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Abstract

Gene fusions created by somatic genomic rearrangements are known to play an important role in the onset and
development of some cancers, such as lymphomas and sarcomas. RNA-Seq (whole transcriptome shotgun sequencing) is
proving to be a useful tool for the discovery of novel gene fusions in cancer transcriptomes. However, algorithmic methods
for the discovery of gene fusions using RNA-Seq data remain underdeveloped. We have developed deFuse, a novel
computational method for fusion discovery in tumor RNA-Seq data. Unlike existing methods that use only unique best-hit
alignments and consider only fusion boundaries at the ends of known exons, deFuse considers all alignments and all
possible locations for fusion boundaries. As a result, deFuse is able to identify fusion sequences with demonstrably better
sensitivity than previous approaches. To increase the specificity of our approach, we curated a list of 60 true positive and 61
true negative fusion sequences (as confirmed by RT-PCR), and have trained an adaboost classifier on 11 novel features of
the sequence data. The resulting classifier has an estimated value of 0.91 for the area under the ROC curve. We have used
deFuse to discover gene fusions in 40 ovarian tumor samples, one ovarian cancer cell line, and three sarcoma samples. We
report herein the first gene fusions discovered in ovarian cancer. We conclude that gene fusions are not infrequent events in
ovarian cancer and that these events have the potential to substantially alter the expression patterns of the genes involved;
gene fusions should therefore be considered in efforts to comprehensively characterize the mutational profiles of ovarian
cancer transcriptomes.
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Introduction

Gene fusions are known to play an important role in the

development of haematalogical disorders and childhood sarcomas,

while the recent discovery of ETS gene fusions in prostate cancer

[1] has also prompted renewed interest in gene fusions in solid

tumors. ETS gene fusions are present in 80% of malignancies of

the male genital organs, and as a result these fusions alone are

associated with 16% of all cancer morbidity [2]. The discovery of

the EML4-ALK fusion in non-small-cell lung cancer and the ETV6-

NTRK3 fusion in human secretory breast carcinoma suggest that

gene fusions are also recurrent at low levels in other solid tumor

types [3,4]. The discovery of such rare but recurrent gene fusions

may be of significant clinical benefit where they provide the

potential for targeted therapy.

Gene fusions are thought to arise predominantly from double

stranded DNA breakages followed by a DNA repair error [2,5].

Promoter exchanges are one class of gene fusions, characterized by

the replacement of an oncogene’s regulatory regions with those of

another gene, resulting in deregulation of transcription of the

oncogene. For ETS gene fusions in prostate cancer, the androgen-

responsive regulatory elements of TMPRSS2 drive the expression

of the ETS family member to which TMPRSS2 is fused [1].

Another class of gene fusions leads to the creation of a chimeric

protein with biological function distinct from either of the partner

genes from which it originated. A classic example is BCR-ABL1, a

chimeric protein that is the defining lesion in chronic myelogenous

leukaemia (CML), and which induces growth factor independence

and the inhibition of apoptosis [6].

Large scale, genome-wide efforts to comprehensively identify

and characterize genomic rearrangements that lead to gene fusions

in human cancers have recently been made possible through next

generation sequencing technologies. These technologies provide a

deeper level of sequencing than is possible by cytogenetic and

Sanger sequencing methods and are poised to reveal a more

detailed understanding of the extent and nature of genomic
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rearrangements in cancer. For example, using low-coverage paired

end whole genome (gDNA) shotgun sequencing, Stephens et al.

[7] reported that the genomes of breast cancer cells harbour many

more rearrangements than previously thought, and suggested that

this class of somatic mutation needs to be carefully considered

when interpreting breast cancer genomes. Using similar experi-

mental and analytical techniques, Campbell et al. [8] profiled

tumor evolution in pancreatic cancer patient samples by profiling

the pattern of somatic rearrangements found in primary tumors

and distant metastases extracted from the same patient.

Previous work on gene fusion detection from RNA-Seq
Next generation sequencing of cDNA (RNA-Seq or whole

transcriptome shotgun sequencing) provides an ideal experimental

platform for expressed gene fusion discovery. Analogous to

genome sequencing, RNA-Seq enables an unbiased and relatively

comprehensive view into tumor transcriptomes, and can provide

information about the rarest of transcripts. RNA-Seq targets only

expressed sequences from protein coding genes and is thus more

focused than whole genome sequencing. Maher et al. [9]

demonstrated the capacity of RNA-Seq to find gene fusions in

prostate cancer samples. They identified potentially fused gene

pairs using discordantly aligned paired end reads, and also

identified potential fusion splices by mining end sequences for

alignments to all possible pairings of exons of the potentially fused

gene pairs. A study of the melanoma transcriptome by Berger et al.

(2010) used many of the same principles. Another recently

developed method called FusionSeq identifies gene fusions from

discordant alignments, and uses a variety of novel filters and

quality metrics to discriminate real fusions from sequencing and

alignment artifacts [10]. FusionSeq has been used to identify

fusions in prostate tumor samples and cell lines [10,11]. While the

methods used for these studies are capable of identifying genuine

gene fusions, many challenges and limitations remain in the

analysis of RNA-Seq data. For example, the aforementioned

studies only considered reads that align uniquely to the genome.

However, errors in next generation sequencing together with

homologous and repetitive sequences shared between genes often

produce ambiguous alignments of the short reads generated in

RNA-Seq experiments. While resolving the ‘correct’ placement of

these reads is often not possible, we propose that ambiguously-

aligning reads provide important evidence of real gene fusions,

and therefore should be leveraged by analysis methods.

Sequence reads that align across a gene fusion boundary (so-

called split reads) are a strong source of evidence for gene fusions in

paired-end RNA-Seq data. Hu et al. [12] propose a strategy

centered on the ability to identify split reads called PERAlign: the

method uses split read aligner MapSplice [13] to identify single

end reads split by fusion boundaries, and then verifies those fusion

boundaries using a probabilistic model to infer the alignment of

discordantly aligning pairs. As described below, our method also

combines the complementary sources of split reads and discordant

reads, but we show using real patient data that discordant read

analysis followed by split read analysis is considerably more sensitive

for gene fusion discovery than the reverse procedure described by

Hu et al.

The deFuse method
With the goal of resolving the limitations described above and

therefore providing a more accurate method for detecting gene

fusions from RNA-Seq, we developed a novel algorithm called

deFuse. The central idea behind deFuse is to guide a dynamic

programming-based split read analysis with discordant paired end

alignments. This is in contrast to PERAlign, which uses discordant

paired end alignments to verify the results of a split read analysis.

Furthermore, unlike previous approaches, we do not discard

paired end reads that align ambiguously, but instead consider all

alignments for each read, and attempt to resolve the most likely

alignment position for each read. We show that using ambigu-

ously-aligning reads results in an increased amount of evidence for

predicted gene fusions and an increase in the number of relevant

gene fusions predicted. In addition, our method is not limited to

finding gene fusions with boundaries between known exons, and

therefore can identify fusion boundaries in the middle of exons or

involving intronic or intergenic sequences. Finally, the method

attempts to provide a number of confidence measures to estimate

the validity of each prediction.

Methods

Ethics statement
We obtained three sarcomas and 40 ovarian carcinomas from

the OvCaRe (Ovarian Cancer Research) frozen tumor bank.

Patients provided written informed consent for research using

these tumor samples before undergoing surgery, and the consent

form acknowledged that a loss of confidentiality could occur

through the use of samples for research. Separate approval from

the hospital’s institutional review board was obtained to permit the

use of these samples for RNA-sequencing experiments.

Data sets
Patient tumor samples from the OvCaRe tumor bank. We

interrogated the transcriptomes of a cell line derived from a serous

borderline tumor, in addition to three sarcomas and 40 ovarian

carcinomas obtained from the OvCaRe (Ovarian Cancer Research)

frozen tumor bank. Pathology review, sample preparation, RNA

extraction, RNA-Seq library construction and RNA-Seq sequence

data generation using Illumina GAII were performed as previously

described [14,15]. The RNA-Seq datasets used in this study are

listed in Table 1, which provides a summary-level description of

each sample. For each case we list data acquisition statistics, the

tumor type and subtype and the number of predictions made by

deFuse.

Published data sets. In addition to our internally generated

data, we tested deFuse using published paired end RNA-Seq data

Author Summary

Genome rearrangements and associated gene fusions are
known to be important oncogenic events in some cancers.
We have developed a novel computational method called
deFuse for detecting gene fusions in RNA-Seq data and
have applied it to the discovery of novel gene fusions in
sarcoma and ovarian tumors. We assessed the accuracy of
our method and found that deFuse produces substantially
better sensitivity and specificity than two other published
methods. We have also developed a set of 60 positive and
61 negative examples that will be useful for accurate
identification of gene fusions in future RNA-Seq datasets.
We have trained a classifier on 11 novel features of the 121
examples, and show that the classifier is able to accurately
identify real gene fusions. The 45 gene fusions reported in
this study represent the first ovarian cancer fusions
reported, as well as novel sarcoma fusions. By examining
the expression patterns of the affected genes, we find that
many fusions are predicted to have functional conse-
quences and thus merit experimental followup to deter-
mine their clinical relevance.

RNA-Seq Gene Fusion Discovery
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Table 1. Summary of RNA-Seq and fusion analysis.

Case Type
Reads
(Millions)

Read
Length

Fragment
Mean

Fragment
Std. Dev.

Total
Fusions In-frame Inter-chr. Intra-chr.

Read-
through Inversion Eversion Deletion

SBOT LGS 28 36–42 210 38 24 2 2 22 17 3 1 1

CCC1 CCC 18 50 282 36 49 6 10 39 30 1 3 5

CCC2 CCC 38 50 198 29 27 0 5 22 18 3 0 1

CCC3 CCC 37 50 209 27 34 2 6 28 22 3 0 3

CCC4 CCC 20 50 249 41 55 7 7 48 33 7 8 0

CCC5 CCC 32 36–42 245 36 26 1 6 20 17 2 0 1

CCC6 CCC 32 36–42 234 38 14 3 0 14 10 1 1 2

CCC7 CCC 19 50 259 39 48 4 12 36 21 4 6 5

CCC8 CCC 39 36–42 242 38 41 7 12 29 15 2 10 2

CCC9 CCC 38 50 265 41 62 13 10 52 35 5 6 6

CCC10 CCC 37 50 278 38 97 10 12 85 75 5 1 4

CCC11 CCC 53 36–42 259 39 64 2 24 40 33 4 2 1

CCC12 CCC 36 36–42 244 31 40 7 10 30 18 8 4 0

CCC13 CCC 31 50 263 35 74 10 15 59 49 3 6 1

CCC14 CCC 40 50 250 39 82 8 13 69 56 6 4 3

CCC15 CCC 40 50 189 29 53 6 16 37 19 5 9 4

CCC16 CCC 41 50 229 27 80 2 16 64 46 5 8 5

EMD1 EMD 32 36–50 187 35 62 5 9 53 37 9 1 6

EMD2 EMD 30 42–50 208 33 64 7 2 62 50 6 5 1

EMD3 EMD 33 50 227 31 40 4 6 34 30 4 0 0

EMD4 EMD 38 50 242 33 58 7 3 55 41 8 3 3

EMD5 EMD 39 50–75 244 29 49 6 3 46 38 4 2 2

EMD6 EMD 39 50 246 34 85 11 12 73 45 11 11 6

EMD7 EMD 25 42–50 211 33 23 4 3 20 15 3 1 1

EMD8 EMD 30 50–75 189 31 51 7 3 48 40 2 3 3

GRC1 GRC 58 36–50 206 39 105 14 10 95 78 8 3 6

GRC2 GRC 74 36–42 183 39 95 5 15 80 60 12 0 8

GRC3 GRC 31 36–42 196 37 38 3 5 33 29 3 1 0

GRC4 GRC 34 36–42 172 34 46 5 7 39 27 7 1 4

GRC5 GRC 41 50–75 247 31 101 9 8 93 71 16 0 6

HGS1 HGS 39 50 241 37 73 6 9 64 51 8 2 3

HGS2 HGS 29 50 278 38 75 12 8 67 58 5 1 3

HGS3 HGS 26 37–42 211 34 80 7 15 65 59 3 2 1

HGS4 HGS 30 36–42 209 33 54 3 11 43 20 8 10 5

HGS5 HGS 33 50 220 25 92 7 11 81 65 7 6 3

LGS1 LGS 35 50 242 26 47 8 3 44 34 9 0 1

MUC1 MUC 42 36–50 208 30 66 8 11 55 44 6 3 2

MUC2 MUC 33 36 224 31 61 9 11 50 37 10 1 2

SCH1 SCH 24 50–75 210 30 43 3 11 32 27 5 0 0

SCH2 SCH 35 36–50 201 31 46 0 6 40 34 4 1 1

YKS1 YKS 46 50 249 27 44 6 5 39 34 3 1 1

YKS2 YKS 40 50 252 31 49 5 11 38 32 3 1 2

SARC1 EPS 19 50 263 35 39 1 6 33 27 3 2 1

SARC2 EPS 28 36–50 333 36 69 10 10 59 51 6 0 2

SARC3 IGMS 17 50 233 33 15 2 4 11 10 0 1 0

Summary of RNA-Seq statistics and fusion predictions across all samples. LGS: Low Grade Serous, HGS: High Grade Serous, CCC: Clear cell carcinoma, EMD: Endometrioid
tumor, MUC: Mucinous tumor, YKS: Yolk sac tumor, GRC: Granulosa cell tumor, SCH: Small cell hypercalemic, EPS: Epithelioid Sarcoma, IGMS: intermediate grade
myofibroblastic sarcoma.
doi:10.1371/journal.pcbi.1001138.t001
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sets known to contain gene fusions. These datasets were used as

positive controls in the evaluation of deFuse. We used the NCI-

H660 prostate cell line from the FusionSeq website http://info.

gersteinlab.org/FusionSeq_Test_Datasets) known to harbour a

TMPRSS2-ERG fusion. In addition, we downloaded the datasets

derived from 13 melanoma samples and cell lines and one chronic

myelogenous leukemia (CML) cell line K-562 described in Berger

et al. [16]. Datasets were obtained from the Short Read Archive

(http://www.ncbi.nlm.nih.gov/sra) under submission number

SRA009053. As described in Berger et al. [16], the CML cell

line harbours three previously described gene fusions including

BCR-ABL1, and the melanoma data harbours 11 gene fusions.

The deFuse algorithm
In this section, we describe the deFuse algorithm. We begin by

defining essential terms. We define a fragment as a size selected

cDNA sequence (usually approximately 250 bp) during RNA-Seq

library construction. We define a read as a sequenced end of a

fragment (usually approximately 50 bp). We define paired ends as

the pair of reads sequenced from the ends of the same fragment.

The insert sequence is the portion in the middle of the fragment that

is not sequenced. A fusion boundary is the precise, nucleotide-level

genomic coordinate that defines the breakpoint on either side of

the gene fusion. We define spanning reads as paired ends that

harbour a fusion boundary in the insert sequence, whereas a split

read harbours a fusion boundary in the read itself. A discordant

alignment is produced by spanning reads of a fragment with each

end aligning to a different gene, whereas a split read will often

produce a single end anchored alignment for which one end aligns

to one gene and the other end does not align.

With these definitions in hand we will now describe how deFuse

predicts gene fusions by searching RNA-Seq data for fragments

that harbour fusion boundaries. As mentioned previously, the

problem of identifying the true genomic origin of a set of RNA-

Seq reads is confounded by several factors, and as a result, a

proportion of the RNA-Seq reads will have ambiguous alignments

to the genome. The deFuse method, outlined schematically in

Figure 1, combines an approach for resolving the actual alignment

location of ambiguously aligning spanning reads with a dynamic

programming based split read analysis for resolving the nucleotide

level fusion boundary with high sensitivity. A novel confidence

measure is provided based on the degree of corroboration of

evidence supporting the prediction.

The method consists of four main steps. The first step is

alignment of paired end reads to a reference comprised of the

sequences that are expected to exist in the sample, with all relevant

alignments considered. We use spliced and unspliced gene

sequences as a reference because we have found that fusion genes

often produce splice variants that express intronic sequences, and

that some of those splice variants are biologically relevant

(unpublished data). We define two necessary conditions for

considering discordant alignments to have originated from reads

spanning the same fusion boundary and use these conditions to

cluster discordant alignments representing the same fusion event.

The second step resolves ambiguous discordant alignments by

selecting the most likely set of fusion events, and the most likely

assignment of spanning reads to those events (Figure 1a). The third

step is a targeted search for split reads using a dynamic

programming based solution to resolve the nucleotide level fusion

boundary of each event (Figure 1b). The forth step involves a test

for the corroboration of the spanning and split read evidence. For

each spanning read, we calculate the putative length of the

fragment that generated that paired end read given the fusion

boundary predicted by the split reads. The resulting set of

fragment lengths is used to test the hypothesis that those fragments

were generated by the inferred fragment length distribution

(Figure 1c). Finally, we compute a set of quantitative features, and

use an adaboost classifier to discriminate between real gene fusions

and artifacts of the sequencing and alignment process.

Conditions for considering discordant alignments to

have originated from reads spanning the same fusion

boundary. deFuse begins with a search for spanning reads as

Figure 1. The deFuse gene fusion discovery method. a) Discordant alignments are clustered based on the likelihood that those alignments
were produced by reads spanning the same fusion boundary. Ambiguous alignments are resolved by selecting the most likely set of fusion events,
and the most likely assignment of paired end reads to those events, and the remaining alignments are discarded. b) Paired end reads with an
alignment for which one end aligns near the approximate fusion boundary are mined for split alignments of the other end of the read. c) The
predicted fusion boundary is used to calculate the fragment lengths for each spanning paired end read. These fragment lengths are tested for the
hypothesis that they were drawn at random from the fragment length distribution.
doi:10.1371/journal.pcbi.1001138.g001
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evidence of gene fusion events. We describe two necessary

conditions for considering two discordant alignments to have

originated from reads spanning the same fusion boundary.

The size selection step of the RNA-Seq library construction

protocol results in a collection of cDNA fragments with lengths

that we approximate with the inferred fragment length distribution

P(L) derived from concordant alignments [16,17]. We restrict our

analysis to consider only the most probable range of fragment

lengths ½lmin,lmax� where lmin and lmax are the
a

2
and (1{

a

2
)-

percentiles of P(L) respectively. The value a represents the

proportion of paired end reads that are not guaranteed by the

algorithm to be assigned to the correct fusion event.

By definition a spanning read harbours a fusion boundary in the

insert sequence (Figure 2a). Given a discordant alignment of a

spanning read, the insert sequence of the corresponding fragment

should align downstream of the alignment of each end in each

gene (Figure 2b). We call the region in the transcript to which the

insert sequence should align as the fusion boundary region since it

represents the region in the transcript where the fusion boundary is

expected to exist. Given read length r, the insert sequence has

maximum length lmax{2r, thus the fusion boundary region has

length lmax{2r.

We define the overlapping boundary region condition C1 as the

condition that the fusion boundary regions for two paired end

alignments must overlap in each transcript (Figure 2c). The

overlapping boundary region condition ensures that there exists a

valid location for the fusion boundary in each transcript that

would simultaneously explain both paired end alignments.

Given two reads spanning the same fusion boundary, the

difference between the fragment lengths of those reads can be

calculated as jdX zdY j where dX and dY are given by Figure 2d.

The implied fragment length difference for two discordant

alignments can be calculated similarly as shown in Figure 2e. We

define the similar fragment length condition C2 as the constraint that

jdX zdY j must be no more than lmax{lmin for us to consider two

paired end reads to have originated from the same fusion transcript.

A more rigorous definition and probabilistic motivation for the two

conditions is given in Supplementary Methods (Text S1).

Assigning a unique discordant alignment to each

spanning read. The utility of an ambiguously aligned read

depends on our ability to select the correct alignment for that read

based on the greater context of all paired end alignments in the

RNA-Seq dataset. Given that we are considering alignments to

spliced and unspliced gene sequences, ambiguous alignments will

result from homology between genes and also from the redundant

representation of the same exon multiple times for multiple splice

variants of the same gene. The true alignment for each read must

be inferred, as it will be used to identify, for the first situation, the

correct pair of genes involved in the fusion, and for the second

situation, the correct pair of splice variants of those genes.

Define a valid cluster as a set of discordant alignments for which

every two paired end alignments in that set satisfy the overlapping

boundary region condition C1 and the similar fragment length

condition C2. Each valid cluster represents a potential fusion event

implied by a set of discordant alignments. A paired end read will

be a member of multiple valid clusters as a result of homology

between genes, exon redundancy between transcripts, and the

multiplicity of valid clusterings. Fusion events are rare when

compared with the event of detecting a discordant paired end read

given the existence of a fusion event that would generate that read.

Thus we seek an assignment of each paired end read to a single

fusion event (valid cluster) that minimizes the number of fusion

events. The resulting solution, first described by Hormozdiari et al.

in the context of genomic structural variation [18], is termed the

maximum parsimony solution.

Computation of the maximum parsimony solution is NP-Hard

by reduction to the set cover problem as shown by Hormozdiari

et al. [18]. Similar to Hormozdiari et al., we compute the

maximum parsimony solution using a modified version of the

greedy algorithm for solving set cover with approximation factor

log n. Reads are initially set as unassigned and valid clusters are

Figure 2. Conditions for considering two paired end reads to have originated from the same fusion transcript. a) Fusion transcript X-Y
supported by a paired end read spanning the fusion boundary. b) Discordant paired end reads represent reads potentially spanning a fusion
boundary. Each discordant alignment suggests fusion boundaries in the regions adjacent to the alignments in each transcript. The fusion boundary
region, shown in gray, is the region in which we expect a fusion boundary to occur. c) The overlapping boundary region condition is the condition that
the fusion boundary regions in each transcript must overlap. d) The difference between the fragment lengths of two paired end reads spanning a
fusion boundary is jdX zdY j. e) The similar fragment length condition is the constraint that jdX zdY j must be no more than lmax{lmin.
doi:10.1371/journal.pcbi.1001138.g002
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initially set as unselected. At each step the algorithm selects, from the

set of unselected valid clusters, the cluster containing the largest

number of unassigned reads, with ties broken randomly. Each

unassigned read in the newly selected cluster is assigned to that

cluster. The algorithm continues, selecting clusters and assigning

reads, until all reads have been assigned to clusters. The algorithm

will produce an equivalent solution to the maximum parsimony

problem when considering only maximal valid clusters, rather than

all valid clusters (which are exponential in number). Therefore we

first calculate the maximal valid clusters (see Supplementary

Methods, Text S1) and then apply the algorithm to only the

maximal valid clusters.

Split read boundary sequence prediction. Given fusion

events nominated by spanning reads, deFuse does a targeted split

read analysis to predict nucleotide level fusion boundaries. For a

cluster of discordant alignments, the approximate fusion boundary is the

intersection of the fusion boundary regions of the discordant

alignments in that cluster (Figure 3a). A candidate split read is a read

for which one end is anchored near to an approximate fusion

boundary, such that the other end of the read could potentially align to

the approximate fusion boundary. Reads with discordant and single

end anchored alignments are considered as candidate split reads;

however, reads with concordant alignments are not considered.

Given the alignment of one end of a read, we define the mate

alignment region as the region in which we would expect the other

end of the read to align for the pair of alignments to be considered

concordant. The mate alignment region is calculated as the union

of all possible concordant alignments of the other end of the read

given a fragment length in the range lmin to lmax (Figure 3b). A

read with a mate alignment region that intersects the approximate

fusion boundary of a cluster is considered a candidate split read for

that cluster.

The maximum parsimony solution will nominate fusions such

that the average number of spanning reads per fusion is

maximized. However, it is possible that the selected transcript

variants do not maximize both spanning and split read evidence.

Thus, when searching for candidate split reads, it is necessary to

search across all relevant transcripts. In addition to calculating the

approximate fusion boundary in the transcript variants proposed

by the maximum parsimony solution, we also project those

approximate fusion boundaries onto other transcript variants of

the same gene. The approximate fusion boundary in transcript

variant X of gene A is projected onto transcript Y of gene A by

remapping the start of the approximate fusion boundary from X

to the genome, and then from the genome to Y (Figure 3c). The

start of the approximate fusion boundary is the end closest to the

discordant alignments. Candidate split reads are then found by

searching for mate alignment regions that intersect the approx-

imate fusion boundaries in any of the transcript variants.

The split read analysis proceeds by aligning candidate split

reads to approximate fusion boundaries. We first align a candidate

split read to the two approximate fusion boundaries in the two

fused transcripts, then combine the two alignments in a way that

maximizes the combined alignment score. Let sr be the end

sequence of a candidate split read expected to be split by a fusion

boundary and let SX and SY be the sequences of the approximate

fusion boundary in transcripts X and Y , where a fusion between

X and Y has been nominated by spanning read evidence.

We start by aligning sr to SX using dynamic programming

based local alignment and penalizing initial gaps in the end

sequence, and then repeat with the reverse of sr and the reverse of

SY (see Supplementary Methods, Text S1). Let DX and DY be the

matrices produced by aligning sr to SX and SY . A split in the

alignment is represented by the triple (iX ,iY ,j) where iX and iY are

the nucleotide level position of the fusion boundary in SX and SY ,

and j [ 1, . . . ,jsrj is the position of the fusion boundary in the read

sequence with jsrj defined as the length of sr. All splits (iX ,iY ,j)
with maximum score can be calculated in O(jsrjjSX jzjsrjjSY j) by

first finding j as follows:

j~argmaxj max
i

DX (i, j)z max
i

DY (i,jsrj{j)

� �
ð1Þ

and then finding iX and iY as:

iX ~argmaxiDX (i, j) ð2Þ

iY ~argmaxiDY (i, j) ð3Þ

With this method, finding all splits with maximum score does

not necessitate backtracking through a dynamic programming

Figure 3. Searching for candidate split reads. a) Approximate fusion boundaries, shown as dashed rectangles, are the intersection of fusion
boundary regions for discordant alignments supporting a potential fusion. b) The mate alignment region, shown as a dashed rectangle, is the union
of possible alignment locations for the other end of a single end anchored alignment. c) The approximate fusion boundary in transcript X is
projected into transcript Y by remapping the start of the approximate fusion boundary from X , to the genome, to Y .
doi:10.1371/journal.pcbi.1001138.g003
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matrix (which is a worst case exponential operation). Additionally,

we add the constraint that DX (i, j) and DY (i,jsrj{j) must surpass

a threshold score manchor~m:nanchor, where m is a score for each

matched nucleotide and nanchor is the minimum number of

nucleotides of a potential split read that must align to SX at one

end of the read and SY at the other end. Thresholding manchor will

prevent us from having to consider the case where the majority of

a read aligns to SX whereas the terminal nucleotide matches

erroneously to many locations in SY , and visa versa.

Multiple splits (iX ,iY , j) that produce the same maximum

score occur for two reasons. Multiple splits with different values

for j often imply sequence similarity between the regions on

each side of the fusion boundary. As a result the subsequence of

sr that represents the fusion boundary will align equally well to

SX or SY . Given a single value for j, multiple values for iX or iY
are often the result of one end of the split read aligning to many

places because that end is small enough that no unique

alignment exist. For the aforementioned situations, the only

way to resolve the the true split alignment is to consider the split

alignments in the context of the alignments of other candidate

split reads.

We resolve the problem of multiple split alignments as follows.

We first cluster together split alignments that corroborate the same

fusion boundaries iX ,iY . In the unlikely even that a single read

produces multiple alignments with the same iX ,iY we select the

one with the maximum score. For each split alignment in each

cluster we calculate the anchoring score min (DX (iX , j),
DY (iY ,jsrj{j)) and select the cluster that maximizes the sum of

the anchoring scores across all split alignments in that cluster.

Maximizing the sum of the anchoring scores has two effects: it

attempts to ensure that the fusion boundary is centered in the

middle of the reads where multiple fusion boundaries are possible,

and it prevents a number of spurious alignments anchored only by

a few nucleotides from eclipsing a more interesting fusion

boundary prediction.

Corroborating spanning read and split read evidence. To

test the corroboration between spanning read and split read

evidence, we first use the fusion boundary predicted by the split

reads to calculate the inferred fragment lengths flig of the n
spanning reads that support the fusion prediction. To test the

hypothesis that these n fragment lengths were drawn at random

from the same distribution that generated the fragment lengths of

concordant paired end reads, we model P(L)~N (m,s2) and use

a z-test to test the hypothesis that the set of spanning fragment

lengths was generated by P(L). A dependence between the

fragment lengths of reads spanning the same fusion boundary

means that the sample variance of the set flig includes a

covariance term. The sample variance of flig can be calculated as

described in Supplementary Methods (Text S1). We use a z-test

to calculate the p-value for the hypothesis that the set flig was

generated by the distribution P(L). We call this value the

corroboration p-value and use it to discriminate between true and

false positives.

Alignment parameters used for this study
To classify paired end reads as concordant we aligned reads to

spliced genes, the genome, and UniGene sequences using bowtie

[19] in paired end mode. We also aligned reads to spliced and

unspliced genes in single end mode with parameters 2k 100 2m

100. We classified any paired end read as concordant if both ends

aligned to the same gene, regardless of the location of the

alignment in that gene. Paired end reads aligning with one or both

ends to ribosomal RNA sequences were removed from the analysis

as has been done previously [10].

Paired end reads not classified as concordant were classified as

discordant. Single end mode alignments of discordant paired end

reads were then classified as fully aligned or single end anchored.

Fully aligned discordant paired end reads were clustered with

a~0:05 and the maximum parsimony solution was found using

the algorithm given above. Split alignments were generated using

nanchor~4, m~2, u~{1, g~{2 (see Supplementary Methods,

Text S1). Finally, a predicted fusion sequence was assembled that

included the regions in each gene to which spanning reads

aligned, joined together at the fusion boundary predicted by the

split reads.

Annotation of each prediction
Predicted fusion sequences were annotated as open reading

frame preserving, 59 or 39 UTR exchanges, interchromosomal,

inversion, eversion, and between adjacent genes. The translational

phase for each coding nucleotide was calculated using the frame

column for each exon in the ensembl GTF file. Given nucleotide x
of 59 gene A with phase ph(x) spliced to nucleotide y of 39 gene B
with phase ph(y), if ph(x)~ph(y)z1 mod 3, the fusion A–B is

annotated as open reading frame preserving. Note this method

would not detect open reading frames of novel proteins, only those

of chimeric proteins that are combination of the protein sequences

of the fused genes. Results were also annotated for their position

(UTR, exonic, intronic, coding, upstream, downstream) within

each gene.

Classification of predictions as real fusions or false
positives

We computed a set of features to better characterize our

predicted fusions. The features were calculated for each fusion

prediction with the aim of discriminating between true and false

positives. We initially lacked a set of positive and negative controls

that would have been necessary for a principled machine learning

based classification method. Thus initial validation candidates

were identified by thresholding these features at levels we

suspected would enrich for real fusions (see Results). Validation

was also attempted for suboptimal predictions and 40 randomly

chosen predictions in order to establish a set of negative controls.

Once we had performed a significant number of validations,

these validations became the training set for a classifier. We

calculated the following 11 features for the examples in our

training set (detailed descriptions in Supplementary Methods, Text

S1):

Spanning read coverage Normalized spanning read

coverage.

Split position p-value P-Value for the hypothesis that the

split position statistic was calculated from split reads that are evenly

distributed across the fusion boundary.

Minimum split anchor p-value P-Value for the hypothesis

that the minimum split anchor statistic was calculated from split reads

that are evenly distributed across the fusion boundary.

Corroboration p-value P-Value for the hypothesis that the

lengths of reads spanning the fusion boundary were drawn from

the fragment length distribution.

Concordant ratio Proportion of spanning reads supporting a

fusion that have a concordant alignment using blat with default

parameters.

Fusion boundary di-nucleotide entropy Di-nucleotide

entropy calculated 40 nt upstream and downstream of the fusion

boundary for the predicted sequence, taking the minimum of both

values.

Fusion boundary homology Number of homologous

nucleotides in each gene at the predicted fusion boundary.
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cDNA adjusted percent identity Maximum adjusted

percent identity for the alignments of the predicted sequence to

any cDNA.

Genome adjusted percent identity Maximum adjusted

percent identity for the alignments of the predicted sequence to the

genome.

EST adjusted percent identity Maximum adjusted percent

identity for the alignments of the predicted sequence to any EST.

EST island adjusted percent identity Maximum adjusted

percent identity for the alignments of the predicted sequence to

any EST island.

We then used the ada (2.0–2) package in R (2.11.0) to train

an adaboost model using the stochastic gradient boosting

algorithm with exponential loss, discrete boosting, and decision

stumps as the base classifier [20]. We used conservative

regularization (shrinkage parameter n~0:1) and permitted the

algorithm 200 iterations. Adaboost was selected because it

would enable us to leverage the weak predictive power of

individual features, and would provide a straightforward way of

evaluating the predictive power of each feature. Finally, the

classifier was used to classify all predictions for our ovarian and

sarcoma datasets.

Implementation, availability and data resources
deFuse is implemented in C++, perl and R. A typical library

of 120,000,000 paired end reads completes in approximately

6 hours using a cluster of 100 compute nodes. The human

genome (NCBI36) and gene models in GTF format (ensembl

54) were downloaded from Ensembl [21]. EST sequences and

spliced EST alignments were downloaded from UCSC [22].

UniGene sequences were downloaded from NCBI [23]. This

study focused on the 21295 genes annotated as protein_coding,

processed_transcript, IG_C_gene, IG_D_gene,

IG_J_gene, and IG_V_gene in the ensembl GTF file (see Table

S10 for ensembl IDs for each gene). An unspliced gene sequence

is composed of the genomic sequence starting 2 kb upstream of

the most upstream exonic nucleotide of that gene’s splice

variants, to the genomic position 2 kb downstream of the most

downstream exonic nucleotide of that gene’s splice variants. A

spliced gene sequence is composed of the concatenated

sequences of each exon of a single splice variant of a gene.

Our reference sequences were comprised of 21295 unspliced

gene sequences and 46662 spliced gene sequences. All data files

are available as part of the deFuse software package at http://

compbio.bccrc.ca.

Results

Application to ovarian and sarcoma datasets
Fusion sequence predictions were obtained for the 44 datasets

as detailed in Methods. This study only considered sequence

predictions supported by five or more spanning reads and one or

more split reads, though theoretically the limit on the number of

spanning reads could be lowered for smaller datasets as was done

for the melanoma datasets. The total number of unfiltered

predictions at this stage numbered 20,327.

Assembling a set of positive and negative controls. Next

we assembled a set of positive and negative controls by attempting

to validate a selection of predictions potentially representing real

fusions, and another set of predictions representing systematic

artifacts. To select potential positives, we first used the following

set of heuristic filters to enrich for real fusions, producing a subset

consisting of 268 predictions.

Spanning read countw5

Split read countw3

Spanning read coveragew0:6

Split position p{valuew0:1

Minimum split anchor p{valuew0:1

Corroboration p{valuew0:1

Concordant ratiov0:1

cDNA adjusted percent identityv0:1

Genome adjusted percent identityv0:1

EST adjusted percent identityv0:3

EST island adjusted percent identityv0:3

From the 268 filtered predictions we selected 46 predictions,

and in doing so attempted to select predictions from libraries with

a range of read lengths, such that those predictions covered a large

range of values for the spanning and split read counts. Included in

this set of 46 predictions were all eight predictions that pass the

heuristic filters and involve a cancer associated gene from the

cancer gene census (Welcome Trust Sanger Institute Cancer

Genome Project web site, http://www.sanger.ac.uk/genetics/

CGP). Out of this set of 46 predictions, 42 were successfully

validated by RT-PCR (Table S5, Dataset S1).

Next we selected 14 predictions representing potential recurrent

artifacts, requiring that each of the 14 fail at least one of our

heuristic filters, and also requiring that each was predicted to exist

in two or more libraries. None of these predictions validated.

Finally, we selected 40 predictions at random from the unfiltered

list of 20,327 with the assumption that the majority of them would

be negative. Only one of the 40 randomly selected predictions

validated as real. In total, 45 predictions were validated by RT-

PCR (Table 2). This included 42 predictions from the 46 potential

positives, one prediction from the 40 randomly selected fusions,

and two more predictions nominated by FusionSeq (see ‘‘Com-

parison to FusionSeq and MapSplice’’). Fluorescent in situ

hybridization (FISH) assays were attempted for 17 of the 45

PCR validated predictions, with 14 resulting in positive identifi-

cation of a potentially causative underlying genomic aberration

(Table S4, Dataset S2).

Classification of ovarian and sarcoma predictions. We

were interested in building a classifier that could discriminate

between real fusions and false positives. As a training set, we

compiled a list of all ovarian and sarcoma fusions for which

validation was attempted, and added to this list the 11 melanoma

fusions, the three K-562 fusions and the TMPRSS2-ERG fusion in

NCI-H660. The resulting dataset contained 60 positive and 61

negative predictions (Table S8). The training set was used to train

an adaboost model as described in Methods. Training error for the

model was 0.017 representing two negatives misclassified as

positives. We used a leave one out method to calculate adaboost

probability estimates for each point in the training data. We then

used the resulting set of probability estimates to generate an ROC

(Figure 4) and calculated the conditional AUC from the ROC as

0.91. Given a target false positive rate of 10%, we calculated the

estimated true positive rate as 82%, and a threshold of 0.81 on the

probability estimate to achieve that target. Finally we identified the
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Table 2. RT-PCR validated novel deFuse predictions.

library 59 gene 39 gene
span
count

ambig
span
count

split
read
count

exon
bndry

inter.
expr.

prom.
exch.

fish
valid.

CNV
break

split
pos.
p-value

corrob.
p- value

min
anchor
p-value

CCC1 TYW1 HGSNAT 41 38 11 . ./0 0 0 0.92 1 0.65

CCC4 TNS3 PKD1L1 12 0 4 0 0/. . 0.82 0.39 0.68

CCC9 RPN2 PMEPA1 48 0 11 . 0/0 0 . 0.83 0.88 0.34

CCC9 TLX3 RANBP17 10 0 5 0 ./0 0 0.51 0.63 0.38

CCC12 ITCH RALY 59 0 6 . 0/. . 0/0 0.99 0.88 0.78

CCC12 MTHFD1 C1orf61 27 8 11 . 0/. . . ./. 0.53 0.67 0.79

CCC12 YTHDF2 SYTL1 53 0 19 . 0/0 0 ./. 0.75 0.94 0.81

CCC13 PPME1 MRPL48 69 0 22 . ./0 0 0.48 0.76 0.41

CCC14 EPCAM DLEC1 27 0 17 . 0/0 0 0 0.98 0.72 0.91

CCC15 AFF4 LAMC3 5 0 3 . 0/. . 0/0 0.64 0.89 0.54

CCC15 ARSB DMGDH 103 0 87 . ./0 0 0/0 0.92 0.8 0.21

CCC15 KIFC3 CNGB1 14 0 16 . 0/. . 0/0 0.36 1 0.45

CCC15 NUMB ALDH6A1 22 0 12 . 0/0 0 0/0 0.98 0.85 0.81

CCC15 PVRL2 LMNA 17 2 7 . 0/0 0 0 0/0 0.39 0.33 0.67

CCC15 SLC38A10 ZCCHC11 12 0 1 . 0/0 0 0/0 0.28 1 0.29

CCC15 TMEM63A NRD1 17 0 7 0 0/0 0 . 0/. 0.57 0.83 0.85

CCC15 UBR4 JMJD2B 27 0 18 0 0/. 0 . ./. 0.5 1 0.56

CCC16 HPS5 APOO 23 3 11 . ./0 0 . 0.67 0.49 0.35

CCC16 PAPOLA HIP1R 44 0 19 . 0/0 0 . 0.89 0.62 0.57

CCC16 PPL RBKS 10 0 14 . 0/0 0 . 0.81 0.7 0.43

EMD6 BCAS3 ARHGAP15 10 0 4 . 0/0 0 . 0/0 0.42 0.73 0.81

EMD6 CAMK2G DDX1 9 0 2 . 0/0 0 0/0 0.28 1 0.46

EMD6 CYB5D2 ANKFY1 6 0 1 . ./0 0 0/0 0.65 0.82 0.75

EMD6 EIF4G3 LRRC8D 7 0 4 . 0/0 0 0/0 0.19 0.96 0.47

EMD6 ROCK1 CMKLR1 13 0 8 . 0/0 0 . 0/. 0.62 0.31 0.82

GRC5 FBXO25 BET1L 8 5 3 . 0/0 0 0.86 0.37 0.68

GRC5 PCP4L1 SDHC 7 7 10 . 0/0 0 0.71 0.18 0.68

HGS1 CAPNS1 WDR62 7 0 11 . 0/. 0 0.55 1 0.85

HGS1 LETM1 USP15 7 1 5 . 0/0 0 0.95 0.74 0.59

HGS1 RAB6A USP43 14 9 6 . 0/0 0 . 0.45 0.81 0.5

HGS3 ELL CYLN2 15 0 8 . 0/. 0 0/. 0.85 1 0.56

HGS3 FRYL SH2D1A 27 0 7 . 0/. . . ./0 0.9 1 0.62

HGS3 GTF2I PGPEP1 34 0 3 0 0/0 0 ./0 0.15 1 0.3

HGS3 PRR12 FLT3LG 20 0 11 . ./0 0 ./. 0.72 1 0.24

HGS4 FLNB VPS8 95 4 51 0 0/. 0 . ./. 0.8 0.72 0.59

HGS4 LMF1 UMOD 15 0 7 . ./. . ./0 0.88 1 0.4

HGS4 SLC37A1 ABCG1 40 0 14 . 0/0 0 ./. 0.83 1 0.42

HGS4 STK3 NPAL2 7 0 3 . ./0 0 0/0 0.69 0.79 0.13

MUC1 ERBB2 PERLD1 25 0 11 . 0/0 0 ./0 0.84 1 0.75

MUC1 KIAA0355 UQCRC1 10 0 6 . 0/0 0 0/0 0.82 0.76 0.44

YKS2 C12orf48 MYBPC1 8 0 6 . 0/0 0 0/0 0.63 0.84 0.2

SARC1 CMKLR1 HNF1A 38 0 7 0 ./. 0 0.72 0.84 0.11

SARC1 ERBB3 CRADD 103 7 41 0 ./0 0 . 0.87 0.88 0.61

SARC2 SMARCB1 WASF2 16 14 4 . 0/0 0 0/0 0.38 0.64 0.66

SARC3 RREB1 TFE3 103 0 28 . ./0 0 . 0/0 0.93 1 0.3

RNA-Seq evidence, annotation information and validation information is shown for each prediction for which validation by PCR was attempted.
doi:10.1371/journal.pcbi.1001138.t002
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three most significant features as the two p-values calculated for

the split alignment positions and the corroboration p-value

(Figure 5).

Next we used the adaboost model to classify all remaining

ovarian and sarcoma predictions to produce a final set of

predictions for the ovarian and sarcoma datasets, thresholding

the probability estimates produced by the adaboost model at 0.81.

In total we predicted 2,540 gene fusions across all RNA-Seq

datasets (Table S1). The vast majority of the 2,540 events, 1,658 in

total, were predicted to involve adjacent genes and were not

predicted to be the result of an underlying inversion or eversion.

For these events, a skipped transcription stop site or alternative

transcription start site is an alternative explanation to that of an

underlying genomic deletion. Of the remaining 882 events, 394

were inter-chromosomal and 488 were intra-chromosomal. The

intra-chromosomal events can be further subdivided into 240

inversions, 131 eversions and 117 deletions effecting non-adjacent

genes (Table 1).

Figure 4. deFuse ROC curve. ROC curve for deFuse annotated with the threshold for the adaboost probability estimate. The threshold
corresponds to a false positive rate of 10% and true positive rate of 82%.
doi:10.1371/journal.pcbi.1001138.g004

Figure 5. Variable importance plot for deFuse classifier. Relative importance of each of the 11 features used by deFuse classifier.
doi:10.1371/journal.pcbi.1001138.g005
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deFuse has higher sensitivity and specificity than
competing methods

Comparison to FusionSeq and MapSplice. We analyzed

CCC15, CCC16 and EMD6 with MapSplice version 1.14.1 and

FusionSeq version 0.6.1 in order to compare the sensitivity of these

methods with that of deFuse (Supplementary Methods, Text S1,

Dataset S3, Dataset S4). These cases were chosen because they

ranked highest with respect to the number of validated predictions,

with seven, three and four validated predictions respectively.

FusionSeq successfully identified ten of a potential 14 validated

deFuse predictions in CCC15, CCC16 and EMD6 (Table 2),

whereas MapSplice did not recover any of these fusions. We

suspected that MapSplice might perform better on RNA-Seq data

with longer read lengths. Thus we also used MapSplice to predict

fusions using the 75mer reads from GRC5. GRC5 was chosen

because it is the only case with 75mers and validated deFuse fusion

predictions. MapSplice successfully identified the sequences of

both validated fusions in GRC5.

We also attempted to establish whether FusionSeq and

MapSplice could identify real fusions in our data that deFuse

should have been able to identify, but did not. To this end, we

identified all MapSplice and FusionSeq predictions for which there

were no corresponding deFuse predictions in the set of initial

predictions produced by the heuristic filters. We also removed

MapSplice and FusionSeq predictions that did not involve

ensembl annotated genes because it would be impossible for

deFuse to identify those events. From this list we selected 14

MapSplice predictions and eight FusionSeq predictions that we

considered to have the highest likelihood of successful validation

according to a variety of conservative criteria (Supplementary

Methods, Text S1). For MapSplice, we attempted PCR validation

for seven predictions from 50mer libraries CCC15, CCC16 and

EMD6, and seven predictions from 75mer libraries SCH1, EMD5

and GRC5, with all 14 failing to produce a PCR product. For

FusionSeq, we attempted PCR validation for eight predictions

from CCC15, CCC16 and EMD6, three of which validated

(Table 3).

None of the 14 MapSplice predictions had corresponding

deFuse predictions, filtered or unfiltered (blat with w90%

sequence identity). However seven of the eight FusionSeq

predictions had a corresponding deFuse prediction, though all

seven were filtered by the heuristic filters (Table 3). We initially

trained the adaboost classifier on training data that did not include

the seven deFuse predictions corresponding to these seven fusions

identified by FusionSeq. We then used the resulting adaboost

model to classify the seven deFuse predictions. The model

successfully classified the three validated fusions as real, and

erroneously classified as real one of the four predictions that failed

to validate (Table 3). Subsequent analysis included the seven

FusionSeq predictions as part of the 121 predictions used as

training data as described in Methods.

In total there were 21 predictions with PCR results (17 positive

and 4 negative) in CCC15, CCC16 and EMD6 upon which a

quantitative comparison between FusionSeq and deFuse could be

made. We computed the sensitivity and specificity on this data for

deFuse-Threshold, deFuse-Classifier and FusionSeq. The sensitiv-

ity and specificity values were 82.3% and 100% for deFuse-

Threshold; 100% and 94.4% for deFuse-Classifier; and 76.5% and

76.5% for FusionSeq (see Table 4).

Assessing the advantages of considering ambiguously

aligning reads and avoiding reliance on known exon

boundaries. We sought to establish the benefit of the

Table 3. Fusions predictions compared between deFuse and FusionSeq.

library 59 gene 39 gene FusionSeq deFuse thresholds deFuse classifier PCR validated

CCC15 UBR4 JMJD2B . . . .

CCC15 TMEM63A NRD1 . . . .

CCC15 PVRL2 LMNA . . . .

CCC15 ARSB DMGDH 0 . . .

CCC15 NUMB ALDH6A1 0 . . .

CCC15 KIFC3 CNGB1 0 . . .

CCC15 AFF4 LAMC3 0 . . .

CCC16 PAPOLA HIP1R . . . .

CCC16 HPS5 APOO . . . .

CCC16 PPL RBKS . . . .

EMD6 BCAS3 ARHGAP15 . . . .

EMD6 EIF4G3 LRRC8D . . . .

EMD6 ROCK1 CMKLR1 . . . .

EMD6 POLR2J2 CLMN . . . .

EMD6 CAMK2G DDX1 . 0 . .

EMD6 CYB5D2 ANKFY1 . 0 . .

CCC15 SLC38A10 ZCCHC11 . 0 . .

EMD6 S100PBP CAMK2G . 0 0 0

CCC15 FARSA RAD23A . 0 . 0

CCC16 ITCH DYNLRB1 . 0 0 0

CCC16 PIK3C2B SMG5 . 0 0 0

Comparison of deFuse using heuristic filters (deFuse thresholds) and deFuse using a classifier (deFuse classifier) with FusionSeq.
doi:10.1371/journal.pcbi.1001138.t003
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maximum parsimony approach for resolving ambiguously aligning

reads, and the dynamic programming based approach for aligning

split reads to discover fusion boundaries. Each predicted fusion

splice was annotated as coincident or not coincident with known

ensembl exon boundaries. The fusion splices for eight of the 45

PCR validated fusions were not predicted to coincide with

ensembl exon boundaries (Table 1), including CMKLR1-HNF1A

and CRADD-ERBB3 involving cancer associated HNF1A and

ERBB3 [24–26]. None of these eight gene fusions would be

discoverable using a method that relied on the identification of

reads split at known exon boundaries.

For each PCR validated fusion, we also calculated the number

of spanning reads that align to a unique location in the genome,

and considered the effect of an analysis restricted to considering

only these reads. Such a theoretical analysis would have resulted in

four fusions having lower than the threshold of five spanning reads

(Table 1), and one of those fusions having no spanning reads. The

SMARCB1-WASF2 fusion involving SMARCB1, a gene known to

be affected by genomic rearrangements in other cancers [27],

would have only two reads in such an analysis. The TYW1-

HGSNAT fusion with 41 spanning reads, ranked 10th by spanning

read count out of the 45 PCR validate fusions, would have only

three spanning reads in the restricted analysis.

An analysis that considered only uniquely aligning spanning

reads and considered fusion splices at known exon boundaries

would theoretically result in fewer false positives, as is apparent from

the high validation rate in previous studies [10,16]. However, such

an analysis would be guaranteed to miss fusions in our datasets,

including fusions involving previously described fusion partners.

Considering ambiguously aligned spanning reads and performing

an unbiased search for fusion splices can help to recover these false

negatives, while more sophisticated techniques such as corroborat-

ing spanning and split read evidence can help to reduce the false

positive rate without increasing the false negative rate.

Rediscovery of known gene fusions
We evaluated the ability of deFuse to rediscover known gene

fusions in publicly available RNA-Seq data. Using deFuse, we

searched for the TMPRSS2-ERG fusion in the NCI-H660 prostate

cell line dataset, the three fusions previously identified in the CML

dataset (SRA accession: SRR018269) and the 11 fusions in

melanoma libraries identified by Berger et al. [16]. Since seven of

the fusions in the melanoma datasets are supported by fewer than

five spanning reads, we altered the configuration of deFuse for the

melanoma libraries such that only two spanning reads and one

split read were required for deFuse to attempt assembly of a fusion

boundary sequence. For all 15 fusions, deFuse was able to

assemble the correct fusion boundary sequence. We evaluated the

performance of deFuse using heuristic filters (deFuse-Thresholds),

and deFuse using the adaboost classifier (deFuse-Classifier), when

applied to the prostate, CML and melanoma datasets (Table 5).

Since the training set for deFuse-Classifier includes the prostate,

CML and melanoma fusions, we used a leave one out method

classify each fusion.

deFuse-Thresholds identifies 7 of the 15 known fusions, whereas

deFuse-Classifier identifies 10 of the 15 fusions. Notably,

Table 4. Comparison of accuracy metrics for FusionSeq and
deFuse.

Method P N TP TN FP FN Sens Spec

deFuse-Threshold 17 4 14 4 0 3 82.3 100

deFuse-Classifier 17 4 17 3 1 0 100 94.4

FusionSeq 17 4 13 0 4 4 76.5 76.5

Comparison of accuracy between deFuse and FusionSeq on a subset of events
predicted by either method in CCC15, CCC16 and EMD6. There were 21 PCR
validations attempted including 17 positives (P) and 4 negatives (N). TP: true

positives, TN: true negatives, FP: false positives, FN: false negatives, Sens =
TP

P
,

Spec =
TP

TPzFP
.

doi:10.1371/journal.pcbi.1001138.t004

Table 5. deFuse predictions for existing datasets with known fusions.

library 59 gene 39 gene
span
count

split
count

corrob.
p-value

Split pos.
p-value

split anchor
p-value

deFuse
correct
sequence

deFuse
thresholds

deFuse classifier
probability

NCIH660 TMPRSS2 ERG 19 10 0.31 0.31 0.45 . 0 0.48

SRR018259 KCTD2 ARHGEF12 4 1 0.33 0.97 0.91 . 0 0.98

SRR018260 ITM2B RB1 19 2 0.37 0.51 0.68 . . 0.98

SRR018260 ANKHD1 C5orf32 2 2 0.45 0.09 0.05 . 0 0.00

SRR018261 GCN1L1 PLA2G1B 4 1 0.35 0.57 0.62 . 0 1.00

SRR018265 WDR72 SCAMP2 3 2 0.00 0.97 0.25 . 0 0.59

SRR018266 C1orf61 CCT3 54 17 0.12 0.56 0.56 . . 0.79

SRR018266 MIXL1 PARP1 2 1 0.18 0.25 0.19 . 0 0.03

SRR018266 C11orf67 SLC12A7 43 24 0.92 0.55 0.75 . . 0.99

SRR018266 GNA12 SHANK2 29 9 0.58 0.24 0.34 . . 0.83

SRR018267 TLN1 C9orf127 3 1 0.08 0.71 0.76 . 0 0.91

SRR018267 ALX3 RECK 4 6 0.72 0.25 0.45 . 0 0.99

SRR018269 ABL1 BCR 91 14 0.68 0.68 0.67 . . 0.97

SRR018269 SLC44A4 BAT3 27 6 0.44 0.74 0.67 . . 0.99

SRR018269 NUP214 XKR3 67 15 0.90 0.91 0.28 . . 1.00

Results for an analysis of existing datasets using deFuse thresholds and deFuse classifier.
doi:10.1371/journal.pcbi.1001138.t005
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TMPRSS2-ERG is not included in the deFuse-thresholds or the

deFuse-Classifier results, primarily because the TMPRSS2-ERG

prediction is an outlier on both the Spanning read coverage feature and

the Fusion boundary di-nucleotide entropy feature. deFuse-Classifier

assigns a probability of 0.48 to the TMPRSS2-ERG prediction. A

probability threshold of 0.48 (instead of 0.81 as calculated in

‘‘Classification of ovarian and sarcoma predictions’’) would result

in a true positive rate of 93%, and false positive rate of 14%. These

numbers suggest that our initially selected probability threshold of

0.81 may have been overly conservative given that we could have

increased our true positive rate by 11% at the expense of only a

4% increase in false positive rate. Using a threshold of 0.48,

deFuse-Classifier would recover 13 of the 15 events including

TMPRSS2-ERG.

Fusion boundaries coincident with interrupted
expression show dominant expression of the fused gene

We sought to understand each fusion’s impact on the expression

patterns of the fused genes. For a given fusion boundary f, let epf be

the expression of exons on the preserved side of f, normalized by the

length of those exons. Also let erf be the length normalized expression

of the remaining exons, not predicted to be part of the fusion gene.

We define the interrupted expression index Ef~log2
epf

erf
as the ratio

of the expression of preserved versus remaining exons, analogous to

the splicing index [28]. For each PCR-validated fusion boundary f
predicted for an ovarian dataset we calculated Ef for all ovarian

datasets and compared Ef for the dataset with the predicted fusion to

Ef for the datasets without the fusion using a Wilcoxon test [28],

resulting in 22 fusion events with at least one partner predicted as

interrupted (p-values v0.05, see Table 2 and Table S2).

Promoter exchanges are characterized by overexpression of the

39 exons of a gene resulting from the replacement of 59 regulatory

regions [1]. For each PCR validated fusion we calculated whether

the 39 partner was expressed significantly higher in the dataset

harbouring the fusion compared to other ovarian datasets (p-

values v0.1, see Table S2, Table S6 and Table S7). We then

overlapped the overexpression results with the interrupted

expression results to find seven fusions representing potential

promoter exchanges (Table 2). The remaining 15 expression-

interrupting fusions represent either biallelic inactivations (for

example, HNF1A described below) or dominant expression of the

fusion allele (for example, RREB1-TFE3 described below).

We sought to rule out genomic amplification as a mechanism of

overexpression for the seven putative promoter exchanges.

Analysis of Affy SNP6.0 genome data indicates that two of the

39 partners, SH2D1A and UMOD, are in regions of genomic

amplification (Table S3). Given that UMOD is not expressed in

any other ovarian library (Table S9), a genomic amplification

alone cannot explain UMOD expression in HGS4. For the FRYL-

SH2D1A fusion in HGS3, a marked coincidence between the

fusion boundary and an expression changepoint implies that only

the fused copy of SH2D1A is expressed (Figure 6). FISH evidence

for FRYL-SH2D1A indicates that at most one copy of the FRYL-

SH2D1A fusion exists in the genome of each tumor cell (Figure 6),

suggesting that amplification of the SH2D1A region is not the

underlying cause of SH2D1A overexpression. FRYL expression is

on average 670 fold higher than SH2D1A expression in the non-

HGS3 ovarian libraries (Table S6), implying that the FRYL

promoter would overexpress SH2D1A, were it fused to SH2D1A. In

HGS3, SH2D1A expression is on average 36 fold higher than in

other ovarian libraries, supporting the theory that the FRYL

promoter is driving SH2D1A expression. The FRYL-SH2D1A

fusion does not preserve the open reading frame of SH2D1A.

Investigation of the functional impact of FRYL-SH2D1A and the

other six promoter exchanges is ongoing.

Evidence of previously described rearrangements in
sarcoma and ovarian carcinoma data

We sought to identify previously described rearrangements in

our sarcoma and ovarian carcinoma data. Although generally

considered a breast cancer rearrangement, amplification of

ERBB2 has also been shown to occur in mucinous ovarian tumors

[29]. In our ovarian cases, one mucinous tumor, MUC1, harbours

a fusion between ERBB2 and adjacent PERLD1 caused by an

underlying genomic inversion. CNV analysis of Affy SNP6.0

genome data predicted ERBB2 to be highly amplified in the

genome of MUC1 (Table S3), and ERBB2 expression is

approximately 10 fold higher in MUC1 than in any other ovarian

library (Table S6). Since amplification of ERBB2 requires

replication of ERBB2 across the genome, a reasonable explanation

for the ERBB2-PERLD1 fusion is that it is a secondary effect of the

process of ERBB2 amplification.

Analysis of the two epithelioid sarcomas and one intermediate

grade myofibroblastic sarcoma produced five fusion predictions

between non-adjacent genes, three involving genes previously

described as translocated in cancer. The CMKLR1-HNF1A fusion

is predicted to significantly interrupt expression of HNF1A

(Table 2). In fact, there is no evidence of wild-type HNF1A

expression in SARC1, indicating the possibility that the CMKLR1-

HNF1A fusion transcript is evidence of a biallelic inactivation of

HNF1A in SARC1 (Figure 7a). Biallelic inactivation of HNF1A has

been previously reported to lead to aberrant activation of

signalling pathways involved in tumorigenesis in human hepato-

cellular adenomas [26].

The RREB1-TFE3 gene fusion found in the intermediate grade

myofibroblastic sarcoma SARC3 fuses the first eight exons of

RREB1 to the last nine exons of TFE3, preserving the open

reading frame of both RREB1 and TFE3. The fusion is predicted

to interrupt expression of RREB1 (Table 2), indicating that

RREB1-TFE3 is the dominantly expressed RREB1 allele. The

underlying translocation leaves intact the DNA binding domain

and N-terminal activation domain of TFE3 (Figure 7b). TFE3 is a

known fusion partner in papillary renal cell carcinoma [30] and

alveolar soft part sarcoma [31].

Finally, the SMARCB1-WASF2 gene fusion found in SARC2 is

predicted to produce a transcript that preserves the reading frame

of both SMARCB1 and WASF2. The predicted fusion protein

would be composed of amino acids 1–209 of SMARCB1, which

would preserve a DNA binding domain at 106–183 but interrupt a

MYC binding domain at 186–245 [32], suggesting that the

SMARCB1-WASF2 fusion protein would retain only partial

SMARCB1 function. SMARCB1 has been shown to be frequently

inactivated in epithelioid sarcomas [27].

Discussion

We have developed a new algorithmic method called deFuse

for gene fusion discovery in RNA-Seq data. We evaluated deFuse

on 40 ovarian cancer patient samples, one ovarian cancer cell line

and three sarcoma patient samples. Using these data, we

demonstrate with RT-PCR validated fusions how deFuse exhibits

substantially better accuracy than two competing methods and

that deFuse is able to discover gene fusions that are not

discoverable by more simplistic methods. deFuse computes a set

of 11 quantitative features used to characterize its predicted

fusions. In our initial analysis we used heuristic, intuitively chosen

thresholds to eliminate false positives and nominated expected
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Figure 6. Evidence for the FRYL-SH2D1A fusion showing the validated fusion boundary (vertical red line). a) Validation evidence using a
FISH come together assay, with fusion probes circled in white. b) FISH probe selection. c) FRYL exonic coverage showing fewer reads aligning after
the fusion boundary. FRYL exons in blue with narrower boxes denoting untranslated sequence. d) SH2D1A exonic coverage showing significant
coverage after the fusion boundary. SH2D1A exons in green with narrower boxes denoting untranslated sequence. e, FRYL-SH2D1A exons in blue or
green depending on their origin, with the whole transcript predicted as untranslated. f) Positions of spanning reads supporting the fusion. g, Split
alignments supporting the fusion prediction. h) Chromatogram of a sequenced PCR product supporting the fusion.
doi:10.1371/journal.pcbi.1001138.g006
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true positives and false positive predictions for RT-PCR

validation. This yielded a set of benchmark fusion predictions:

60 true positives and 61 true negatives that we in turn leveraged

to train an adaboost classifier to more robustly and objectively

identify real gene fusions from the features. The classifier yielded

an AUC accuracy of 0.91. Importantly, the validated fusions in

ovarian cancer represent the first reported gene fusions in that

tumor type.

Limitations
The lack of a sufficient number of positive and negative controls

for a particular type of event, such as gene fusions, represents a

major challenge when evaluating novel algorithms designed for

discovery of those events. This challenge is exacerbated when the

prediction set contains a much larger proportion of negatives than

positives. We attempted to select candidates to enrich for positive

examples to provide a balanced set of ground truth events with

which to train our classifier. While this has inherent biases, only

one in 40 randomly chosen predictions validated indicating that a

completely unbiased selection would have yielded too few positives

to robustly fit a classifier. We attempted to mitigate the

acknowledged biases by using other software to find additional

positives and also included the very limited set of published

examples from the literature.

The main limitation of deFuse is the requirement of at least

five discordant read pairs to nominate a gene fusion to the

adaboost classifier. This will certainly miss fusions that have very

low expression and may result in insensitivity to fusions from

RNA-Seq datasets with minimal sequence generation. This is

suggested by the results in ‘‘Rediscovery of known gene fusions’’.

However, sequencing platforms are increasing throughput at

exponential rates and it will soon be rare for an RNA-Seq library

to under-sample a transcriptome. Another potential limitation of

deFuse is its reliance on an annotated set of genes. As such, it

will not be able to discover fusions that involve loci that are not

annotated as genes. Finally, deFuse relies on alignment to a

reference as its primary analytical step. Thus deFuse would miss

gene fusions involving completely novel sequences that may exist

in a transcriptome library but are not represented in the

reference used by the aligner. In such situations, de novo

assembly based methods such as Trans-ABySS [33] may

outperform deFuse.

Conclusion
Full characterization of the mutational composition of cancer

genomes will provide the opportunity to discover drivers of

oncogenesis and will aid the development of biomarkers and drug

targets for targeted therapy. As production of RNA-Seq data

derived from tumor transcriptomes becomes routine, sophisticated

techniques such as those used by deFuse will be required to

identify the gene fusions that are part of each tumor’s mutational

landscape. As a first step in this process, we have identified gene

fusions as a new class of features of the mutational landscape of

ovarian tumor transcriptomes, in addition to discovering novel

gene fusions in three sarcoma tumors.
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Figure 7. Fusions in sarcoma samples. a) Read depth across HNF1A exonic positions shows that only the region after the fusion boundary is
being expressed, evidence of the possible biallelic inactivation of HNF1A. b) Putative RREB1-TFE3 chimeric protein showing preservation of TFE3’s
basic helix-loop-helix (bHLH) leucine zipper (LZ) domain and N-terminal activation domain (ATA), in addition to 4 of RREB1’s zinc finger (ZF) motifs.
doi:10.1371/journal.pcbi.1001138.g007
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