately
4800 ICU admissions every year, and around 70% of these
patients need invasive mechanical ventilation support.
Since 2018, an ARDS working group composed of pulmon-
ary specialists and respiratory therapists, has routinely
reviewed mechanically ventilated patients with or without
ARDS based on the Berlin definition on working days.
This research was approved by the Institutional Review
Boards I & II of Taichung Veterans General Hospital
(Certificate Number: SE20249B and CE20049B).

Data acquisition

The enrolled patients were those who had been reviewed as
with or without ARDS by the working group from October
2018 to December 2019. They also met the following cri-
teria: (1) age≥ 20 years old; (2) stayed in an ICU for
more than 48 h. Patients readmitted to an ICU and whose
CXR images were missing were excluded. A total of
1577 patients were included in the final data analysis. The
patient selection flowchart is presented in Figure 1.

Model framework

Three AI models were used to generate the probability of
having ARDS. The models included two major modules:
judgment of ARDS based on clinical data and CXR
images separately. For the clinical data, we used eXtreme
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Gradient Boosting (XGboost), random forest (RF), and
logistic regression (LR) classifiers to identify patients
with ARDS. For the CXR images, we only used sample
image preprocessing steps that could avoid extensive
resources and improve the generalization ability of the
CNN classification model. We first resized all the images
to the dimension 224× 224 pixels, then converted the
pixel intensity range between 0 and 255 using histogram
equalization. We then used a deep CNN to segment the
lung region in the CXR images. For model development,
a pretrained network model for learning the imaging char-
acteristics of patients with bilateral airspace disease on
CXRs from the ChestX-ray14 datasets was constructed
using a transfer learning approach.17,18 We then trained
the network on 1577 CXRs annotated for ARDS. Finally,
we created an ensemble model combining a CNN model
from CXR images and three machine learning models
from clinical data to identify patients with ARDS
(Figure 2). More detail on the data pre-process and model
training is described in the following sections.

Clinical data preprocessing

We focused on identifying ARDS during the first 48 h of
admission. We extracted 48 h of data to ensure sufficient
data for modeling, including ventilatory parameters, vital
signs, laboratory data, and fluids (Table 1). For the ventilatory
parameters, vital signs, and fluids, we categorized the features
into 1–24 h (Day 1) and 25–48 h (Day 2). For the laboratory
data, we extracted the mean value during 48 h.

Because all features included missing data, we needed to
impute values for those missing values. The missing values
for these features are imputed by this mean. For optimized
algorithmic performance, we reduced the data dimensions
(features) using recursive feature elimination (RFE),19 a
feature selection method that fits a model and removes
the weakest feature (or features) until the specified
number of features is reached. In total, 21 features were
included in the final model training.

Image pre-processing

Datasets, image pre-processing, and data augmentation. The
original image dataset consists of 1577 de-identified images
of chest X-rays, which were selected from CXRs taken
during the first 48 h of admission. The CXR image is an
effective imaging method that is used extensively in the
initial diagnosis of pulmonary diseases. The original CXR
size is between a resolution of 2000× 2000 and 3000×
3000 pixels. In our study, the images were converted
from the Digital Imaging and Communications in
Medicine (DICOM) format to 224× 224 pixel, 8-bit gray-
scale JPEG images.

Previous studies have developed different pre-
processing methods in CXRs, such as enhancement, reduc-
tion of noise, etc. Chen et al. proposed a method for enhan-
cing CXRs. The CXR image is divided into three
subregions, and the image is enhanced using gray-level nor-
malization.20 Another study developed a CXR image
denoising approach based on total variation regularization

Figure 1. Patient selection flowchart.
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with implementation of the Nesterov optimization
method.21 Recently, an artificial intelligence-aided diagno-
sis of lung disease was diagnosed by CXRs using deep
learning models. The researchers used some pre-processing

methods, such as thresholding, blurring, and histogram
equalization.22 In our study, the histogram equalization
method was used to extend the pixel’s intensity range
from the original range to 0 to 255. Thus, the enhanced

Figure 2. Model framework overview.

Table 1. Clinical features.

Feature type Unit (measurement) Feature type Unit (measurement)

Vital signs Laboratory data

Temperature °C PO2-A mmHg

SBP mmHg Procalcitonin ng/mL

DBP mmHg PCO2-A mmHg

Pulse rate bpm Fluids

Respiratory rate breath/min Urine output ml

SPO2 %

Ventilatory parameters

FiO2 %

Positive end-expiratory pressure cmH2O

Total respiratory rate breath/min

Tidal volume cc/kg

Minute volume L/min

Mean airway pressure cmH2O
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image has a wider range of intensity and a slightly higher
contrast. Figure 3 shows examples of the original images
and after image preprocessing.

The more trainable parameters as the models’ network
deepens. Because we had a small number of images, this
would easily lead to overfitting during model training. To
solve the overfitting problem, we enhanced our training
dataset using the data augmentation technique, including
random rotation and scale jittering. One image in the training
dataset was converted into five images. Figure 4 shows an
example of an original image and five enhanced images. The
augmented data were created every time a test fold changed.

Chest X-ray segmentation. We first used a segmentation
model that combines the Mask R-CNN and U-Net
methods to segment the CXR images,22–24 which reduces
the amount of noise on CXR images and focuses on the
lung region. The segmentation model is trained by 400
CXR images labeled by a clinical expert. Afterward, we
cropped the images by lung segmentation based on a
bounding box. Figure 5 demonstrates the CXR input and
the extracted lung region image cropped by the segmenta-
tion model. Finally, we reshaped the images to 224× 224
pixels to fit the input shape of the CNN model training.

Deep convolutional neural network training

The deep learning model usually requires a large number of
labeled images to train the model. We only had a small

dataset, which is challenging to obtain better results using
the CNN model. Transfer learning is a machine learning
approach in which a model developed for a task is reused
as the starting point for another model for a second
task.18 The benefits of transfer learning include saving
resources and improving efficiency when training a new
model. In our study, we trained the CNN model to identify
ARDS by CXRs using transfer learning. Figure 6 presents
the workflow of CNN model with transfer learning. For
the proposed image classification model, we developed a
CNN model to identify an ARDS event using a 121-layer
dense network architecture (DenseNet121)25 with two
steps: pre-training and fine-tuning ARDS detection training.
We used the weights of a DenseNet121 network trained on
ImageNet as a starting point.26 The CNNmodel was trained
with Tensorflow and Keras in Python. For the pre-training
step, the CNN model was trained to detect 14 common
descriptive CXR findings (e.g. edema, infiltrate, and
pleural effusion) and to extract learned features from
CXRs using the ChestX-Ray14 dataset, totaling 86,524
CXRs.

In the fine-tuning step, we only retrained the parameters
in the last convolutional block and subsequent layers to
detect ARDS, while all the others were kept fixed after
the pre-training.14 Binary cross-entropy loss was used
when adjusting model weights during training. The adap-
tive moment estimation (ADAM) optimizer was used to
optimize the parameters of model training. The hyperpara-
meters used in the training dataset had an initial learning

Figure 3. Examples of chest X-rays (CXRs) from the original dataset and after histogram equalization preprocessing.

Figure 4. Original image and five enhanced images using data augmentation.
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rate of 10−5, and the learning rate was reduced by a factor of
10 if the validation loss did not improve for two consecutive
epochs. The model was trained with a batch size of 32 and
22 epochs to minimize computational time.

Ensemble method

Previous studies have developed weighted and unweighted
ensemble methods by combining different machine learning
or deep learning models.27,28 In our study, we experimented
with different ensemble methods that create multiple
models and then combined them to produce improved
results. First, the ensemble average probability method was
defined so that the prediction results of the classifiers based
on clinical data (XGB, RF, LR) were combined with the pre-
diction results of the image classification model, and the

average of the two predictions was taken as the final predic-
tion value. Second, the maximum probability method was
defined so that the output of the maximum probability of
ARDS identification was a higher probability from the
image classification and clinical data classification models.
For instance, if the output probability of identifying ARDS
was 0.475 in the image classification model and 0.568 in
the clinical data classification model, the final output probabil-
ity of the ensemble method was 0.568. Third, the three clas-
sifiers using clinical data were combined using the average
probability and maximum probability methods to create two
different ensemble models. Finally, we combined the three
machine learning models based on clinical data and the
CNNmodel. The average probability and the maximum prob-
ability methods are also used to create two different ensemble
models.

Figure 5. Example of input image (a) and extracted lung region image (b) cropped by the segmentation model (c), resulting in the
reshaped image (d).

Figure 6. Workflow of the convolutional neural network (CNN) model with transfer learning.
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Table 2. Demographic characteristics.

All (N= 1577) Non-ARDS (n= 1194) ARDS (n= 383) p value

Demographic characteristics

Age (years) 66.1± 15.8 66.1± 15.7 66.3± 16.3 0.823

Male, n (%) 1017 (64.5%) 762 (63.8%) 255 (66.6%) 0.357

BMI (kg/m2) 24.3± 4.9 24.2± 4.7 24.4± 5.4 0.623

Admission source, n (%)

Emergency room 1577 (100.0) 1194 (100.0) 383 (100.0) 1.000

ICU type, n (%)

Medical 927 (58.8%) 631 (52.8%) 296 (77.3%) <0.001

Surgical 650 (41.2%) 563 (47.2%) 87 (22.7%)

Severity scores

APACHE II score 25.2± 6.1 24.2± 5.7 28.3± 6.3 <0.001

SOFA score, Day 1 8.6± 3.6 7.9± 3.5 10.3± 3.4 <0.001

SOFA score, Day 3 7.4± 4.0 6.6± 3.7 9.3± 4.0 <0.001

SOFA score, Day 7 6.8± 4.0 6.3± 3.9 7.6± 4.2 <0.001

Comorbidities, n (%)

Cardiovascular disease 444 (28.2%) 344 (28.8%) 100 (26.1%) 0.338

Cerebrovascular disease 454 (28.8%) 376 (31.5%) 78 (20.4%) <0.001

Dementia 101 (6.4%) 77 (6.4%) 24 (6.3%) 0.994

Chronic pulmonary disease 272 (17.2%) 212 (17.8%) 60 (15.7%) 0.387

Rheumatic disease 273 (17.2%) 49 (4.1%) 35 (9.1%) <0.001

Hepatic disease 269 (17.1%) 196 (16.4%) 73 (19.1%) 0.263

Diabetes mellitus 548 (34.7%) 395 (33.1%) 153 (39.9%) 0.017

Renal disease 484 (30.7%) 346 (29.0%) 138 (36.0%) 0.011

Malignancy 480 (30.4%) 326 (27.3%) 154 (40.2%) <0.001

Charlson Comorbidity Index (CCI) 2.2± 1.4 2.1± 1.4 2.3± 1.5 0.034

Clinical outcome

ICU length of stay (days) 14.1± 14.0 13.4± 14.2 16.3± 12.9 <0.001

(continued)
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Model training and evaluation

The data were randomly split five times (5 k-fold) into train-
ing datasets (80%) and validation datasets (20%). Each
datapoint was only in one of the training and validation
datasets. For the model evaluation, the results of the classi-
fication performance are presented in terms of accuracy,
sensitivity, specificity, and AUC. The calculations of accur-
acy, sensitivity, and specificity were as follows:

Accuracy = tp + tn
tp + tn + fp + fn

Sensitivity = tp + tn
tp + fn

Specificity = tn
tn + fp

where true positive (tp) is an ARDS patient classified as an
ARDS patient, and false positive (fp) is a non-ARDS patient
classified as an ARDS patient. True negative (tn) is a
non-ARDS patient classified as non-ARDS, and false negative
(fn) is an ARDS patient classified as a non-ARDS patient.

Results

Cohort statistics (total, ARDS, non-ARDS)

A total of 1577 subjects requiring mechanical ventilation
were enrolled. Their mean age was 66.1± 15.8 years and

64.5% were male. We found that 24.2% (383/1577) of
the patients had ARDS. They had a higher average
APACHE II score (28.3± 6.3 vs. 24.2± 5.7, p < 0.001)
and stayed longer in the ICU (16.3± 12.9 vs. 0.13.4±
14.2, p < 0.001) (Table 2).

Model performance

The AI models were evaluated using a five-fold cross-
validation. Here, values obtained after the CNN model for
training accuracy, validating accuracy, training loss, and
validation loss are shown in Figure 7. This indicates the
mean of training accuracy is over 80% after the 20
epochs, and the mean of training loss becomes stable after
30 epochs. The proposed model is stopped early in the
22th epoch to avoid overfitting.

The accuracy, sensitivity, specificity, and AUC are pre-
sented in Table 3. Comparing the three machine learning
models constructed using clinical data, all classifiers had a
good AUC value (Figure 8(a)). XGBoost had the highest
model performance, with accuracy, sensitivity, specificity,
and AUC of 0.848, 0.809, 0.861, and 0.910, respectively.
Moreover, the ensemble of three classifiers using average
probability performed the highest specificity at 0.934 but
the lowest sensitivity, at 0.676. The ensemble of three classi-
fiers using maximum probability had the highest sensitivity of
0.849 and AUC of 0.912. However, the model had the lowest
accuracy: 0.821. It seems that the ensemble models by clinical
data showed no significant improvement.

Figure 7. Convolutional neural network (CNN) model for training accuracy, validation accuracy, training loss, validation loss.

Table 2. Continued.

All (N= 1577) Non-ARDS (n= 1194) ARDS (n= 383) p value

Hospital length of stay (days) 31.6± 27.1 31.8± 28.3 31.0± 23.1 0.571

Ventilator days 11.5± 12.7 10.6± 12.4 14.4± 13.1 <0.001

Hospital mortality, n (%) 433 (27.5) 282 (23.6) 151 (39.4) <0.001

BMI: body mass index; APACHE II: Acute Physiology and Chronic Health Evaluation score; SOFA: Sequential Organ Failure Assessment; ICU: intensive care unit.
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In the CXR image classification, the model that used
image segmentation and the reshape pre-processing
method performed better than the model that used the ori-
ginal image (Table 4): the accuracy, sensitivity, specificity,
and AUC were 0.791, 0.760, 0.802, and 0.854, respect-
ively. These two types of machine learning models (based
on clinical data and CXR) achieved good classification per-
formance in identifying ARDS.

We further combined the two classification models’
output probabilities of identifying patients with and
without ARDS. We experimented with combining ensemble
methods (average probability and maximum probability).
Both methods performed better than the models that only
used clinical data or images. The ensemble average

probability method presented excellent results for sensitivity
(0.846± 0.02), specificity (0.863± 0.02), accuracy (0.859±
0.02), and AUC (0.920± 0.02) (Table 5). The mean accur-
acy, sensitivity, and specificity of the combined models
were above 0.8. The mean AUC values of the three com-
bined models (XGB, RF, and LR) were above 0.920
(Figure 9(a)). The maximum probability method resulted in
sensitivity values of 0.922, 0.914, and 0.927, respectively,
and specificity values of 0.731, 0.715, and 0.718, respect-
ively (Table 5). The mean AUC values were 0.907, 0.901,
and 0.911, respectively (Figure 9(b)). Moreover, we com-
bined three machine learning models based on clinical data
and a CNN model based on CXRs and experimented with
combining ensemble methods (see Table 5). The average

Figure 8. Receiver operating characteristic (ROC) curves demonstrating the performance of the machine learning models and
convolutional neural network (CNN) models for ARDS classification: (a) three machine models using clinical data; (b) two CNN models.
Note. ARDS: acute respiratory distress syndrome; AUC: area under the curve.

Table 3. ARDS classification results based on clinical data.

Data type Classifier Accuracy Sensitivity Specificity AUC

Clinical data XGB 0.848± 0.03 0.809± 0.03 0.861± 0.03 0.910± 0.02

RF 0.840± 0.03 0.791± 0.03 0.855± 0.04 0.910± 0.02

LR 0.832± 0.02 0.791± 0.05 0.845± 0.02 0.902± 0.02

Ensemble (Average probability) 0.871± 0.02 0.676± 0.02 0.934± 0.02 0.912± 0.02

Ensemble (Maximum probability) 0.821± 0.03 0.849± 0.04 0.812± 0.03 0.912± 0.02

ARDS: acute respiratory distress syndrome; XGB: eXtreme Gradient Boosting; RF: random forest; LR: logistic regression; AUC: area under the curve.
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probability method results performed more improvement
with AUC (0.925± 0.02).

Model interpretation

We further explored why the model made the correct clas-
sifications and the most important features in making the
classification. Figure 7 presents the global feature import-
ance computed by SHAP values25 after training the
ARDS classifiers using XGBoost from the clinical
dataset. A total of 15 important features were demonstrated,
including 8 ventilator features, 5 vital sign features, and 2
laboratory features. The mean positive end-expiratory pres-
sure (PEEP) value and SPO2 on the first day are associated
with a high risk of ARDS.

The results of the summary plot of SHAP values com-
bining feature importance with feature effects (Figure 10)
explain the relationship between the features and the risk
of ARDS. The position on the y-axis is defined by the
feature and by the SHAP value on the x-axis. The color
represents the feature value from low (blue) to high (red).
We found that lower PEEP values reduce the risk of
ARDS, while a larger PEEP value increases the risk. A
higher value in the total respiratory rate (TOTRR) measured

on day 1 and day 2 also denotes a higher risk of ARDS.
Moreover, the mean airway pressure (MAPS), FIO2 also
present a positive effect on ARDS identification.

Contrary to the results on PEEP, TOTRR, MAPS, and
FIO2, lower values of SPO2, PaO2 (PO2_A), and tidal
volume (VTEXH) represent a high risk of ARDS. In
terms of the measurement of vital signs, the results reveal
that pulse rate and respiratory rate are important features,
which is consistent with previous studies. Rapid breathing
(tachypnea) and a rapid heartbeat (tachycardia) are signs
and symptoms of ARDS.

We further explored the model interpretability using the
gradient-weighted class activation mapping (Grad-CAM)
technique to generate class activation maps (CAMs). We
report two cases of false-negative CXRs (Figure 11) that dem-
onstrate the color visualization approach to CXRs using the
Grad-CAM technique. The results show that the original
images resulted in a false negative, and we observed that the
CNN model was not focused on the lungs. In contrast with
the CNN model using the original images, the segmented
image CNN model found true positives in the same two
cases where the CNN model focused on the right lungs. The
results indicate that the proposed CNNmodel with segmented
images is associated more with clinical experts’ diagnosis.

Table 5. ARDS classification results from two AI models combining clinical data and CXRs.

Classifier Ensemble method Accuracy Sensitivity Specificity AUC

XGB+ CNN Ensemble (Average probability) 0.859± 0.02 0.846± 0.02 0.863± 0.02 0.920± 0.02

Ensemble (Maximum probability) 0.777± 0.03 0.922± 0.02 0.731± 0.03 0.909± 0.02

RF+ CNN Ensemble (Average probability) 0.852± 0.02 0.836± 0.01 0.857± 0.03 0.919± 0.02

Ensemble (Maximum probability) 0.763± 0.03 0.914± 0.02 0.715± 0.04 0.906± 0.02

LR+ CNN Ensemble Average probability) 0.854± 0.02 0.849± 0.01 0.856± 0.03 0.920± 0.02

Ensemble (Maximum probability) 0.769± 0.03 0.927± 0.04 0.718± 0.04 0.911± 0.02

XGB+ RF+ LR+ CNN Ensemble (Average probability) 0.855± 0.03 0.830± 0.02 0.863± 0.03 0.925± 0.02

Ensemble (Maximum probability) 0.749± 0.04 0.935± 0.04 0.689± 0.04 0.915± 0.02

ARDS: acute respiratory distress syndrome; AI: artificial intelligence; CXRs: chest X-rays; XGB: eXtreme Gradient Boosting; RF: random forest; LR: logistic
regression; AUC: area under the curve.

Table 4. ARDS classification results based on CXRs.

Data type Classifier Accuracy Sensitivity Specificity AUC

Original image CNN 0.743± 0.02 0.783± 0.05 0.729± 0.02 0.835± 0.01

Segmented and reshaped image 0.791± 0.03 0.760± 0.04 0.802± 0.04 0.854± 0.02

ARDS: acute respiratory distress syndrome; CXRs: chest X-ray; CNN: convolutional neural network; AUC: area under the curve.
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CXR presentation is one of the essential criteria for
defining ARDS.5 To explore the effectiveness of the pro-
posed ensemble model, a Venn diagram was used to illus-
trate the classification efficiencies of these two classifiers.
Here, the XGBoost classifier and the CNN classifier are
represented by red and green, respectively. Figure 12(a)
represents the number of objects with ARDS “correctly”
classified by XGBoost and CNN (true positive). We

found that an additional 54 objects were correctly classified
by CNN. On the other hand, Figure 12(b) represents the
number of objects with non-ARDS “correctly” classified
by XGBoost and CNN (true negative). We found that an
additional 72 objects were correctly classified by CNN.
Approximately 8% (126/1577) of objects were misclassi-
fied by clinical data classifiers but correctly classified
by CNN. It seems that the proposed ensemble model

Figure 9. Receiver operating characteristic (ROC) curves demonstrating the performance of two ensemble-weighted models: (a) average
probability; (b) maximum probability. Note. XGB: eXtreme Gradient Boosting; CNN: convolutional neural network; AUC: area under the
curve.

Figure 10. Feature importance (a) and summary plot (b) of SHAP values.
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performed a marginally improvement compared to the clin-
ical data and image models in diagnosing ARDS.

Discussion
ARDS is a common disorder among critically ill patients
requiring mechanical ventilation support. Sometimes, it is
not recognized immediately and treated appropriately. We
have successfully developed a machine learning model to
classify patients with or without ARDS. We used clinical
data and CXR features with ensemble models to enhance
sensitivity and specificity. The black box of the models
and the important features relevant to clinical viewpoints
were also explored. Our novel model design can be inte-
grated into clinical practice in the future and remind

clinicians to implement the optimal bundle of actions for
ARDS at the right time.

Burnout is common among ICU healthcare profes-
sionals, and workload is one of the major contributing
factors.29 Burnout has been associated with self-reported
medical errors.30 It is an especially important issue during
the COVID-19 pandemic, when ICUs face an influx of
patients and exposure to the coronavirus.31 When faced
with huge amounts of data, identifying useful information
and making correct and timely decisions continue to be a
challenge to critical care physicians. Because of human
cognitive limitations, even the most knowledgeable and
experienced clinicians have difficulty dealing with variables
on a continuous basis. The judicious application of AI tech-
nology can help clinicians deal with information over-
load.32 In addition, the development and application of AI

Figure 11. Comparison of acute respiratory distress syndrome (ARDS) classification models based on original data and segmented image
from two cases: (a) Color visualization of a false negative on original images. (b) Color visualization of true positive on segmented images.

Figure 12. Venn diagrams represent the effectiveness of classification by XGBoost and convolutional neural network (CNN) classifier. (a)
True Positive, (b) True Negative.
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to facilitate decision support in clinical practice may not
only alleviate burnout syndrome among ICU healthcare
professionals but also improve treatment outcomes by
making the right decisions and avoiding unnecessary
medical errors.33 Although the introduction of machine
learning to the ICU is still in its infancy, a growing body
of applications for outcome prediction, patient monitoring,
and decision support have been developed in the past few
years, and these will reshape the practice of critical care
medicine and ICU management in the coming future.

ARDS is a highly prevalent clinical disorder with high
morbidity and mortality rates in critically ill patients. The
application of machine learning algorithms for the diagno-
sis and management of ARDS has emerged in previous
years. ARDS is clinically and biologically heterogeneous,
and phenotyping by experimental biomarkers potentially
offers insights for prognosis and treatment.34 The applica-
tion of machine learning models by using readily available
clinical data can help classify ARDS phenotypes with high
accuracy.35 This may enable rapid phenotype identification
at the bedside for prediction of prognosis and possibly deci-
sions about intervention. Another important aspect in real-
life practice is that ARDS is often unrecognized and under-
treated.1 By using routinely collected clinical variables and
numerical representations of radiological reports from the
Medical Information Mart for Intensive Care III
(MIMIC-III) database, Sidney et al. demonstrated that
supervised machine learning predictions may help predict
patients with ARDS up to 48 h prior to onset.11 Singhal
et al. also showed the ability of an interpretable machine
learning algorithm for the early prediction of ARDS in
COVID-19 patients.36 As CXR presentation is one of the
criteria for ARDS definition,5 we found that combining
clinical variables and images into machine learning algo-
rithms has the highest ability to predict ARDS.

Our results are in line with the results that show the
important clinical features associated with ARDS.37,38

Tidal volume is an important characteristic of ARDS, and
we found that tidal volumes on day 2 is an important
feature, which is consistent with previous studies.7,8

Previous studies also indicated that tidal volume is asso-
ciated with the risk of ICU mortality.8 We further compared
the CNN model performance with the image segmentation
model. The results showed an improvement in the accuracy
of identifying ARDS using the image segmentation model.
The proposed CNN model performance seems lower than
previous studies because of the small size of our dataset.
We only collected 1577 CXRs as our dataset. Compared
with previous studies using a similar model framework,
they developed the ARDS classification model using
8073 CXRs as a training dataset and performed an excellent
AUC (0.92, 95% CI 0.89–0.94).14 Moreover, the results of
Venn diagram indicated that there are some differences
between the pattern of the clinical data classifier and the
CNN model. Importantly, the combined machine learning

model aims to provide related clinical and CXR information
to identify ARDS for clinicians, which could result in
shorter time to diagnosis and treatment decision-making.

However, this study has some limitations. First, there is
little similar research to compare with our results. Our
results are in line with a similar study by Jabbour et al.,
who developed machine learning models combining
CXRs and clinical data to identify acute respiratory
failure.39 The results presented in our combined model
with clinical data and images had better sensitivity, specifi-
city, and AUC than the separate clinical data model and
image models. We found the evidence that seems to
suggest the benefit of combined machine learning models
and could be comparable with a clinician’s judgment. On
the other hand, we only used the simple CXR image
enhancement method in our image pre-processing for con-
sidering the efficiency of model clinical implementation.
Moreover, we also used limited clinical features that
avoid model complexity and overfitting and would be
unlikely to leak labels. We found better results even with
a limited set of data. Second, we collected only a small
sample size and conducted our study at a single center.
External validation of multiple centers should be conducted
in the future. Based on the privacy protection of medical
data, the federated learning approach can be considered
and implemented.40

Conclusion
We have successfully developed a novel machine learning
model to classify patients with or without ARDS based
on the combined features of clinical data and CXRs. The
model has been designed for a real-life scenario. We have
started to integrate the model into our clinical practice
and are conducting a study to investigate its impact on
the outcomes of ARDS patients.
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