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ABSTRACT

Non-coding variants have long been recognized as
important contributors to common disease risks, but
with the expansion of clinical whole genome se-
quencing, examples of rare, high-impact non-coding
variants are also accumulating. Despite recent ad-
vances in the study of regulatory elements and
the availability of specialized data collections, the
systematic annotation of non-coding variants from
genome sequencing remains challenging. Here, we
propose a new framework for the prioritization of
non-coding regulatory variants that integrates in-
formation about regulatory regions with prediction
scores and HPO-based prioritization. Firstly, we cre-
ated a comprehensive collection of annotations for
regulatory regions including a database of 2.4 mil-
lion regulatory elements (GREEN-DB) annotated with
controlled gene(s), tissue(s) and associated pheno-
type(s) where available. Secondly, we calculated a
variation constraint metric and showed that con-
strained regulatory regions associate with disease-
associated genes and essential genes from mouse
knock-outs. Thirdly, we compared 19 non-coding im-
pact prediction scores providing suggestions for
variant prioritization. Finally, we developed a VCF
annotation tool (GREEN-VARAN) that can integrate
all these elements to annotate variants for their po-
tential regulatory impact. In our evaluation, we show
that GREEN-DB can capture previously published
disease-associated non-coding variants as well as
identify additional candidate disease genes in trio
analyses.

INTRODUCTION

The precise spatiotemporal control of gene expression plays
a fundamental role in developmental processes and cellu-
lar functions and consequently, is essential in determining
human phenotypes (1–3). Gene expression is controlled by
the interaction of distal regulatory elements, such as en-
hancers and silencers, with proximal gene promoters, and
is mediated by complex networks of transcription factors
(TF) binding to these genomic regions (4–7). Sequence vari-
ants within these regulatory regions can alter TF bind-
ing and/or enhancer-promoter interactions, resulting in
gene expression dysregulation and eventually disease (8–
13). The contribution of regulatory regions in human dis-
eases is also supported by a myriad of genome-wide as-
sociation studies (GWAS), showing that most disease-risk
variants lie in non-coding regions (14–16). In recent years,
our knowledge about regulatory mechanisms and regula-
tory elements across the human genome has substantially
improved due to a large number of genomic, epigenomic,
and transcriptomics studies. Main functional elements in
the human genome, such as enhancers, promoters, and TF
binding sites, have been extensively mapped by large inter-
national collaborations like ENCODE (17,18) and FAN-
TOM5 (19,20). Several dedicated resources have subse-
quently been developed, integrating and extending these
datasets to generate a more detailed picture of regulatory
elements (21–26). Meanwhile, the application of novel com-
putational (26–29) and high-throughput screening meth-
ods (30–33) has substantially improved our understanding
of how regulatory elements control their respective target
genes while several in-silico methods have been developed
to better predict the impact of non-coding regulatory vari-
ants (34–40).

The increasing adoption of whole-genome (WGS) over
whole-exome (WES) sequencing in disease studies now al-
lows for the comprehensive investigation of human vari-
ants (41), including those affecting these regulatory regions.
The accurate identification, interpretation and prioritiza-
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tion of such WGS-derived variants requires standardized
resources for their annotation in routine bioinformatics
pipelines in order to identify likely pathogenic regulatory
variants. Whilst there is a large variety of annotation meth-
ods and databases available for coding variants (42,43), re-
sources for programmatic annotation of regulatory variants
and their respective target gene(s) are still lacking. Ideally,
such resources would include a catalogue of regulatory re-
gions and functional elements together with a set of impact
prediction scores (40,44). However, the resources currently
available in this field are often presented in a format not suit-
able to this task, and information about controlled gene(s)
and tissue(s) of activity is difficult to access programmati-
cally.

To fill this gap, we have created a comprehensive re-
source for regulatory variant annotation including a col-
lection of ∼2.4M regulatory elements, GREEN-DB (Ge-
nomic Regulatory Elements ENcyclopedia Database); ad-
ditional functional elements (TFBS, DNase peaks, ultra-
conserved non-coding elements (UCNE), topologically as-
sociating domains (TADs) and super-enhancers) and pre-
processed prediction scores. Information on the controlled
gene(s), tissue(s), and associated phenotype(s) are provided
in GREEN-DB when possible. Here, we present a unified
framework that can leverage this new resource to process
standard variant call format (VCF) files and generate a com-
prehensive annotation of non-coding variants. We antici-
pate that this will aid annotation of regulatory non-coding
variants identified from WGS thereby improving variant in-
terpretation and diagnostic yield.

MATERIALS AND METHODS

Data collection

To compile an up-to-date, comprehensive collection of
regulatory elements in the human genome (GREEN-DB)
we collected and aggregated information from 16 differ-
ent sources, including seven previously published curated
databases, six experimental datasets from recently pub-
lished articles, and predicted regulatory regions from three
different algorithms. Five additional datasets were included
to integrate region to gene/phenotype relationships. The
full list of data sources and references is reported in Sup-
plementary Table S1. We also collected additional data use-
ful in evaluating the regulatory role of genomic regions, in-
cluding TFBS, DNase peaks, ultraconserved non-coding el-
ements (UCNE), super-enhancer definitions, and enhancer
LoF tolerance (Supplementary Table S2) as well as 28 scores
developed to predict the regulatory impact of non-coding
variants (Supplementary Table S3).

Data processing

Original tables from the various data sources were pro-
cessed to generate a normalized representation of poten-
tial regulatory regions organized in a SQlite database con-
taining information on their controlled gene(s), method(s)
of detection, tissue(s) of activity and associated pheno-
type(s). When needed, region coordinates were converted
from GRCh37 to GRCh38 coordinates using the UCSC

LiftOver tool. We performed several processing and qual-
ity control steps to remove unreliable regions and to reduce
information redundancy by collapsing regions with large
overlap. For this clean set of regions we then used informa-
tion from GTeX eQTLs to infer additional regulated genes,
and large GWAS catalogues and HPO annotations to in-
fer phenotypes associated with each region. Finally, we re-
fined the region-to-gene connections to ensure consistency
in gene representation and remove connections with poor
support. Additional datasets such as TAD domains, TFBS,
DNase clusters, super-enhancer, UCNE, and enhancer LoF
tolerance were also included in GREEN-DB with informa-
tion on their overlap with the regulatory regions. A detailed
description of the extensive data processing steps that were
undertaken, and the SQlite database organization is pro-
vided in Supplementary Methods.

Evaluation of collected regulatory regions

Given that creation of the GREEN-DB regions table
involved a complex pre-processing of the original data
sources, we first verified if these regions can still capture
functional and conservation signals, features which are of-
ten reported to provide support for the regulatory role
of variants in the original data sources. First, we used
Fisher’s exact test to evaluate over-representation of func-
tional genome elements in GREEN-DB regions consider-
ing ENCODE TFBS, ENCODE DNase hyper-sensitivity
clusters, UCNE regions, and a curated set of non-coding
disease-associated variants (from (36)). Then, we also in-
vestigated the overlap with genomic low-complexity regions
(as defined in (45)) and segmental duplications, which are
mostly uninformative for variant detection. Finally, we gen-
erated a set of control regions by randomly picking from
each chromosome (excluding centromeric and telomeric re-
gions) the same number of regions seen in GREEN-DB,
with comparable size distribution (Supplementary Figure
S1), and compared the degree of conservation and the dis-
tribution of prediction scores between these regions and the
GREEN-DB regions. Using the Mann–Whitney U test, we
compared the fraction of bases having a PhyloP100 score
above 1, 1.5 and 2 (higher values indicate greater conserva-
tion) and compared the median and maximum score values
for ncER, FATHMM MKL and ReMM scores obtained for
the GREEN-DB and control regions. We also performed
an in-depth analysis of the gene-region connections col-
lected in the database, evaluating the distance between a re-
gion and its controlled genes, the occurrence of connections
within TAD domains and the specificity of gene-region rela-
tionships (see Supplementary Methods). We then compared
information in GREEN-DB with information present in
each of the 16 individual data sources that were collected
in our database and for each dataset we computed the frac-
tion of genome covered and the number of genes present in
the dataset annotations.

Identification of regions under variation constraint

We used data from gnomAD v3 to evaluate the possible
variation constraint across GREEN-DB regions by eval-
uating the deviation of observed number of variants from
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the expectation based on a linear regression model includ-
ing region length, GC percentage and overlaps with seg-
mental duplications, low-complexity regions and exonic re-
gions. Regions above the 99th percentiles of the resulting
constraint value were considered as constrained regions.
We characterized these regions and the controlled genes by
looking at: (i) possible enrichment of true positive variants
in the curated set of disease-causing non-coding variants
from (36), Gene Ontology groups, canonical pathways, es-
sential genes, and ClinVar pathogenic genes; (ii) distribu-
tion of the highest constraint value for each gene present
in GREEN-DB; (iii) maximum constraint value between
regions controlling genes in the ClinVar pathogenic or es-
sential genes groups and all other regions in GREEN-DB.
More details are described in Supplementary Methods.

Evaluation of non-coding impact prediction scores

With the aim of providing a framework useful for variant
prioritization, we reviewed the potential of 28 non-coding
variant impact prediction scores to inform the analysis of
WGS data from patients with rare diseases. Among these,
we excluded: 10 scores not providing pre-computed values,
making them difficult to apply programmatically, 2 scores
developed specifically for somatic variants, and 1 score pro-
viding only disease-specific predictions for a limited set of
phenotypes (see Supplementary Table S3). We used the
ROCR package (46) to compare the classification perfor-
mances of the remaining 19 scores when applied to a set of
curated disease-causing non-coding variants from (36) in-
cluding 725 true positive examples and 7250 negative ex-
amples. More details are given in Supplementary Methods.

Prioritization strategy for regulatory variants using
GREEN-VARAN

Our GREEN-VARAN tool ranks variants overlapping
GREEN-DB regions from Level 1 to Level 4 by combin-
ing GREEN-DB data with population allele frequency, im-
pact prediction scores (ncER, FATHMM MKL, ReMM),
and functional elements (TFBS, DNase peaks, UCNE) as
detailed in Table 1. These four levels sum up information
that supports the regulatory impact of variants located in
GREEN-DB regions so that variants with higher levels
are supported by multiple types of evidence (i.e. low al-
lele frequency in general population, high prediction scores,
overlapping functional elements, constrained regulatory re-
gion). After variant prioritization, to further assist in re-
sult interpretation, the resulting candidate genes are ranked
based on patient HPO profiles using GADO (47). Based on
a list of HPO terms, GADO uses a pre-trained prediction
matrix to return a ranked list of all human genes annotated
with Z-scores that summarize the predicted relationship of
each gene with the provided HPO profile. Using GADO, we
considered genes above the 95th and 99th percentile in the
GADO ranking as likely or strongly disease-related, respec-
tively.

Application to WGS trio analysis

We applied this strategy to analyse 53 WGS trios with re-
cessive mode of inheritance and computed the resulting

number of recessive and compound heterozygotes candi-
date variants when considering only coding variants, only
GREEN-DB annotated variants or the combination of
both. In each scenario, we computed the number of candi-
dates considering either all genes, genes prioritized based on
the HPO profiles using GADO (see prioritization strategy
above), clinically relevant genes from ClinVar pathogenic
list, and PanelApp disease genes. Details on the WGS co-
hort and the filtering strategy are given in Supplementary
Methods.

Evaluation using validated disease-causing non-coding vari-
ants

To evaluate the performance of the proposed prioritization
method, we applied it to an independent set of the 45 rare
disease-causing non-coding variants described in (48) (Sup-
plementary Table S4). These variants were selected since
they are independent from those used in most of the con-
sidered prediction scores. First, we computed the number
of variants captured at each of the four prioritization levels.
Then, we spiked each validated variant into the full set of
WGS variants obtained for the reference sample NA12878
and evaluated the number of possible candidate variants re-
sulting at each level assuming the disease-causing gene was
known. Finally, to better assess the ability of the proposed
method to reduce the number of possible candidates and
prioritize the correct causative variant among all variants
identified in a patient genome, we generated an HPO profile
for each simulated genome by randomly sampling a maxi-
mum of 5 HPO terms associated with the relevant disease
and computed the number of candidate variants resulting
from GREEN-VARAN annotations using GADO to pri-
oritize disease-related genes. In each case, we also investi-
gated where the known causative variants were ranked com-
pared to all other candidate variants based on the GADO
Z-score. We repeated this analysis assuming either a reces-
sive or dominant mode of inheritance. To better evaluate
how GREEN-DB annotations can help identifying regula-
tory variants in distant control elements, we also applied
our annotations to a set of 18 previously published vari-
ants involved in human diseases and located in distant en-
hancers with a validated effect on gene expression (Sup-
plementary Table S5). For both, the set of 45 rare disease-
causing non-coding variants and the set of 18 variants lo-
cated in distal enhancers, we compared how many variants
can be captured by GREEN-DB and by each one of the
16 data sources collected in the database. More details are
given in Supplementary Methods.

Comparison with Genomizer prioritization

We compared our GREEN-VARAN prioritization ap-
proach with Genomizer (38), a previous framework for
WGS variant analysis applicable to non-coding variants.
The Genomizer tool takes WGS variants, a set of HPO
terms and a PED file as input and applies an automated
annotation and filtering process to return a list of candidate
variants annotated with a variant-based score, a gene-based
score and a combined score that summarizes both. We ap-
plied Genomizer v12.1.0 (using data v21 09, CADD score
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Table 1. Criteria used in the prioritization strategy for non-coding variants. This is based on GREEN-VARAN variant classification complemented by
HPO-based ranking of candidate genes.

Level Criteria

Level 1 Rare variant (population AF < 1%) overlapping one of GREEN-DB regions
Level 2 Level 1 + overlap with at least one functional element among transcription factors binding sites

(TFBS), DNase peaks, ultra-conserved elements (UCNE)
Level 3 Level 2 + prediction score value above the suggested FDR50 threshold for at least one among

ncER, FATHMM-MKL, ReMM
Level 4 Level 3 + region constraint value ≥0.7
HPO-based prioritization Level 4 + linked to a gene in the top 90th percentile of HPO-based ranking according to GADO

prediction

v1.6 and ReMM score v0.3.1) to the same set of simulated
genomes and HPO-profiles described above using the de-
fault filtering parameters for whole-genome analysis, which
includes a regulatory region filter and the use of CADD and
ReMM prediction scores. We then compared how many of
the 45 variants in the validated non-coding variant set can
be captured and associated with the correct gene by Geno-
mizer and by GREEN-VARAN annotations and how many
appear in the top 10 genes ranked by Genomizer and in the
level 3 variants selected by GREEN-VARAN. Additionally,
we evaluated for each of the 45 simulated genomes, how
many candidate variants were retrieved for the known dis-
ease gene by both methods, considering GREEN-VARAN
level 1 variants and all variants filtered by Genomizer. We
also compared the two methods in a scenario where the dis-
ease gene is not known, evaluating how many variants were
filtered by GREEN-VARAN at each prioritization level
compared to all variants filtered by Genomizer and com-
pared how the known causative variant was ranked by each
method when HPO-based prioritization was also used. The
ranking was based on the combined score for Genomizer
and on the GADO Z-score for GREEN-VARAN. Finally,
to assess the performance of the two methods considering
more challenging regulatory variants in distant control el-
ements, we applied the Genomizer pipeline to the set of 18
previously published variants involved in human diseases
and located in distant enhancers. We then compared the
number of variants filtered by GREEN-VARAN at each
prioritization level and by Genomizer and how many of
them were associated with the correct gene.

RESULTS

The GREEN-DB database

We have created a comprehensive collection of potential
regulatory regions including ∼2.4M regions from 16 data
sources covering ∼1.5Gb in the human genome (Figure 1A,
B and Supplementary Figure S2). This corresponds to a
∼49% coverage across the genome, an increase of ∼14%
compared with the largest data source among the ones col-
lected in the database (Supplementary Figure S3A). A sum-
mary of the regions present in GREEN-DB is given in Ta-
ble 2 with more details in Supplementary Table S6. Over-
all, these regions cover ∼60% of introns and ∼40% of in-
tergenic space (Figure 1B), but overlap was observed also
with UTR and other exonic regions (Supplementary Figure
S4 and Supplementary Tables S7, S8). We grouped regula-
tory regions into five categories: bivalent (regions showing

both activation and repression activity), enhancer, insula-
tor, promoter, silencer; with enhancer and promoters rep-
resenting the majority of regions (Figure 1C) with size dis-
tributions shown in Figure 1D. Each region is described by
its genomic location, region type, method(s) of detection,
data source and closest gene/TSS and ∼35% of regions are
annotated with controlled gene(s), ∼40% with tissue(s) of
activity and ∼14% have associated phenotype(s) (Figure
1E). These data are organized in an SQLite database allow-
ing for rapid querying based on genomic interval(s) and/or
gene(s) of interest (the database structure is described in
Supplementary Results and in Supplementary Figure S5).
GREEN-DB regions are also provided as extended BED
files for integration into existing analysis pipelines.

Given that creation of the GREEN-DB regions table
involved a complex pre-processing of the original data
sources, we first verified whether our database regions can
replicate the overlaps with functional and conservation sig-
nals reported in the original data sources. Processed re-
gions in GREEN-DB maintain strong support for a regu-
latory role as indicated by the enrichment of several func-
tional genomic signals including transcription factor bind-
ing sites (TFBS, OR 9.67), DNase hypersensitivity peaks
(OR 13.13), GTeX significant eQTLs (OR 2.93), ultra-
conserved non-coding elements (UCNE, OR 8.35). At the
same time, they are, as expected, depleted for difficult-to-
address regions such as segmental duplication (SegDup,
OR 0.45) and low-complexity regions (LCR, OR 0.22). Fi-
nally, they are also enriched for a curated set of non-coding
disease-causing mutations (OR 2.05) (Supplementary Fig-
ure S6A and Supplementary Table S9). Compared to ran-
dom regions with comparable size and distribution across
the genome, GREEN-DB regions showed a larger propor-
tion of bases with PhyloP100 score above 1, 1.5 and 2 (P-
value < 2.2E–16 for all comparisons, Mann–Whitney U
test) (Supplementary Figure S6B) as well as higher per-
region median and maximum values for ncER, FATHMM
MKL and ReMM scores (P-value < 2.2E–16, Mann–
Whitney U test) (Supplementary Figure S6C).

Controlled genes annotation in GREEN-DB

For each region in the database we annotated controlled
genes based on experimental screens or previously curated
collections (directly controlled genes), the closest gene and
the closest transcription starting site (TSS). Overall, about
35% of GREEN-DB regions have at least one directly con-
trolled gene, ranging from 22% for bivalent regions up to
45% for promoters (Figure 2A). An additional 36% of pro-
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Figure 1. Summary statistics for regions collected in the GREEN-DB. (A) GREEN-DB collects human regulatory regions from 16 different sources
including curated databases, experimental assays, and computational predictions. (B) Number of bases captured by these regions across different genomic
locations and covered fraction of each genomic location (label on top of bars). (C) GREEN-DB contains bivalent, enhancer, insulator, promoter and
silencer regions with sizes mostly between 100 and 1000 bp (D). (E) Fraction of regions with associated gene, phenotype and tissue information. Phenotype
information was derived from GWAS studies (via overlap of significant SNPs with GREEN-DB regions), HPO (via controlled genes) and DiseaseEnhancer
dataset.

Table 2. Summary of GREEN-DB information, reporting regions counts and number of genomic bases covered

GRCh37 GRCh38

GREEN-DB No. of elements Mean size (bp) Bases covered No. of Elements Mean size (bp) Bases covered

Enhancer 1 834 183 1107 1 450 755 698 1 832 830 1107 1 449 153 178
Promoter 566 102 573 234 890 654 565 323 573 234 315 553
Silencer 4306 208 895 868 4302 208 894 792
Bivalent 8413 1333 11 215 000 8409 1333 11 210 309
Insulator 23 846 17 504 23 846 17 504
All regions 2 413 027 981 1 504 116 499 2 410 887 981 1 502 180 018

moter regions have a TSS in close proximity (distance ≤
10 kb), so that a controlled gene can be confidently assigned
to 81% of promoters. Considering other types of regions, we
observed a close gene or TSS within 10 kb for ∼55% and
∼25% of regions without a directly controlled gene, respec-
tively.

Considering only the 837 879 regions annotated with
directly controlled genes, they interact with a total of 48
230 different genes, covering 67% of all genes and 97% of
protein-coding genes from ENCODE v33 basic set. Con-
trolled genes also cover 97, 98 and 100% of clinically rele-
vant genes from PanelApp (49), ClinVar (pathogenic genes

only) and ACMG actionable genes list, respectively (Sup-
plementary Table S10). This represents a notable increase
in gene-specific information compared with the genes anno-
tated in the single data sources collected to create GREEN-
DB (Supplementary Figure S3B). Considering directly con-
trolled genes, the associated enhancer and silencer regions
can be located either upstream or downstream to the con-
trolled gene at a distance ranging from 10 kb up to a few
Mbs (Figure 2B, C). We also observed that the closest gene
is among annotated controlled genes only for ∼70% of en-
hancers and ∼25% of silencers, while this proportion is
much higher (∼90%) for promoters, as expected. The clos-
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Figure 2. Gene regulatory space. (A) Overall 839 807 regions (∼35%) in GREEN-DB are experimentally associated with a controlled gene, and the fraction
of regions with a plausible associated gene reaches ∼90% when we include close genes within 10 kb distance. (B) Considering only experimental associations,
distant control elements are mostly located up- or downstream of a gene, with a smaller proportion observed within genes. The large proportion of gene
overlap observed for promoters is mostly explained by their partial overlap with the first gene exon. (C) The distance between a region and its controlled
gene(s) is larger for enhancers, silencers and bivalent, than for promoters, with most regions located between 10 kb and several Mb away from the controlled
gene. (D) Interestingly, a large proportion of these regions may not control their closest gene(s) even when they are located within a specific transcript.

est gene is not the only one controlled in 10–25% of cases
for distal control elements, even when the element overlaps a
specific gene (Figure 2D). The region-to-gene relationships
showed a high degree of specificity, with most regions con-
trolling less than five genes, while most genes are controlled
by multiple regions (Supplementary Figure S7). Most re-
gions are also active in a limited number of tissues and the
number of controlled genes correlates with the number of
tissues in which the region is detected (Supplementary Fig-
ure S8). Finally, we observed that genes with a large regula-
tory space are enriched for pathogenic and essential genes
(Supplementary Table S11). Additional details on the genes’
regulatory space are provided in Supplementary Results.

Regions constrained against sequence variation

We calculated a constraint metric for GREEN-DB regions
ranging from 0 to 1, so that regions with higher values have
lower than expected numbers of variants. Based on this met-
ric we defined as constrained the 23 102 regions above the
99th percentile of the distribution (mostly enhancers and

promoters, Supplementary Figure S9). Comparison with
other regions in GREEN-DB showed that constrained re-
gions are more conserved (Supplementary Figure S9C) and
enriched for tissue or gene-specific regions (P < 2.2E–16,
Supplementary Figure S10) and for true disease-causing
mutations from the curated set (OR 13.32, 95% CI 8.32–
21.55, P 1.42E–27).

Overall, constrained regions control 4579 genes and these
genes are strongly enriched for essential genes and genes
bearing pathogenic variants in ClinVar (FDR 4.53E–133
and 6.21E–198, respectively). Complete enrichment results
are reported in Supplementary Table S12. When compar-
ing the maximum constraint value of associated GREEN-
DB regions, genes in the ClinVar pathogenic and essen-
tial groups are controlled by regions with higher con-
straint value compared to other genes (P < 2.2E–16, Matt–
Withney U test, Supplementary Figure S11A, B). Overall,
regions above the 70th percentile control >95% of Clin-
Var pathogenic genes and essential genes and are associ-
ated with genes with lower observed/expected ratio for loss
of function variants in GnomAD (oe lof) (Figure 3). How-



2528 Nucleic Acids Research, 2022, Vol. 50, No. 5

A

B

C

Figure 3. Constraint regions control diseases-associated and essential
genes. For various constraint value tranches, we calculated the fraction of
ClinVar (A) or essential (B) genes from mouse knockout screens controlled
by at least one region in the corresponding tranche. Both groups show a
large fraction of genes controlled by regions with constraint value ≥0.9 and
>95% of genes in each group are linked to a region with constraint ≥0.7.
Regions with high constraint are also controlling genes with lower oe lof
value in gnomAD (C), suggesting they are associated with genes intolerant
to variations.

ever, the median constraint value considering all associated
regions is only slightly higher for pathogenic and essential
genes compared to normal genes (Supplementary Figure
S11C, D).

Evaluation of non-coding impact prediction scores

We considered 28 previously published prediction scores
that can be applied to evaluate the impact of non-coding

variants. Of these, 13 do not provide pre-computed val-
ues or were developed for somatic variants only and were
thus removed from further analyses, while GWAVA and
EIGEN provide 3 and 2 possible values respectively. Us-
ing a curated set of disease-causing, non-coding variants
from (36), we evaluated the performance of 18 scores in
classifying disease-causing variants (Supplementary Figure
S12). The FINSURF algorithm obtained the best over-
all classification result (OPM 0.73, AUC 0.94), but the
pre-computed scores only cover 15% of the genome, lim-
iting its application in WGS annotation. We selected ncER,
FATHMM-MKL and ReMM as the best scores combina-
tion that provided both high genomic coverage (> 90%) and
good classification performances (OPM > 0.4 and AUC >
0.8) (Supplementary Table S13). Overall, no single score
seemed able to robustly remove false-positive calls while
maintaining high sensitivity. Indeed, when TPR is set to
0.9, the FDR is >0.5 for all scores, while controlling the
FDR ≤0.5 results in TPR values <0.5 for most scores. To
assist the use of these scores in variant analysis, we also
computed the score thresholds corresponding to TPR ≥0.9,
FDR ≤0.5, and maximum accuracy (detailed metrics are
shown in Supplementary Figure S13 and Supplementary
Table S14).

A framework for annotation and prioritization of non-coding
variants from WGS

We created a tool (GREEN-VARAN: Genomic Regulatory
Elements ENcyclopedia VARiant ANnotation) to annotate
VCF files with information from GREEN-DB. The tool is
written in the Nim programming language using hts-nim
(50) and processes standard VCF files by adding annotation
on overlapping regulatory region(s) type(s), IDs and con-
straint values, controlled gene(s) and closest gene(s) with
their distance. The tool can also update existing gene con-
sequence annotations from snpEff or bcftools and a tag
can be added to highlight variants linked to gene(s) of in-
terest. When allele frequency, non-coding prediction scores
and functional element annotations are present, GREEN-
VARAN also classifies variants according to the 4 lev-
els described in Table 1. However, the prioritization strat-
egy is fully configurable to be able to take into account
additional custom annotations present in the input VCF
file. Additional pre-processed datasets useful for annotation
and a Nextflow (51) workflow are distributed together with
GREEN-DB and can be used to generate a fully annotated
VCF for small non-coding variants. The tool is also capa-
ble of annotating large variants (CNVs, structural variants),
but in this case only the information on the affected regula-
tory regions and controlled genes are provided for each vari-
ant, while variant classification is not provided given that a
single structural variant is likely to overlap multiple regula-
tory regions. Given an annotated VCF, a list of variants or a
list of GREEN-DB IDs, GREEN-VARAN can also be used
to query GREEN-DB and retrieve detailed annotations in-
cluding tissue(s) of activity, data source(s) and associated
phenotype(s). More details on the tool, available datasets
and the annotations added to VCF are given in Supplemen-
tary Results.
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GREEN-VARAN annotation captures validated non-coding,
disease-associated variants

We used an independent set of 45 rare curated variants from
(48) (Supplementary Table S4) to evaluate how GREEN-
VARAN annotations can help capture disease-causing vari-
ants in non-coding regions. When applying the proposed
prioritization system, we observed 40 (89%), 35 (78%), 32
(71%) and 9 (20%) validated variants captured at Level 1,
2, 3 and 4, respectively. When we added these known vari-
ants into WGS variants from the reference NA12878 sam-
ple and looked at variants associated with the relevant gene
only, GREEN-VARAN prioritization was able to reduce
the number of candidate variants to <25 and <5 for het-
erozygous and homozygous variants, respectively. The pos-
sible candidates were reduced to <5 and just one when con-
sidering level three variants, even if 29% of causative vari-
ants were lost (Figure 4A). To simulate a more realistic sce-
nario where the disease variant has to be identified with-
out a knowing the disease gene involved, we generated an
HPO profile for each simulated genome by randomly sam-
pling a maximum of five HPO terms associated with the rel-
evant disease (Supplementary Figure S14) and integrated
GREEN-VARAN annotations with HPO-based gene pri-
oritization by GADO. Using mild filtering (Level 1 variants
and 0.9 GADO threshold) this approach generated 13k–
23k and 1k–2k candidate variants for dominant and reces-
sive inheritance respectively, while a more stringent filtering
(Level 3 variants and 0.95 GADO threshold) reduced the
number of candidates to 400–800 and 8–32, while still cap-
turing 71% of the validated examples (Figure 4C, Supple-
mentary Table S15). The correct variant was ranked among
the top 10 variants in 11/32 cases (34%) when considering
Level 3 variants and 0.95 GADO threshold and 17/32 cases
(53%) when considering only genes strongly associated with
the disease (0.99 GADO threshold) (Figure 4B).

Most of the above validated variants in non-coding re-
gions are actually located in UTR or intronic regions of
the controlled gene; thus we extended our analysis to a
set of 18 previously published variants located in distant
enhancers with demonstrated regulatory effects on a dis-
ease gene. GREEN-DB annotations were able to capture
all tested variants, linking them to the expected gene. When
applying the proposed prioritization strategy we found 18,
13 and 2 variants ranked at Levels 2, 3 and 4, respectively.
Details of each variant are reported in Supplementary Table
S5.

When compared with the individual data sources inte-
grated in the database, GREEN-DB annotations captured
a larger proportion of variants from our non-coding evalu-
ation datasets, both the set of 45 rare disease-causing non-
coding variants as well as the 18 variants located in distal
enhancers (Supplementary Figure S15).

Comparison with Genomizer prioritization

Genomizer and GREEN-VARAN performed similarly
when applied to a set of 45 rare disease-causing non-coding
variants. When considering all variants identified, both
methods were able to capture 40 validated variants and as-
sociate them with the correct gene, while 32 and 33 variants
were captured when considering GREEN-VARAN level 3

variants and variants at the top of the Genomizer rank-
ing, respectively (Supplementary Figure S16A). When ap-
plied to the simulated genomes for the prioritization of
WGS variants related to a single specific disease gene, both
methods retrieved a similar number of candidates and both
resulted in <20 and <5 candidate variants when consid-
ering homozygous and heterozygous candidates, respec-
tively (Supplementary Figure S16B). When we simulated
a scenario where the disease gene is not known, however,
GREEN-VARAN was able to better refine the number of
candidate variants, returning <5000 and <1000 variants at
level 3 for the dominant and recessive model, respectively,
while Genomizer returned >10 000 variants in several cases
(Supplementary Figure S16C). When integrated with the
HPO-based prioritization step, the Genomizer achieved a
better ranking for the 45 causative variants and was able to
rank the correct variant in the top 10 in 21 and 33 cases
for the dominant and recessive model, respectively, while
GREEN-VARAN ranked them in the top 10 in only 8
and 17 cases, respectively (Supplementary Figure S16D).
However, when both were applied to a set of 18 previously
published variants located in distant enhancers, GREEN-
VARAN was able to associate all of them to the correct gene
while Genomizer completely failed to capture these associa-
tions (Supplementary Figure S17 and Supplementary Table
S5).

GREEN-VARAN annotation reveals new candidate genes in
WGS trio analysis

To evaluate the impact of adding non-coding annotations
in a more realistic scenario, we applied our annotation
framework to the analysis of small variants from 53 non-
consanguineous WGS pedigrees. The main aim was to eval-
uate the number and relevance of new candidate variants
and genes, considering that the interpretation of VUS and
novel genes is time consuming and expensive and thus it
is important that new tools do not add too many false-
positives. Considering variants identified in each individ-
ual, we found a median of ∼75.7k rare variants (popula-
tion AF < 0.01), including ∼38k in GREEN-DB regions
(Level 1), ∼17k also overlapping functional signals (Level
2) and ∼1.5k further prioritized based on prediction scores
(Level 3) (Supplementary Figure S18). When considering
rare recessive variants that segregate with the phenotype in
each pedigree, adding GREEN-DB annotations increased
the number of candidate variants from 0 to 22 (exonic vari-
ants only) to 83 to 2209 (GREEN-VARAN Level 1). Look-
ing at variants with stronger support for regulatory impact,
the number of candidates is reduced to 45–1291 at Level 2,
0–75 at Level 3 and 0–47 at Level 4 (Figure 5A, B). When
considering compound heterozygotes involving a protein-
changing variant we observed 853–3362 combinations with
a Level 1 variant and 13–112 with a Level 3 variant (Fig-
ure 5C). The new candidates identified also included genes
likely to be relevant to the disease phenotype based on HPO
profiles. Indeed, when restricting to genes with high GADO
score the number of recessive candidates is increased from 0
- 2 (exonic variants only) to 0–9 (Level 3 GREEN-DB vari-
ants), and we identified 0–10 new compound heterozygotes
involving a protein-changing and a Level 3 variant. A simi-
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Figure 4. Application of GREEN-VARAN to validated variants. We inserted a set of 45 validated variants into variants from the reference sample NA12878
and tested how GREEN-VARAN annotations are able to capture them and how many candidate variants are selected when considering only the disease-
causing gene (A). We then evaluated how the known causative variant is ranked compared to all other candidate variants selected by our prioritization
method in combination with HPO based gene ranking when the disease gene is not known (B). Finally, we computed how many candidate variants/genes
are retrieved in each scenario (C).

lar trend was observed also when considering only clinically
relevant genes from PanelApp or Clinvar. Detailed counts
for candidates identified in the trio analysis are reported in
Supplementary Table S16.

DISCUSSION

Variants in non-coding regions of the genome have clearly
been implicated in disease risk from both GWAS studies
(14–16) and WGS rare disease studies (8,10–12) and the
large fraction of missed diagnoses in WES studies (52–54)
indicate that the non-coding genome is likely to harbour
many variants of clinical diagnostic significance and may
account for low diagnostic yield in clinical WGS rare dis-
ease studies. As WGS becomes increasingly adopted in re-
search and clinical settings, it becomes critical to have effi-
cient computational tools for the annotation and interpre-
tation of variants in the non-coding genome. Whilst infor-

mation about types and locations of regulatory regions has
previously been described in the literature (17,19–25), the
systematic interrogation of these in whole-genome sequenc-
ing data remains challenging and limited by the lack of re-
sources to readily access these programmatically (55–57).
To fill this gap, we have developed a framework for the auto-
mated annotation of WGS variants compiling an extensive
catalogue of regulatory regions and developing accompa-
nying tools and resources that can be integrated into rou-
tine bioinformatics pipelines to annotate non-coding vari-
ants and improve their interpretation and prioritization in
rare disease WGS datasets.

We have collected data from published, experimental,
and computational sources to create a database providing
a standardized representation for ∼2.4 million regulatory
elements in the human genome (GREEN-DB) which rep-
resents a significant advancement compared to previously
published resources. To support the interpretation of the
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Figure 5. Impact of non-coding annotations on WGS variant prioritization. The violin plots represent the number of recessive candidate variants found
in 53 WGS trios for non-coding variants prioritized by GREEN-VARAN (A) or considering only coding variants (B). We then considered compound
heterozygotes combinations (C) reporting the number of candidates when considering only GREEN-VARAN prioritized variants (Level 1 and Level 3),
only coding variants or combinations involving one coding and one non-coding variants. In all plots the counts are reported for all genes, for genes ranked
above the 90th percentile in GADO distribution (GADO selected), for ClinVar pathogenic genes and for PanelApp disease genes.

impact of genetic variants, each regulatory region is anno-
tated with a rich set of information including controlled
gene(s), closest gene(s), tissue(s) of activity, potentially asso-
ciated phenotype(s) from GWAS studies and Human Phe-
notype Ontology, and a constraint metric representing the
tolerance to genetic variation. To interpret the biological
role of a regulatory region, it is essential to know the genes it
controls and in which tissues it is active. GREEN-DB con-
tains experimentally validated region-gene links and tissue
information for ∼35% and ∼40% of the regions, respec-
tively. Overall, the database provides regulatory informa-
tion for 48,246 genes, including most of the clinically rel-
evant genes from PanelApp, ClinVar and ACMG, support-
ing its usefulness in human disease research.

Our analysis confirms the complexity of the relation-
ship between regulatory regions and controlled genes that

can not easily be explained by spatial proximity in the
(linear) genome as previously demonstrated, e.g., by high-
throughput studies of chromatin interactions (32,58–60).
Indeed, for silencer and enhancer elements, the controlled
gene was the closest gene in only 10% and 40% of cases re-
spectively, whilst regulatory regions within a gene exert reg-
ulatory control on that specific gene in <60% of the cases.
Even if we cannot exclude that these observations may be
influenced by incomplete annotation of controlled genes,
this has considerable implications for the interpretation of
non-coding variants where the search for disease-associated
genes often starts with the closest genes (61,62). The closest
gene and TSS are also annotated for each region so that this
information can be used to assign a controlled gene when
experimental data is not available. This approach is espe-
cially useful for promoters where the close proximity is a
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strong support for the region-gene interaction, but can also
be useful for other kinds of regions. Indeed, despite the fact
that we observed that a region/gene link based on proxim-
ity would be less certain for these regions, a recent study
using UK biobank data showed that genes that are near-
est to a trait-associated SNV are more likely to be causative
(63). Overall, we observed a high degree of specificity in the
region-gene relationship, with a large fraction of regions
controlling less than five genes, while most genes are con-
trolled by multiple regulatory regions suggesting that multi-
ple, spatially distant, genomic regions may have similar phe-
notypic impacts. A correlation emerged between the num-
ber of controlled genes and the number of active tissues for
each region, confirming the tissue-specific nature of gene
regulation and supporting the idea that alterations in a reg-
ulatory region can have different impacts in different tis-
sues (12). This makes the comprehensive annotation of all
regions that influence or regulate the normal activity of a
gene so important for understanding the consequences of
genomic variants on the respective gene function.

We also integrated information from GWAS studies and
HPO databases to provide a possible associated phenotype
for ∼15% of the regions. This resource will be useful for
the interpretation of new variants found in the regulatory
regions, providing hypotheses on their potential biological
impact. The fact that only a limited number of regions has
an associated phenotype, despite a large number of GWAS
hits available (64–66), can partially be explained by a re-
duced phenotypic effect of regulatory regions alterations
due to complex regulatory network and tissue-specific ef-
fects. On the other hand, this also underlines how the im-
pact of rare disrupting variants in the non-coding space is
largely unexplored and how resources like GREEN-DB can
inform our understanding of human diseases.

We calculated a constraint metric that reflects the tol-
erance of each region to sequence variations. The maxi-
mum constraint value for regions controlling essential genes
and genes involved in human diseases is significantly higher
compared to other genes and constrained regions (con-
straint value ≥ 0.99) are associated with genes under vari-
ation constraint (low observed/expected ratio for loss of
function variants in gnomAD) and strongly enriched for es-
sential genes and genes involved in human diseases. Thus,
our constraint metric can be used as a stringent filter to
prioritize regions likely to be relevant in controlling dis-
ease genes, even if the redundancy of the regulatory net-
work implies that also more variable regions may be in-
volved as suggested by the analysis of median constraint
across all regions associated with ClinVar pathogenic
genes.

To further assist the interpretation of variants located in
regulatory regions, we collected pre-computed values from
19 different impact prediction algorithms and compared
their ability to classify a curated set of established disease-
causing non-coding variants. Overall, we must take into ac-
count that such comparisons are limited by (i) the nature
of the known variants collected so far, which are mostly
variants within the affected gene and poorly capture dis-
tant regulatory elements (57); and (ii) the potential overlap
of the test variants with the training sets used by each al-
gorithm, which are often unknown. Based on classification
performances and genome coverage, ncER (67), FATHMM

(68,69) and ReMM (38) algorithms emerged as the best per-
forming scores, probably reflecting their specific training on
disease-associated variants.

We developed a tool (GREEN-VARAN) that integrates
information from GREEN-DB, non-coding impact predic-
tion scores, functional elements and population AF anno-
tations, into a 4 level prioritization system to rank the reg-
ulatory potential of non-coding variants in a VCF file. The
proposed approach can effectively capture variants involved
in human diseases, as shown by our ability to recapitulate
known disease-associated variants from the literature.

When applied to a set of 45 validated non-coding vari-
ants, our approach associated 40 of them with the cor-
rect gene and classified 32 as likely impacting gene expres-
sion (prioritization level 3), while considerably reducing
the number of candidate variants to be evaluated for the
causative gene (in 25 cases the causative variant was the
only one selected). Since the validated variants we consid-
ered were mostly located within the controlled gene, we fur-
ther tested GREEN-VARAN prioritization on 18 variants
in distant enhancers from (70–72) and confirmed its ability
to identify the proper controlled gene and prioritize rele-
vant variants (13 out of 18 were classified as Level 3 and
likely to be impacting gene expression). While the a pri-
ori knowledge of a single candidate gene is unlikely in a
rare disease scenario, the rigorous application of a distinc-
tive clinical profile accompanied by clinical tests for known
disease genes often enables the identification of a limited
number of strong candidate genes. Our results show that
GREEN-VARAN is able to restrict associated non-coding
candidate variants in such a scenario to reasonably small
numbers that can manually be followed-up by clinicians and
researchers. When the disease gene is unknown, the integra-
tion of GREEN-VARAN prioritization with HPO-based
gene ranking, greatly reduces the number of candidates to
evaluate in a WGS singleton even if the number of can-
didates remains challenging (up to 1500 genes) in case of
the dominant inheritance model. In the perspective of an
increased adoption of WGS by many health systems, this
underlines the importance of sequencing also the parents’
genomes so that segregation analysis can be used to reduce
the number of candidate variants. In particular, the analy-
sis of a family trio will allow compound heterozygotes to
be identified, where a first hit in the coding part of a strong
candidate gene is complemented by a non-coding variant
affecting the same gene. In this perspective, our approach
showed the ability to pinpoint interesting new compound
heterozygote combinations in WGS trio analyses.

Application of our new annotation system to a dataset
of 53 WGS trios highlighted its potential impact for rare-
disease variant analysis. When considering rare recessive
variants that segregate with the phenotype in each pedigree,
the number of candidate variants is greatly increased by the
addition of GREEN-VARAN annotations. However, when
considering only variants with stronger support for regu-
latory impact, the number of candidates is reduced to an
amount manageable for downstream analysis (0–75 at Level
3 and 0–47 at Level 4, Figure 4A, B). Whilst this number of
candidates is still too many for a diagnostic lab to consider,
this is certainly in the realms of the possible for research-
based inspection, especially in otherwise difficult-to-solve
cases. The new variants prioritized by GREEN-VARAN
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Table 3. Feature comparison between GREEN-VARAN annotations and previous methods

Method
Controlled and

closest gene
Tissue of
activity

Prediction of
variant impact

Easy
annotation of

VCF files

Integrate multiple
supporting
evidences

Can use additional
custom

annotations

GREEN-DB +
GREEN-VARAN

X X X X X X

Previous non-coding
variant ranking
systems (e.g.
Genomizer, Phen-gen)

Partial (no direct
connections for
distal control

elements)

X X X

Variant impact
prediction scores (e.g.
CADD, ReMM,
LinSight, etc.)

X X

Specific regulatory
variant prediction
scores (e.g. ExPECTO,
FINSURF, ncER)

X X X X (but most
limited in
genome

coverage)
Computational
predictions of
regulatory elements

Partial (only
report closest

gene)

X X

Previous regulatory
region databases

X X X

are of particular interest in compound heterozygote candi-
dates, especially when non-coding variants create new com-
binations with a prioritized coding variant, an approach
that already resulted in increased diagnosis in a recent large
clinical WGS study (73). Interestingly, we observed 13–112
combinations with a Level 3 variant and the new candi-
dates identified included genes likely relevant for the dis-
ease phenotype based on HPO profiles. A similar trend was
observed when considering clinically relevant genes from
PanelApp or Clinvar suggesting that inclusion of our non-
coding annotation can reveal previously ignored candidate
genes likely to have an impact on patient phenotype.

Besides small variants, GREEN-VARAN is also able to
annotate regulatory variants affected by large (structural)
variants even if the interpretation of the regulatory impact
for this kind of variants can be challenging. Indeed, the
function of a regulatory element is more likely to be dis-
rupted when hit by a structural variation compared with a
single nucleotide variant, but structural variants would of-
ten overlap many different elements possibly linked to dif-
ferent genes making the interpretation of the actual bio-
logical effect challenging. However, being able to annotate
regulatory regions affected by structural variants allows the
identification of interesting compound heterozygous com-
binations, as in the case of a disruptive coding variant com-
plemented by a non-coding SV deleting a regulatory ele-
ment for the same gene.

Very few solutions exist to prioritize non-coding variants
that as well as associate them with putatively affected genes.
Compared with Genomiser, a popular automated annota-
tion framework that can run on non-coding variants, our
approach showed similar performances in classifying val-
idated non-coding variants close or within a gene. Gen-
omizer achieved a better ranking for the causative vari-
ants when using the combined score that also takes into
account the HPO-based prioritization of candidate genes,
while GREEN-VARAN was able to better refine the num-
ber of candidate variants when only variant-supporting ev-
idence was taken into account. Thus, the better Genomizer
performance is likely motivated by a better integration of

HPO information for known disease genes which has a par-
ticular impact given the nature of the tested variants that
are associated with well-established disease genes. More-
over, all the variants in the validated set are located within
or in close proximity to the causative gene, making it sim-
pler to associate them with the correct gene using a prox-
imity approach. Indeed, when comparing a set of 18 distant
enhancer variants, GREEN-VARAN demonstrated a supe-
rior ability to prioritize and correctly retrieve the controlled
gene, compared with Genomizer, which failed to correctly
annotate these variants.

Overall, the proposed framework is not intended for ex-
act variants ranking, but more to provide a summary of ev-
idence for the potential regulatory role of each variant so
that they can be more easily interpreted in the context of
disease biology. Our approach presents a set of unique fea-
tures compared to previous methods developed to address
non-coding variants or regulatory regions (Table 3). While
it provides a summarized view of the regulatory impact sup-
port for each variant, it also gives access to a rich set of in-
formation useful to enhance variant interpretation and it is
able to integrate additional custom annotations that may
be available from specific experimental assays like active re-
gions from ChIP-seq or ATAC-seq. Moreover, by helping
identify potential regulatory regions of interest for candi-
date genes our annotations can also be useful to inform the
design of further functional experiments.

In summary therefore, we have developed a comprehen-
sive dataset of regulatory regions (GREEN-DB) and inte-
grated it with functional elements and prediction scores into
a new framework for the annotation and prioritization of
regulatory variants in WGS analysis. We provide a complete
annotation workflow implemented in Nextflow that uses
our GREEN-VARAN tool to prioritize regulatory variants
in VCF files from whole genome sequencing data. The re-
sources presented here therefore represent a significant ad-
vance for researchers and clinicians engaged in analysing
patient genomes and will be useful for rare disease research
as well as for the interpretation of common disease variants
from GWAS.
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