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Abstract

In the statistical literature, the class of survival analysis models known as cure models has received much attention in

recent years. Cure models seem not, however, to be part of the statistical toolbox of perinatal epidemiologists. In this

paper, we demonstrate that in perinatal epidemiological studies where one investigates the relation between a gesta-

tional exposure and a condition that can only be ascertained after several years, cure models may provide the correct

statistical framework. The reason for this is that the hypotheses being tested often concern an unobservable outcome

that, in view of the hypothesis, should be thought of as occurring at birth, even though it is only detectable much later in

life. The outcome of interest can therefore be viewed as a censored binary variable. We illustrate our argument with a

simple cure model analysis of the possible relation between gestational exposure to paracetamol and attention-deficit

hyperactivity disorder, using data from the Norwegian Mother, Father and Child Cohort Study conducted by the

Norwegian Institute of Public Health, and information about the attention-deficit hyperactivity disorder diagnoses

obtained from the Norwegian Patient Registry.
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1 Introduction

Perinatal epidemiological studies investigating the possible effects of some gestational exposure on a postnatal
condition can roughly be split into two categories. Those where the condition is observable immediately after birth
and those where it may take years before the condition is ascertained, if ever. This paper is concerned with the
latter. Smoking and low birth weight; infant supine position and sudden infant death syndrome; and foetal
alcohol spectrum disorders fall in the first category. The association between prenatal marijuana exposure on
neuropsychological conditions1 and the association between prenatal exposure to pharmaceuticals and neuro-
developmental disorders belong to the second category. The present study was motivated by the hypothesis
linking gestational exposure to paracetamol and an increased risk of neurodevelopmental disorders, attention-
deficit hyperactivity disorder (ADHD) in particular,2–5 hypotheses that are pertinent examples of the
latter category.
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From a statistical modelling perspective, the main difference between these two types of hypotheses is that the
data in the latter are plagued by censoring. That is, the outcome in studies in the second category may be
unknown at the time of study due to a lack of follow-up. Thus, for studies in the first category, standard regression
analysis is a natural choice (e.g. linear, Poisson, logistic), while for the latter type of studies, the need to handle
censoring often leads to survival analysis methods being employed (e.g. the Cox model). A consequence of opting
for a survival analysis model is that the outcome is defined as the time to diagnosis, a convenient choice due to the
availability of efficient survival analysis software, but that, we argue, can in many cases be an imprecise oper-
ationalisation of the outcome in view of the hypothesis being tested. The reason for this is that in perinatal studies
belonging to our second group, the hypotheses often concern an exposure that is only present during pregnancy,
and consequently the outcome of interest should be thought of as occurring when the effect of the exposure ceases
to have an effect, that is, at birth. Think of a frailty model with hazard ZaðtÞ, where Z is a frailty variable. Our
reading of the hypotheses in the second group is that they concern the effect of the exposure on the distribution of
Z, but not on aðtÞ. By defining the outcome as the time to diagnosis, one is effectively testing another hypothesis
than initially intended. In this paper, we show that in cases where the outcome (occurring at birth, but unob-
servable at that time) can be thought of as binary, the class of statistical models known as cure models is a viable
alternative to standard regression and survival analysis models. In concluding, we also propose modelling alter-
natives for situations where the unobservable outcome variable is continuous, and for situations where the pres-
ence of the condition under study can be ruled out during the course of a life.

In the statistical literature, cure models have received much attention in recent years.6–12 The name stems from
medical applications where some patients never experience a relapse of the disease under study, and these patients
are therefore considered cured. Cure models have also been proposed in the field of reproductive epidemiology to
account for the possibility of some of the individuals under study being sterile.13

It is worth noting that the motivation typically underlying cure models is rather different from the argument we
put forward in this paper. Typically, cure models are solidly anchored in the survival analysis world, while
our approach, which is focused on the probability of belonging to the susceptible group, is more akin to a
misclassification- or missing data problem. In other words, in this paper, we are less interested in survival quan-
tities such as hazard rates and survival functions per se, but view them as nuisance parameters that must be tended
to in order to make inferences on the parameters determining whether a child is born susceptible or not. See
Farewell14 for an early paper advocating for cure models in a similar manner.

The article proceeds as follows. In Section 2, we provide a brief introduction to the cure model, and motivate
this class of models in light of the hypothesis linking paracetamol and ADHD (hereafter referred to as the
paracetamol–ADHD hypothesis). This section also contains some theoretical results on simple logistic and
Cox models when such are fitted to data that contain a cure fraction. These results are illustrated with two
small simulation studies. In Section 3, we fit different cure models to the data on gestational exposure to para-
cetamol and ADHD, and compare these with a logistic regression and a Cox regression model. The aim of this
application is to investigate whether our reading of the paracetamol–ADHD hypothesis finds empirical backing,
and illustrate the fact that all three classes of models are likely to lead to rather similar conclusions about the
paracetamol–ADHD hypothesis.

2 The cure model and ADHD

In this section, we first, using the paracetamol–ADHD hypothesis as our example, elaborate on why we find the
class of cure models appropriate for the perinatal studies discussed in this paper. Subsequently, we give a brief
introduction to the standard mixture cure model.

2.1 The paracetamol–ADHD hypothesis

The use of cure models in perinatal epidemiological studies can be motivated by the directed acyclic graph (DAG)
in Figure 1. In this DAG, x represents the gestational exposure, Y is a binary indicator representing the condition
the child is born in, while u is a set of confounders. In perinatal studies belonging to our second category, we think
of Y as an indicator of a being born susceptible (Y¼ 1) or nonsusceptible (Y¼ 0) to the condition in question, i.e.
the variable Y indicates the incidence of, or vulnerability to, a particular disease or condition, or a lifetime free of
the disease or condition under study.14 The variable T is the minimum of the time at which the presence of the
condition in the child is discovered and a censoring time, d is an indicator taking the value 1 if the value Y¼ 1 is
discovered before censoring and z is a set of postnatal variables influencing the time to an eventual diagnosis.
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The paracetamol–ADHD hypothesis suggests that gestational exposure to paracetamol is associated with ADHD.

More precisely, it states that – all else equal during the gestational period – two children with the exact same

gestational exposure to paracetamol should lead to the same conclusion about the effect of gestational exposure

to paracetamol on the risk of ADHD, even though the two children were diagnosed at different ages. This

entails that the exposure effectively ceases to have an effect once the child is born, which is the reason

for there not being a direct arrow from x to ðT; dÞ in Figure 1. From this perspective, the outcome variable of

interest is not the time to diagnosis, nor is it the time to onset of ADHD, but rather a latent susceptibility variable

whose realisation takes place when the exposure ceases, which is at birth. This latent variable is represented by

the Y in the DAG, so according to the hypothesis, it is the relation between x and Y we seek to make inferences

on. That is, had Y been observable, we would have analysed the relationship between x and Y by a binary

regression analysis.
The Y’s are, however, only partially observable so the T; d’s are what we have at our disposal for making

inferences on the relation between x and Y. It is tempting to use the censoring indicators d as stand-ins for the

latent Y’s. The problem with this is that the probability of observing a diagnosis is not the same as the probability

of being susceptible. The former probability depends on the distribution of the diagnosis times, hence the need to

model the diagnosis times, which is what the cure model of the next section does.

2.2 The standard cure model

As above, let Y be the indicator of susceptibility (Y¼ 1), or of a lifetime free of the condition (Y¼ 0), with p the

probability of Y¼ 1. The time to diagnosis is a variable ~T subject to right censoring, i.e. what we observe is T ¼
min ~T;C

� �
and d ¼ If ~T � Cg, where C is a random censoring time. The standard cure model takes the popu-

lation survival function as given by

SpopðtÞ ¼ 1� pþ pSðtÞ; (1)

where SðtÞ ¼ Pr ~T � tjsusceptible
� �

is the survival function of the susceptible group. This latter survival function is

assumed to be proper in the sense that it tends to 0 as t ! 1, hence SpopðtÞ ! 1� p, which is the nonsusceptible

fraction of the population.

Figure 1. A DAG illustrating the data generating mechanism presented in Section 2.1. The exposure of interest (paracetamol) is x, Y
is the latent susceptible/nonsusceptible indicator and u is a confounder of this relation. Given susceptibility (Y¼ 1), z is a postnatal
covariate influencing the possibly right-censored time to diagnosis ðT; dÞ.
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Both p and S(t) are typically modelled as functions of covariates, common choices being a logistic function for

the probability of being susceptible, and a proportional hazards model for the survival function of the susceptible
group. That is, for the i’th individual

pi ¼ p xtib
� � ¼ 1= 1þ exp �xtib

� �� �
; and SiðtÞ ¼ exp

(
�expðzticÞ

Z t

0

a0ðsÞds
)
; (2)

in terms of a baseline hazard function a0ðtÞ that might be parametric or nonparametric, and covariate vectors xi
and zi that can be equal, overlapping or completely different. As regards perinatal studies, an important feature of

the cure model (equation (2)) is that it allows the researcher to distinguish between prenatal and postnatal
covariate effects. The covariate vector x governs the distribution of Y, while the covariate vector z governs the

distribution of the diagnosis times. This means that in order to give the effect estimates of the covariates in x a

direct causal meaning, they must be present during the gestational period. The covariate vector z, on the other
hand, might contain covariates that do not influence the foetus, such as characteristics of the kindergarten or the

school the child attends.
For the perinatal studies that are the object of this paper, two features of the model in equation (1) should be

pointed out. First, by using this model, we are assuming that the nonsusceptible individuals are never diagnosed

with the condition in question, that is, we assume that there are no false positives in the sample. In the case of
ADHD, this assumption may be questioned. In the US, there is evidence of ADHD overdiagnosis in some

communities,15 meaning that the prevalence of ADHD is higher than the standard 3–5% prevalence esti-
mate.16–18 In the data set we analyse in Section 3, only about 2.3% of the children are diagnosed with ADHD.

Since this number is well below the standard prevalence estimates, it would lead one to believe that false positives

are not a major issue in our data.
Notice that if d¼ 1, then we know that Y¼ 1, while if d¼ 0, we do not know whether the individual is

susceptible or nonsusceptible. This brings us to the second point, if the data contain information on nonsuscept-

ibility (e.g. a medical test that ascertains immunity to a certain disease), then this information ought to be taken
into account. As it stands, the model in equation (1) cannot incorporate such information (see Remark 1 in

Section 4 for further discussion).
The log-likelihood function of the model in equation (2) is

‘n b; c; a0ð Þ ¼
Xn
i¼1

fdi log pi þ log a0ðtiÞ þ zticþ logSiðtiÞ
� �þ 1� dið Þlog 1� pi þ piSi tið Þð Þg:

If a0ðtÞ is parametrically specified, it is straight forward to maximise this log-likelihood. When the hazard rate is
nonparametric, the log-likelihood can be maximised using the expectation-maximisation algorithm introduced in

Sy and Taylor7 and Peng and Dear.8 The R-package smcure19 implements this algorithm. The asymptotic theory
of the maximum likelihood estimator in the semiparametric case was worked out by Fang et al.9 and Lu10,

building on previous work of Murphy20 for the Gamma frailty model.

2.3 Fitting logistic and Cox models to cure data

In this section, we provide some insight on the bias incurred in the parameter estimates when the data stem from a
cure model, but a logistic regression model or a Cox regression model, is chosen.

Suppose that the data ðT; dÞ are generated from a model with survival function

Spop tð Þ ¼ 1� p b0 þ b1xð Þ þ p b0 þ b1xð ÞS tð Þ; (3)

where pðuÞ ¼ expðuÞ=ð1þ expðuÞÞ, x a binary indicator and S(t) is a proper survival function that can be
expressed as SðtÞ ¼ expð�AðtÞÞ, in term of the cumulative hazard A(t). Thus, we assume that the true data

generating mechanism is that of a cure model. Our parameter of interest is b1, giving the effect of the exposure

x on susceptibility (Y¼ 1).
Consider fitting a logistic regression model to independent data ðT1; d1Þ; . . . ; ðTn; dnÞ generated by equation (3),

with fixed covariates x1; . . . ; xn, and independent censoring. The expectation of d given x is
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E ½djx� ¼ EE ½If ~T � Cgjx;C� ¼ pðb0 þ b1xÞEG ½1� SðCÞ�, with EG½�� the expectation with respect to the distri-
bution G of the censoring times. Since x is binary, we can define n0 ¼ #fi : xi ¼ 0g; n1 ¼ #fi : xi ¼ 1g; p0 ¼ pðb0Þ
and p1 ¼ pðb0 þ b1Þ. The maximum likelihood estimators of p0 and p1 are

p̂0 ¼ 1

n0

X
i:xi¼0

di; and p̂1 ¼ 1

n1

X
i:xi¼1

di;

which converge in probability to E ½d j x ¼ 0� and E ½d j x ¼ 1�, respectively. Being invariant under transformation,
the maximum likelihood estimator of b1 is then

b̂1 ¼ log
p̂1

1� p̂1
� log

p̂0

1� p̂0
;

so that by continuous mapping

b̂1!
p
log

p1EG½1� SðCÞ�
1� p1EG½1� SðCÞ� � log

p0EG½1� SðCÞ�
1� p0EG½1� SðCÞ� ¼ b1 � log

1þ expðb0 þ b1ÞEG ½SðCÞ�
1þ expðb0ÞEG ½SðCÞ� ; (4)

as n tends to infinity. From this expression, we see that the estimator b̂1 will be biased (negatively if b1 > 0), and
that the degree to which the estimator is biased depends on the distribution of the diagnosis times and on the value
of b0 (and on the distribution of the censoring times).

If S(t) rapidly approaches zero, which is the case if the condition under study is likely to be discovered early in
life, then the bias term will be small. And, through its dependence on b0, we see that the bias of b̂1 is less
pronounced if the condition in question is rare, which is the case with ADHD (recall that only 2:3% of the
children in our sample were diagnosed with ADHD).

Now, consider fitting a Cox regression model with hazard rate h0ðtÞexpðcxÞ, with h0ðtÞ left unspecified, to the
data generated by equation (3). In this case, it turns out that if expðb0 þ b1xiÞ is close to zero for all xi, then the
point estimate ĉ obtained by maximising the Cox partial likelihood will not deviate much from the estimate b̂1

obtained by maximising the likelihood of the true model. The details are as follows (an excellent exposition of the
machinery used in the following can be found in Gill21): the counting processes corresponding to the model in
equation (3) are NiðtÞ ¼ MiðtÞ þ KiðtÞ; i ¼ 1; . . . ; n, with

KiðtÞ ¼
Z t

0

YiðsÞp b0 þ b1xi � AðsÞ� �
dAðsÞ;

for i ¼ 1; . . . ; n, where the MiðtÞ and YiðtÞ are martingales and at-risk indicators, respectively; A(t) is the cumu-
lative hazard of the susceptible individuals; while pð�Þ is the logistic function; and we have used that
d logSpopðtÞ ¼ �pðb0 þ b1xi � AðtÞÞdAðtÞ.

Let Bnðt; cÞ ¼
Xn

i¼1
xiYiðtÞexpðcxiÞ=

Xn

i¼1
YiðtÞexpðcxiÞ, then the score function UnðcÞ of Cox’s partial likeli-

hood is

UnðcÞ ¼
Xn
i¼1

Z T

0

fxi � Bnðs; cÞg dNiðsÞ ¼
Xn
i¼1

Z T

0

fxi � Bnðs; cÞgdMiðsÞ þ
Z T

0

fxi � Bnðs; cÞgdKiðsÞ
" #

:

If the second term on the right is zero, which it is when the model h0ðtÞexpðcxÞ is the true model, then UnðcÞ ¼ 0
is an unbiased estimating equation. The function

EUnðcÞ ¼ E
Xn
i¼1

Z T

0

fxi � Bnðs; cÞg dKiðsÞ ¼ E
Xn
i¼1

Z T

0

xi �
Xn

j¼1
xjYjðsÞecxjXn

j¼1
YjðsÞecxj

8<
:

9=
;YiðsÞ eb0þb1xi�AðsÞ

1þ eb0þb1xi�AðsÞ dAðsÞ;
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is approximately zero when the function

x 7! gðx; tÞ ¼ expðb0 � AðtÞÞ= 1þ expðb0 þ b1x� AðtÞÞ� �
;

is approximately constant. Since a more rapidly increasing cumulative hazard A(t) will on an average result in
shorter lifetimes, the function x 7! gðx; tÞ is approximately constant only when b0 is small, that is, if the probability
of being susceptible to the event of interest is low.

In summary, when it comes to estimating b1, the logistic model provides decent estimates when b0
is small or the cumulative hazard increases rapidly, while the Cox model only gives decent estimates when b0
is small.

To illustrate this, we performed two simulations studies with varying parameter values. In both, the data were
simulated from a cure model of the form given in equation (3), with the parameter of interest set to b1 ¼ 1:5, x
being a binary exposure, the censoring variables were drawn from an exponential distribution with mean 8 and the
sample size set to 4000.

In the simulations reported in Figure 2, we set AðtÞ ¼ t=8 (i.e. the lifetimes of the susceptible population
stemmed from an exponential distribution with mean 8) and varied the b0 parameter. We see that the logistic
model and the Cox model estimates are close to the truth for small values of b0, and that the bias of these
estimators increases with b0. The increasing variability of the semiparametric estimates is due to pðb0 þ b1xiÞ
approaching one as b0 increases.

In the simulations reported in Figure 3, we set b0 ¼ 1:2 (thus pðb0Þ ¼ 0:77 and pðb0 þ b1Þ ¼ 0:94) and varied
the cumulative hazard AðtÞ ¼ at, taken to be that of exponential distributions. As the hazard rate a increases, the
bias of the logistic model decreases, eventually converging to ‘unbiasedness’. Varying values of a does not, as
discussed above, have an effect on the estimates of the Cox model.

In the data set we analyse in Section 3, only 2:3% of the children are diagnosed with ADHD.
This indicates that b0 is small. Moreover, more than half of the diagnoses occur before the age of 12 years,
indicating that the cumulative hazard increases quickly. The insights of the current section therefore
suggest that we should expect to see a nominal similarity between the Cox model estimates and the estimates
of the logistic model, as well as a similarity of both these estimates to the estimates of the logistic part of the
cure models.
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Figure 2. Upper panel: estimates of b1 from a semiparametric cure model (red dots), logistic model (green dots) and a Cox model
(purple dots), with varying values of b0. The grey line overlapping the green and purple dots is the term on the right in equation (4)
as a function of b0. The black line is the true parameter value of b1. Lower panel: Proportion of non-censored observations as a
function of b0.

2788 Statistical Methods in Medical Research 29(10)



3 Data analysis

The cure models we fit to the paracetamol–ADHD data have population survival functions

Spopðt; xi; ziÞ ¼ 1� pðxtibÞ þ pðxtibÞS0ðtÞexpðz
t
icÞ; (5)

with pðxtibÞ ¼ expðxtibÞ=f1þ expðxtibÞg and S0ðtÞ a baseline survival function being either nonparametric or that

of a gamma distribution. The argument presented in Section 2.1 entails that we expect gestational exposure to

paracetamol to have an effect on whether or not a child belongs to the susceptible group, but, given that a child

belongs to the susceptible group, we do not expect paracetamol to have an effect on determining when in life the

child might be diagnosed with ADHD. This means that if the exposure variable enters both covariates vectors in

equation (5) (i.e. both xi and zi), then we anticipate that the true b- and c-coefficients corresponding to the

exposure should be positive and zero, respectively.
For comparison, we also fit a logistic model and a Cox model to the paracetamol–ADHD data. As elaborated

on in Section 2.3, we have reason to expect a nominal similarity between the exposure estimates from these models

to those of the corresponding cure models. This is because the prevalence of ADHD in the data is low, and

because most children diagnosed with ADHD are diagnosed quite early in life.
The data used in this analysis stem from the Norwegian Mother, Father and Child Cohort Study (MoBa)

conducted by the Norwegian Institute of Public Health. Information about the ADHD diagnoses was obtained

from the Norwegian Patient Registry (NPR). The analyses of this section are motivated by and use essentially the

same data as Ystrom et al.,2 and a more elaborate discussion of the MoBa and the NPR can be found therein.
After having removed observations with missing values, the sample consisted of n ¼ 95 545 units (pairs of

mothers and one of their offspring). Among the children in this sample, 2 165 had been diagnosed with ADHD by

the end of the follow up in 2016, that is about 2:3%, a number which is about half the international estimate of

ADHD prevalence.16–18 The mean and median age at diagnosis were 10.8 and 11 years, respectively. Half of the

children with a diagnosis of ADHD were diagnosed when they were between 9 and 12 years old, while the

youngest and oldest child to be diagnosed were 1 and 16 years old, respectively. Table 1 gives the birth year of
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Figure 3. Upper panel: estimates of b1 from a semiparametric cure model (red dots), logistic model (green dots) and a Cox model
(purple dots), with varying values of a0. The grey line is the term on the right in equation (4) as a function of a0. The black line is the
true parameter value of b1. Lower panel: proportion of non-censored observations as a function of a0.
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the children in the full sample (before deleting 7 713 observations due to missing values on the covariates), the

number of diagnoses observed in the relevant birth cohort and the percentage of mothers who consumed para-

cetamol at least once during pregnancy in each cohort.
The cure models we fit have population survival functions of the form (equation (5)), with the baseline survival

function being either nonparametric or that of a gamma distribution with density ðba=CðaÞÞta�1expð�btÞ. The
four covariates we considered were binary indicators of gestational exposure to paracetamol; of whether para-

cetamol was consumed due to fever; of whether the mother consumed alcohol more than once a month during

pregnancy; and of whether the mother had four years or more university education (or equivalents). The para-

cetamol indicator is the exposure of interest, while the three other covariates are potential confounders. Summary

statistics for these covariates are presented in Table 2.
We fitted three different cure models for each of the two specifications of the baseline survival function S0ðtÞ.

One where all four covariates entered both regression parts of the model, one where they only entered the survival

part and one where they only entered the logistic part. Note that the second corresponds to treating the latent Y’s

as independent and identically distributed, and the third to treating the diagnosis times of the susceptible group as

independent and identically distributed. Estimates from a logistic regression on the event indicators d, and from a

Cox regression model (assuming no cured fraction), with the same four covariates, are included for comparative

purposes. The nominal similarity of the estimates in the logistic model and Cox model to those of the logistic part

of the cure models is discussed in Section 2.3.
Table 3 reports the parameter estimates and estimated standard errors of these for all eight models. Figure 4

displays estimates of the proper survival functions (that is, S0ðtÞ in equation (5)) for the two cure models that treat

the diagnosis times as independent and identically distributed (Gamma 1 and Semipara. 1).
In Table 3, the first thing to notice is that in the cure models that include covariates on both the logistic and the

survival part (Gamma 2 and Semipara. 2), the estimated effects of paracetamol on the logistic part are significant

Table 1. The 11 birth year cohorts included in the data, size of cohort and number of children within each
cohort with a diagnosis of ADHD.

Year Births Diagnosis % % Paracetamol

1999 46 0 0.00 41.3

2000 2010 89 4.43 38.7

2001 3950 137 3.47 41.3

2002 8331 338 4.06 41.8

2003 12,163 449 3.69 42.1

2004 13,085 398 3.04 43.2

2005 15,176 395 2.60 42.6

2006 16,858 278 1.65 42.8

2007 15,504 221 1.43 43.8

2008 12,910 78 0.60 42.8

2009 3225 5 0.16 44.1

Total 103,258 2388 2.31 42.7

Note: The last column is the percentage of mothers in the data who consumed paracetamol at least once during pregnancy.

Table 2. Summary of covariates.

ADHD (%) not ADHD (%) All (%)

Paracetamol 48.4 43.1 43.2

Mother educ. 40.4 65.2 64.6

Alcohol 0.5 0.2 0.2

Fever 9.6 7.5 7.6

ADHD: attention-deficit hyperactivity disorder.

Note: All the covariates are binary (0–1). For an individual, a value of 1 means, respectively, that paracetamol was

consumed at least once during gestation, the mother has higher education, the mother consumed alcohol at least once a

month during gestation and that paracetamol has been consumed to alleviate fever.
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at the 95% level, while the estimated effects of paracetamol on the survival part is close to zero and insignificant at

all reasonable significance levels. Among the three parametric cure models, Gamma 2 is the one with superior

performance according to the Akaike information criterion (AIC), albeit only slightly better than the gamma

model treating the diagnosis times as independent and identically distributed (Gamma 1). Not surprisingly,

removing the paracetamol indicator and alcohol indicators from the survival part of the Gamma 2 model results

in an improvement of the AIC score, that is, it has an AIC superior to all the models reported in Table 3 (this

model has an AIC score of –28038.08. The estimates are similar and not reported).
The results reported in Table 3 are interesting because they can be seen as corroborating the reading of the

paracetamol–ADHD hypothesis expounded in Section 2.1, namely that gestational exposure to paracetamol

determines whether or not a child is susceptible, while being unimportant for the time to diagnosis. In other

words, given susceptibility the time to diagnosis appears to be independent of the exposure.
The important issue of identifiability of the semiparametric cure model should be pointed out. Loosely speak-

ing, for the fraction of susceptible children to be accurately estimated, we must assume that the (covariate

dependent) distribution function of the survival times of the susceptible individuals reaches unity before the

distribution function of the censoring times.12 In effect, for identifiability reasons, when we fit the semiparametric

cure models, the survival functions are set to zero for all survival times above the largest observed diagnosis time.

No such fix is demanded when fitting fully parametric cure models. See Section 4 for further discussion of these

issues, and Amico and Van Keilegom12 for a thorough discussion of identifiability in semiparametric cure models.

4 Discussion and concluding remarks

In this section, we briefly discuss the above findings and introduce some topics for possible future research.
The cure model was motivated by arguing that the scientifically interesting question in many perinatal studies is

how the exposure relates to a partly unobservable variable indicating whether or not the child is susceptible to the

condition or disease of interest.
The empirical analysis of the paracetamol–ADHD hypothesis of Section 3 indicates that the diagnosis times are

independent of the exposure when susceptibility is accounted for. These findings have important implications for

studies on most childhood long-term outcomes as there will always be a fraction of the children that is never

diagnosed with the condition studied, and among these many should, for all practical purposes, be regarded as

nonsusceptible to the condition in question. When a fraction of the offspring are nonsusceptible, conventional

survival analysis methods will give biased effect estimates.

Figure 4. Estimates of the survival curve of the susceptible children, i.e. the proper survival functions S(t) in equation (5). The
estimates are based on the model Semipara. 1 and Gamma 1 of Table 3.
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4.1 Remark 1

As discussed in Section 2.1, when using the cure model, we assume that we do not have data on the absence of the

condition or disease, i.e. d¼ 0 does not inform us on what the true value of Y is. Now, consider a different

scenario, where one does indeed have data on the absence of a condition or disease. Then, one would want to

model a positive probability of nonsusceptibility (Y¼ 0) being discovered. This motivates a model where the

children born susceptible (Y¼ 1) have a hazard rate aðtÞ governing the time to diagnosis, while the nonsusceptible

(Y¼ 0) children have a hazard rate bðtÞ, governing the time to it is ascertained that they do not have the condition

or disease under study. Define the variable, Di¼Yi if di ¼ 1, and 0 otherwise. The likelihood function is then

Ln ¼
Yn
i¼1

�
piaðtiÞe�

R ti

0
aðsÞ ds�Didi�ð1� piÞbðtiÞe�

R ti

0
bðsÞ ds�ð1�DiÞdi �

�
pie

�
R ti

0
aðsÞds þ ð1� piÞe�

R ti

0
bðsÞds�1�di

:

If p, aðtÞ and bðtÞ are parametrically specified, one can proceed with likelihood inference on this model. Theory

for the situation where one or both of the hazard rates are nonparametric is a topic for further research.

4.2 Remark 2

A class of survival models that can give estimates of continuous levels of susceptibility are so called first hitting

time models.22,23 One example is the following. Consider a Wiener process Z(t) with drift l and VarðZðtÞÞ ¼ r2,
starting at c0 > 0. It is well known that the first time Z(t) hits zero follows an Inverse Gaussian distribution with

parameters l; r and c0.
24 Here, the parameter c0 can be interpreted as the degree of susceptibility, with higher

values translating to lower degrees of susceptibility. One could also let c0 stem from some distribution on the

positive half line and build some regression structure on this distribution. Moreover, if l > 0, then the distribution

of the first hitting times is not proper. In particular, the probability of never being diagnosed is

1� expf�2c0l=r2g > 0, which is what we want in order to allow for some of the children to be nonsusceptible

to the condition in question.

4.3 Remark 3

We have argued that in the perinatal studies discussed in this paper, the quantity of scientific interest is p, the
probability of being born susceptible, while parameters related to the distribution of the diagnosis times are

nuisance parameters. Nevertheless, the model selection criterion employed in Table 3 is the AIC, a criterion

that assesses general overall issues and goodness of fit aspects of the cure models, and not only how good the

inference on p or related quantities is. Preferably, when the scientific question directs attention to one part of the

cure model, the model selection criterion employed ought to reflect this. Therefore, a possible topic for future

research is developing a focused information criterion (see Jullum and Hjort25 and Claeskens and Hjort26) for

comparing different parametric, as well as parametric and semiparametric cure models. The idea is to select the

model that best estimates a focus parameter, say w, where the quality of the estimator is assessed by (an estimate

of) the mean squared error E ½ðŵ � wÞ2�. The obvious focus parameter in the context of the paracetamol–ADHD

hypothesis is b1, but other interesting quantities include Prfsusceptiblejnondiagnosed at tg, or pðxt0bÞ, for a

covariate vector x0 of particular interest.
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