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Background: Older adults spend a considerable amount of time inside their residences;

however, most research investigates out-of-home mobility and its health correlates. We

measured indoor mobility using room-to-room transitions, tested their psychometric

properties, and correlated indoor mobility with cognitive and functional status.

Materials and Methods: Community-dwelling older adults living alone (n = 139;

age = 78.1 ± 8.6 years) from the Oregon Center for Aging & Technology (ORCATECH)

and Minority Aging Research Study (MARS) were included in the study. Two indoor

mobility features were developed using non-parametric parameters (frequency; stability):

Indoor mobility frequency (room-to-room transitions/day) was detected using passive

infrared (PIR) motion sensors fixed on the walls in four geographic locations (bathroom;

bedroom; kitchen; living room) and using door contact sensors attached to the egress

door in the entrance. Indoor mobility stability was estimated by variances of number of

room-to-room transitions over a week. Test-retest reliability (Intra-class coefficient, ICC)

and the minimal clinically important difference (MCID) defined as the standard error of

measurement (SEM) were generated. Generalized estimating equations models related

mobility features with mild cognitive impairment (MCI) and functional status (gait speed).

Results: An average of 206 days (±127) of sensor data were analyzed per individual.

Indoor mobility frequency and stability showed good to excellent test-retest reliability

(ICCs= 0.91[0.88–0.94]; 0.59[0.48–0.70]). The MCIDs of mobility frequency and mobility

stability were 18 and 0.09, respectively. On average, a higher indoor mobility frequency

was associated with faster gait speed (β = 0.53, p = 0.04), suggesting an increase of

5.3 room-to-room transitions per day was associated with an increase of 10 cm/s gait

speed. A decrease in mobility stability was associated with MCI (β = −0.04, p = 0.03).
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Discussion: Mobility frequency and stability in the home are clinically meaningful and

reliable features. Pervasive-sensing systems deployed in homes can objectively reveal

cognitive and functional status in older adults who live alone.

Keywords: gait speed, indoor mobility, passive monitoring, sensing technologies, life space, Alzheimer’s disease,

movement

INTRODUCTION

Mobility, the ability to move about in one’s environment, is
fundamental to sustaining independence and well-being. The
notion of human mobility is often measured through the
geographic extent of movements beyond the home space (1–
3). As one ages, the proportion of time spent beyond the
home becomes more susceptible to cognitive and functional
changes (4–9). It is estimated that community-dwelling older
adults spend approximately 83% of their time at home (10, 11),
compared to 61–77% of the time spent at home by middle-aged
adults (12). Using motion-activity sensors, a study of primarily
octogenarian healthy older adults documents an average of 20.5 h
spent in-home per day (13). Although older adults spend a
considerable amount of time inside their residence, most research
investigates out-of-homemobility and its health correlates. There
are fundamental differences between indoor and out-of-home
mobility. Individuals carry out different activities of daily living
(ADL) when moving around indoors (bathing, preparing meals,
using a computer) vs. time spent out of the home (shopping,
visiting friends, driving). While out-of-homemobility may reveal
the ability to carry out higher-order cognitive tasks, indoor
mobility might delineate everyday cognition/function to support
a combination of basic and more complex needs. Assessing
indoor mobility and identifying its cognitive and functional
correlates may aid in early detection of health changes (9, 14),
especially for those with impairment who either live alone or do
not have care partners.

In prior work, room-level activity distributions are observed
to differentiate older adults with mild cognitive impairment
(MCI) from those without cognitive impairment. One study
found that indoor movement measured by the number of motion
sensor activations decreased along with cognitive decline over
a year of monitoring (15). Other studies used the probability
of a person being in specific rooms of the home to predict the
transition to MCI (16, 17). The authors were able to detect MCI
with an average area under the curve of 0.72 using activity models
estimated over 12 weeks. A study conducted in a nursing home
found that cognitive status was associated with the number of
times older adults move around inside the nursing home (18).
Another study also found that those with dementia exhibited
unorganized indoor behavior patterns as compared to those with
intact cognition over 20 days of monitoring (19). Although these
studies have collected indoor mobility data, their analyses and
feature extraction often overlooked the stability and variability
aspects of indoor mobility over the course of the day and weeks.

Here we investigate the metric of indoor mobility using
“room-to-room transitions” (20). Room-to-room transition

comprises two aspects: (1) indoor geographic locations and (2)
transitions within a residence (18, 21). The indoor geographic
locations include commonly used areas in the home such
as bathrooms, bedrooms, kitchen, living room, and entrance.
“Transitions” describes a person navigating between these indoor
areas, within each hour, throughout the day. Therefore, indoor
mobility can be derived by the number of room transitions over
the course of a day (“mobility frequency”) and other measures
such as the variances of the number of room transitions across
several days (“mobility stability”). Sincemobility patterns of older
individuals in their home show a high degree of predictability and
regularity (22), discontinuities in established room-level mobility
patterns may provide an opportunity to predict individual
human health and functional status or detect adverse events and
trends. We thus hypothesize that indoor mobility stability might
characterize a person’s cognitive status to regulate their rhythms
of everyday activities, and changes in the stability of this measure
reflect transitions to MCI.

To test this hypothesis, we assess hourly indoor mobility
using room-to-room transitions to understand the association
between in-home mobility and aspects of health in older adults
who live alone. Using an unobtrusive in-home sensing platform
developed by the Oregon Center for Aging and Technology
(ORCATECH) (23, 24), we remotely detect the navigation
of indoor geographic (room) locations of a person. The
ubiquitous and continuous sensing platform allows monitoring
behaviors without adding burden on participants and collecting
longitudinal high-resolution room-level data. The methods and
algorithms for estimating mobility frequency and mobility
stability in personal residences are described in this manuscript.
To ensure these mobility features have sufficient psychometric
properties, we test their test-retest reliability and the minimal
clinically important difference (MCID). We then compare
whether older adults with various cognitive (mild cognitive
impairment, MCI) and functional statuses (gait speed) exhibit
different indoor mobility frequency and mobility stability to
confirm external validity.

MATERIALS AND METHODS

Participants
Participants were recruited from two longitudinal aging cohort
studies, one at Oregon Health & Science University and one
at Rush University. At Oregon Health & Science University,
ORCATECH has led longitudinal studies examining the use
of unobtrusive in-home sensing technology to detect early
cognitive decline in community-dwelling older adults (23–
27). At Rush University, the Minority Aging Research Study
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(MARS) is a longitudinal cohort study of decline in cognitive
function in older African Americans (28). Study approval was
obtained from the Institutional Review Boards of Oregon Health
& Science University (IRB #2765, #17123, #4089) and Rush
University (IRB # L03030302). All participants provided written
informed consent.

Participant Inclusion/Exclusion Criteria
In order to be eligible for the ORCATECH cohort, participants
needed to be over 57 years old, living in a residence larger
than a one-room apartment, living either alone or with a
spouse/partner, and without dementia [age and education
adjusted Montreal Cognitive Assessment MoCA > 18 (29) and
Clinical Dementia Rating, CDR score 0 or 0.5 (30)]. To be
eligible for the MARS study, participants had to self-report race
as African American, be 65 years of age or older, and be without
a dementia diagnosis (31) or taking dementia medications. All
the households needed to have a reliable broadband internet
connection. Study exclusion criteria for both cohorts included
conditions that would limit their physical participation (e.g.,
wheelchair-bound). In the current study, only ORCATECH or
MARS participants who lived alone were included. One hundred
and forty three participants met inclusion criteria and were
included in the current study. Excluding those with missing
clinical data (n = 4), a total of 139 homes/participants were
included in the analysis.

Mobility Frequency and Mobility Stability
Inside the Home
In-home passive infrared (PIR) motion sensors were fixed on the
wall in four major rooms [bathroom(s); bedroom(s); kitchen(s);
living room(s)]. Contact sensors were also fixed on the front
door (entrance). The in-home sensor platform and protocol for
data collection have previously been detailed (23, 24). Each room
and door were assigned unique identifiers. The firings of sensors
in rooms and on the front door were independent. Therefore,
we were able to estimate the presence of a participant within
a specific room or entrance. The algorithms of indoor mobility
frequency (number of room-to-room transitions) were described
elsewhere (22). In brief, we first identified all the in-room and
front door firings per day. If a different room or door firing
followed a room firing, then the time of the firing was marked
as one transition. For example, if the series of transitions was:
bedroom → kitchen→ entrance → living room, the number of
transitions would be 3. To ensure themovement was a purposeful
transition rather than passing by or a random walk, transitions
in and out of a room within 20 seconds of each other were
excluded. For example, if the series of transitions was: kitchen→
entrance→ living room and the time between the first transition
(kitchen → entrance) and second transition (entrance → living
room) was ≤20 seconds, then the number of transitions would
be 1 (kitchen → living room) and not 2 as it is likely the
participant was just passing through the entrance. This decision
was guided based on a previous study using a cutoff of 30 seconds
to define a meaningful transition for nursing home residents
(18). Since our sample was composed of community-dwelling
relatively healthy older adults, we used 20 seconds as a cutoff of a

meaningful transition. With this data, we then estimated the total
number of room-to-room transitions over a day as the indoor
mobility frequency.

Indoor mobility stability was quantified by calculating the
variance of number of room-to-room transitions within a given
week. This approach has been used in circadian rhythm research
to quantify the stability of the sleep-wake cycle (32). We adopted
the algorithm since we also measured 24-h mobility frequency at
home. The interdaily indoor mobility stability was computed as a
non-parametric variable for subject i:

Interdaily indoor movement stability =
n

∑p

h = 1 (xih − xi)
2

p
∑n

k = 1 (xik − xi)
2

Where n is the total number of hourly data points per week (7∗24
= 168 in this case), p is the number of hourly data points per day
(24 in this case), xih are the hourly means for the specific subject,
xi is the mean of all data within a week for the specific subject,
and xi are the individual data points.

In the study, participants completed a health questionnaire
that was automatically emailed to them once weekly. The
questionnaire collected health and life event information such
as the severity of pain, low mood (feeling “blue”), whether they
had any overnight visitors during the past week, or whether
they were away from home overnight. We extracted all the
weekly online surveys answered by participants. With the date
of completed surveys, we were able to match weekly survey data
with daily sensor data. In order to only include observations
from the study participants, data were excluded from days when
overnight visitors were reported, or they were away from home
overnight. Data collected after the Coronavirus Disease 2019
(COVID-19 pandemic) (the date of governor’s proclaiming stay
at home orders: March 23, 2020 in Oregon) were also excluded
since COVID-19 related restrictions may impact the data and
participants’ daily routines.

Mild Cognitive Impairment (MCI)
For the ORCATECH cohort, MCI was defined by the CDR
score of 0.5 at an annual assessment. For the MARS study,
MCI was determined using a two-stage process by an
experienced clinician. First, a computer algorithm was used to
rate impairment in five cognitive domains (episodic memory,
semantic memory, working memory, perceptual speed, and
visuospatial ability). Second, after reviewing cognitive data,
occupation, years of education, andmotor and sensory problems,
a neuropsychologist made the final decision, as previously
described (31).

Gait Speed
For the ORCATECH cohort, in-person observed gait speed was
measured by a timed 4.6 meter (15 foot) out and back gait test
at a usual pace during an annual assessment. The total time (s)
to complete the usual paced walk was recorded, with less time
indicating a faster gait speed. For the MARS study, gait speed was
based on the time to walk 2.4 meters (8 foot) assessed at each
annual assessment; the gait speed closest in time to the extraction
of mobility metrics was used for the current analysis. Gait speed
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measures from the two studies were harmonized using the same
unit (cm/sec).

Covariates
Demographic Variables
Participant characteristics (age, gender, race, years of education)
were collected at baseline. The number of rooms in the house
was estimated using the number of PIR motion sensors installed
in the home as the ORCATECH sensor deployment protocol
dictates installing one PIR motion sensor per room.

Weekly Health and Contextual Variables
Weekly health (pain interfering with daily activities, low mood)
was collected from the self-reported weekly online surveys.
These variables were collected because they might impact our
indoor mobility outcome measures and were therefore used
as covariates in the subsequent analyses where indicated. For
the pain interference question, participants were asked, “During
the past week, how much did pain interfere with your normal
activities or work (including both work outside the home and
housework)?” Pain interference scores ranged from 0 to 5, with 0
being not at all to 5 being severely interfering with daily lives. Low
mood (“Blueness”) was identified via a self-reported question:
“Have you felt downhearted or blue for three or more days in
the past week? (Yes/No).”

Two contextual environmental variables were collected
because they had the potential to impact our indoor mobility
outcome measures. The time spent out-of-home was calculated
by the time difference between two door openings when no one
was home. A more in-depth description of the algorithm used to
extract out-of-home activities (i.e., when no one was home) from
the PIR motion sensors was described previously (10). The hours
of daylight were calculated based on the latitude of residence and
the week of the year. These contextual environmental variables
are also controlled in the analyses.

Statistical Analysis
Characteristics at baseline (first week of data) were compared
between MCI and non-MCI participants using the Student t
test and the Pearson χ2 test for categorical variables. Effect size
Cohen’s d was calculated to estimate the magnitude of baseline
difference in indoor mobility frequency and mobility stability
between MCI and non-MCI groups.

Psychometric Properties
The first two weeks of sensor data for each participant were
used to examine the test-retest reliability and the minimal
clinically important difference (MCID). Test-retest reliability
was computed using the intra-class correlation coefficient (ICC)
(33). ICCs are often interpreted as follows: poor (ICC < 0.4),
fair to good (0.4 ≤ ICC < 0.75), and excellent (ICC ≥ 0.75)
(34). The MCID, or absolute reliability, was established using
the standard error of measurements (SEM) (35). The SEM was
computed as follows (36): SEM = SDbaseline ×

√
(1 – ICC).

For future studies, the absolute differences between treatment
groups in mobility frequency and mobility stability should be

larger than MCID values to confirm treatment efficacy rather
than measurement errors.

Relationships Between Indoor Mobility and
Cognitive and Functional Status
We examined whether gait speed was associated with indoor
mobility frequency when controlling for demographics (age,
gender, education, race, number of rooms in the house), health
(low mood, pain), and contextual factors (time spent out-of-
home, hours of daylight). We examined whether indoor mobility
stability was different between older adults with and without
MCI. Generalized estimating equations (GEE) models were used
to explore these two questions. In the GEE model, all repeated
weekly observations from each individual were combined,
while within-individual correlations were taken into account
in estimating standard errors. The dependent outcomes were
indoor mobility frequency and mobility stability. Independent
variables were gait speed measured in cm/sec and MCI status
indicated by a dummy variable (0/1). SAS procedure PROC GEE
was used for the analysis.

RESULTS

A total of 139 participants with 4,964 weeks (30,608 days) of data
were analyzed. On average, 35.9 weeks of survey data and 205.9
days of sensor data were analyzed per individual. Participant
characteristics are presented in Table 1. Among 139 participants,
19 participants met the criteria for MCI. The MCI group was
younger, had a higher proportion of males, and had fewer rooms
in their residences than the non-MCI group (Table 1).

Indoor mobility frequency data showed a positively skewed
distribution (Figure 1). The daily average mobility frequency was
116.2 ± 61.7 transitions at baseline (first week). There was no
significant difference in the indoor mobility frequency between
MCI and non-MCI groups (Cohen’s d = 0.13, t = −0.5, p =
0.62, Table 1). Indoor mobility stability data showed a normal
distribution (Figure 1). Average mobility stability was 0.4 ± 0.2
at baseline (first week). There was a significant difference in
the indoor mobility stability between MCI and non-MCI groups
(Cohen’s d = 1, t = 3.32, p < 0.01, Table 1), suggesting that
84% of the MCI individuals scored below the mean of the
non-MCI group.

Test-Retest Reliability and the MCID
Indoor mobility frequency showed excellent test-retest reliability,
with an ICC [95% Confidence Interval] of 0.91 [0.88–0.94]. The
MCID of mobility frequency was 18 (SEM).

Indoor mobility stability showed fair to good test-retest
reliability, with an ICC [95% Confidence Interval] of 0.59 [0.48–
0.70]. The MCID of mobility stability was 0.09 (SEM).

GEE Model With the Outcome Being
Mobility Frequency
A GEE model revealed that a higher indoor mobility frequency
was associated with faster gait speed (β = 0.63, p <

0.01) (Figure 2). Results remained statistically significant after
adjusting for age, gender, race, education, pain, low mood,
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TABLE 1 | Participant baseline characteristics (n = 139).

Characteristics [n (%)] All Non-MCI MCI t-statistics/ χ
2-statistics p-value

139 (100) 120 (86.3) 19 (13.7)

Age [mean (SD)] 78.1 (8.6) 78.9 (8.5) 73.1 (7.5) t(137) = 2.83 0.01

Gender (female) [n (%)] 103 (74.1) 94 (78.3) 9 (47.4) χ
2
(1) = 8.20 <0.01

Race (White) [n (%)] 107 (77.0) 90 (75.0) 17 (89.5) χ
2
(1) = 1.94 0.16

Years of education [mean (SD)] 15.7 (2.8) 15.8 (2.7) 14.9 (3.4) t(137) = 1.34 0.18

Gait speed (cm/sec) [mean (SD)] 70.8 (20.5) 70.1 (20.3) 75.6 (22.2) t(137) = −1.08 0.28

Number of rooms in the home [mean (SD)] 6.1 (2.2) 6.3 (2.2) 5.0 (1.6) t(137) = 2.38 0.02

Data points [mean (SD)]

Number of weekly surveys 35.9 (19.5) 36.2 (19.2) 34.4 (21.9) t(137) = 0.36 0.72

Number of days of sensor data 205.9 (127.1) 206.7 (125.9) 200.7 (138.1) t(137) = 0.19 0.85

Baseline indoor mobility (first week) [mean (SD)]

Indoor mobility frequency (transitions/day) 112.6 (61.7) 111.1 (63.1) 118.7 (53.6) t(137) = −0.50 0.62

Indoor mobility stability 0.4 (0.2) 0.4 (0.1) 0.3 (0.1) t(137) = 3.32 <0.01

MCI (mild cognitive impairment).

FIGURE 1 | The distribution of indoor mobility frequency and indoor mobility stability (n = 4,964 weeks).

number of rooms, hours of daylight, and time out-of-home (β
= 0.53, p = 0.04), suggesting that an increase of 10 cm/sec of
gait speed was associated with an increase of 5.3 room-to-room
transitions per day at home (Table 2).

GEE Model With the Outcome Being
Mobility Stability
A GEE model revealed that lower indoor mobility stability,
meaning higher variability from day to day within a week, was
associated with MCI status (β = −0.05, p = 0.01) (Figure 3).
Results remained statistically significant after adjusting for age,
gender, race, education, pain, low mood, number of rooms,
hours of daylight, and time out-of-home (β = −0.04, p = 0.03)
(Table 2).

DISCUSSION

In this study, we measured mobility at home using the number
of transitions made across indoor geographic locations. We

examined the psychometric properties of indoor mobility
frequency and indoor mobility stability and associated them
with physical and cognitive measures. We found that indoor
mobility frequency and stability were reliable, valid, and
clinically meaningful features. Participants with a faster gait
speed, on average, exhibited a higher mobility frequency
in the home compared with participants with a slower gait
speed. Participants with MCI, on average, showed lower
mobility stability in the home compared with the non-MCI
group, and the group difference in the mobility stability
yielded a large effect size. Considering the tremendous
amount of time older adults spend inside their residences,
monitoring indoor mobility using a pervasive-sensing
system provides an ecologically valid extended window to
delineate cognitive and functional status in older adults who
live alone.

We established MCIDs of indoor mobility frequency and
stability to define the smallest change to be meaningful to
older adults. This analysis followed the 2018 revised Food

Frontiers in Digital Health | www.frontiersin.org 5 October 2021 | Volume 3 | Article 764510

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Wu et al. In-Home Mobility Stability, Frequency, MCI

Drug Administration (FDA) guidance for early Alzheimer’s
disease (37), suggesting a validated measurement should report
a defined magnitude or threshold for treatment effects. The
MCIDs we reported are useful to gauge how much change
is needed to claim treatment efficacy in Alzheimer’s disease
and related disorders trials and how much change is needed
within individuals who may be expected to claim clinical
meaningfulness. Notably, there are many ways to measure
MCIDs, including distribution-based methods [percentage-
based personal thresholds, e.g., below 50th percentile of baseline
(38)] or global rating of change scales (subjective reports of
how much change do participants perceive) (39). The value of
MCID can vary among subgroups (40). Although our study
participants were comprised of those with and without MCI
and included 22% who were African American, we did not

FIGURE 2 | The relationship between indoor mobility frequency and gait

speed.

have further diversity that would allow us to explore how
MCIDs vary across other cognitive states or racial/ethnic groups
more broadly.

FIGURE 3 | The relationship between indoor mobility stability and mild

cognitive impairment (MCI).

TABLE 2 | Generalized estimating equations models with outcomes being indoor mobility frequency and indoor mobility stability (n = 4,964 weeks).

Variable Outcome: Indoor mobility frequency Outcome: Indoor mobility stability

Model without covariates Model with covariates Model without covariates Model with covariates

Beta SE p Beta SE p Beta SE p Beta SE p

Intercept 68.76 14.13 <0.01 225.87 58.01 <0.01 0.42 0.01 <0.01 0.15 0.08 0.06

Gait speed 0.63 0.19 <0.01 0.53 0.26 0.04

Mild cognitive impairment (MCI) −0.05 0.02 0.01 −0.04 0.02 0.03

Weekly health and contextual variables

Pain interfering life −1.65 1.30 0.21 −0.01 0.003 0.03

Low mood −5.03 2.65 0.06 −0.002 0.01 0.81

Hours out-of-home −3.34 0.87 <0.01 −0.01 0.003 0.02

Hours of daylight −0.94 0.31 <0.01 <-0.01 0.001 0.66

Demographic variables

Age in years −0.42 0.56 0.45 0.003 0.001 <0.01

Gender (male) −8.90 10.06 0.38 0.03 0.02 0.10

Years of education −2.56 1.83 0.16 0.001 0.003 0.62

Race (White) −10.72 14.21 0.45 0.05 0.02 0.01

Number of rooms in the house −6.64 1.94 <0.01 0.003 0.004 0.37
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Our results were similar to previous studies (14, 20, 22).
Hashidate et al. developed a self-reported questionnaire to
document how often individuals moved across rooms in the past
week in 20 community-dwelling older adults (14). They found
the number of transitions from the bedroom to other rooms
was moderately correlated with the Functional Independence
Measure (FIM) and timed up and go test (TUG). Austin et al.
also found indoor mobility, measured by PIR motion sensors,
increased with increasing walking speed (22). The relationships
between the number of room-to-room transitions and gait speed
may best be understood if room transitions are viewed as a
general surrogate of the ability to complete activities of daily
living (ADL). Many studies have shown that gait speed is a
strong predictor of completing indoor ADLs such as preparing
meals, taking medication, or doing household chores (41).
Reduced indoor mobility frequency may indicate weakness,
fatigue, depression, apathy, or decreased balance to navigate
rooms to complete ADLs. In Schutz and colleagues’ case reports
(16), activity heat maps suggested 4–8 room-to-room transitions
per h in their healthy 89-year-old with a MoCA score of 22. The
authors also found a strong relationship between MoCA scores
and coefficient of variation (CoV) of room transitions, which
paralleled our finding.

Our study demonstrated that indoor mobility stability
calculated by a non-parametric variable of 24-h rhythm was
different between older adults with and without MCI. A
previous study found that a 0.13–0.14 difference in the stability
of activity/rest cycles (Cohen’s d = 0.8–0.9) may distinguish
moderate dementia from a normal control group (42). Our data
suggested that a 0.1 difference in the indoor mobility stability
(Cohen’s d = 1) could distinguish MCI (earlier in the disease
course) from a normal cognition group. It suggested our measure
was more effective in detecting cognitive impairment. Several
studies also found that a higher MMSE score and older age
were associated with a greater interdaily stability of the sleep-
wake cycle (43, 44). The linkage between cognition and indoor
mobility stability in late life may result from several factors, such
as biological clocks (45) or endocrine changes (46). For example,
fluctuations in total sleep time (47), sleep efficiency, melatonin
secretion or hyperglycemia (48, 49), and dietary preferences
(50) were found in older adults with cognitive impairment.
These fluctuations could lead to shifted daily patterns of
routines. Therefore, lower indoor mobility stability observed
in the MCI group could signify physiological impairment in
the regulation of everyday routines. While our study did not
collect information about biological timing systems or endocrine
axes (e.g., melatonin, cortisol), this could be explored in future
studies. The linkage between indoor mobility stability and sleep-
wake circadian rhythms also warrants further research to support
this hypothesis.

Some covariates showed statistical significance in the models.
These results showed the importance of collecting multi-domain
data to delineate indoor mobility. For example, demographics
(age, race) were associated with indoor mobility stability. Studies
have shown an age-related tendency for spending more time
inside the home (4, 51). This may explain less time out-of-home
and higher indoor mobility stability observed in those at older

ages. Participants of different races and ethnicity varied in their
indoor mobility stability. Reasons for this finding are unknown,
but should be explored in future studies with larger sample
sizes and similar proportions of races across different geographic
regions to adjust for weather and rurality. Furthermore, weekly
health such as the oscillation of pain could influence indoor
mobility stability. It is possible that participants had good and bad
days; when pain is low, they might be able to transit in and out
of the home, while they might struggle with activity restrictions
on other days. Further, contextual variables such as hours of
daylight could influence a person’s indoor mobility frequency.
Previous studies showed that a higher temperature and certain
seasons (winter) were associated with less likelihood of moving
around at home (22, 52). Altogether, without collecting data from
various modalities (surveys, sensors, in-person visits), we would
not have been able to examine the interplay between indoor
mobility, cognition, and functional status while controlling for
confounding factors.

There are limitations to the current study. We quantified
indoor mobility using five common indoor geographic home
locations (primary bathroom, bedroom, kitchen, living room,
entrance). Although this approach is helpful to standardize
mobility across different sizes of residences, selected rooms
may not cover all the indoor behaviors of an individual.
We did not examine weekdays and weekends separately, yet
a previous study has shown that the regularity of human
behaviors was similar during weekdays and weekends (1).
We also did not have the ability to examine temperature
and seasonality in this cohort. The analytical approach
used in the current study produced population average
estimates instead of individual estimates. Although the MCI
group on average exhibited lower indoor mobility stability,
indoor mobility stability indeed varied across weeks within
individuals. Since habitual home-mobility patterns have been
shown to be highly individualized (22), future studies using
an individual-specific trajectory approach are warranted
to detect indoor mobility changes associated with MCI
and dementia.

Sensor-based technologies have exploded in recent years,
allowing remote, continuous measurement of older adults’
mobility at home. Measuring mobility requires considering
the context where the person is behaving. Our study used a
ubiquitous, continuous sensing approach to monitor mobility
in the home with the advantages of passive unobtrusive
sensors and thus less burden on participants. We were able
to conceptualize ecologically valid indoor mobility features.
These mobility features showed reliability, validity, and
clinical meaningfulness and further proved that a pervasive-
sensing system deployed in homes could be useful in
revealing cognitive and functional status for older adults
who live alone.

CONCLUSIONS

Older adults spend a considerable amount of time inside
their residences; however, most research investigates
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out-of-home mobility and its health correlates. We measured
indoor mobility using room-to-room transitions, tested
their psychometric properties, and correlated indoor
mobility with cognitive and functional status. We found
that a higher indoor mobility frequency was associated
with faster gait speed. We also found that a decrease in
mobility stability was associated with MCI. These results
demonstrate that mobility frequency and stability in
the home are clinically meaningful and reliable features.
Pervasive-sensing systems deployed in homes can objectively
reveal cognitive and functional status in older adults who
live alone.
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