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Abstract
Just in a week a rapidly spreading corona virus which was originated in Wuhan, city of
China, infected more than 20,000 people and also killed at least 427 people in that week
worldwide. Corona virus is transmissible and spreading from person to person, while the
Chinese commanded authorities are scrambling to treat a flood of new patients in Chines
successfully. The said Corona virus has been spread from an initial outbreak in Wuhan, city
of China, and invade 25 other worldwide countries. In this article, we considered the math-
ematical model (Chen et al. Infect Dis Poverty, https://doi.org/10.1186/s40249-020-00640-
3) in which Bats-Hosts-Reservoir-People and their transmission was taken, while we intro-
duced the population of susceptible Bats and visitors to Wuhan city or any country in same
mathematical model. Now we studying two types of populations first Bats-Hosts-Reservoir-
People (Chen et al. Infect Dis Poverty, https://doi.org/10.1186/s40249-020-00640-3, also
introducing susceptible Bats and second visitors to Wuhan city, china or any country in the
same model. We used Caputo-Fabrizio derivative with provided result that the addition of
susceptible Bats and visitors are not responsible in spread of infection. The numerical result
also supported our model.
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1 Background

The people of the entire world seen a very new epidemic thread in end of 2019 and 2020.
After the middle East Respiratory Syndrome(MERS), in middle east, a new virus Corona
attacked the “Wuhan city, China”. The Corona virus was first emerged in late December
and has killed more than 2500 people there, this means “Wuhan”, China alone accounted for
nearly 80 percent of the country’s with total deaths occur 3299 ormore. Before this, theWorld
Health Organization (WHO) China Country Office informed in 31, December 2019 about
pneumonia(unknown cause) detected in “Wuhan” city, Hubei China and WHO announced
novel Corona virus (2019-nCoV). The International Committee of Taxonomy assigned it
severe acute respiratory syndrome Corona virus-2(SARS-CoV-2) on 11 February, 2020 [12,
31,34]. Similarly some of the best approaches was studied and presented in [4,15,18,35].
All the country then infected, and an perception was drawn that visitors involve in this
transmission of new virus mostly.

Scientists of all the world then felt an urgent mathematical model to estimate the trans-
mission of this disease in China. Several researches focusing and developed mathematical
models for MERS [21,30,32]. In these mathematical model the scientists trying the repro-
ductive number which responsible for whole model [10,23,32]. The people are awarded from
different methods, and control strategies to make possible precautions against Corona virus.
Here the main aim is to estimate positivity, equilibrium, and Boundedness of these models
[11,13,16,27]. The recent and new ideas was also discussed in [1–3,5,14,19,25,26]. While
one of the best approach towards mathematical models is optimal control [17,20,22,29].
Many different methods are adopted for optimal purpose. One best attempt was done in [31].

In our work we try to vanish and prove the wrong perception that susceptible Bats and vis-
itors are the spreading agent of Corona virus in “wuhan” or any other country. Here we focus
on the study done in [9] which was Bats-Hosts-Reservoir-People(BHRP) and its different
transmission ways of Corona virus in any population.We just interesting in human-to-human
transmission, so for that issue we introduced Bats population and visitors population who
visit Wuhan China or any other country. We developed a mathematical model for the trans-
mission of Corona virus Reservoir-People-Visitors(RPV) with introducing susceptible bats
and estimate the value of R0. We apply Caputo-Fabrizio derivative approach towards this
issue, and a numerical simulation in the last.

2 Data source

The named Corona virus which was COVID-19 which was SARS-CoV-2 in the first and
the model was taken from the published literature [21]. The epidemic and its sharp curve
was considered from 7 December, 2019 to 31 March, 2020 is collected for this study, while
simulation step size is 1 week.

3 Simulationmethods and statistical analysis

For simulation and curve fitting we have used Runge-Kutta-fourth-order method. The repro-
ductive number for first model was considered 0.5 and also we considered R0 is equal to 1
for Bats and visitors model.
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4 Mathematical model and transmission of
Bats-Hosts-Reservoir-People(BHRP)

In 19 January, 2020 [8] published BHRP mathematical transmission model in bioRxiv, with
the following certain assumptions:

Bats population: 1:) Divided into four section, susceptible, exposed, infected, and
removed are (SB), (EB), (IB) and (RB) respectively. But in ourmodel we considered suscep-
tible Bats (SB) only, and ignored the remaining because of no concern in human population.
While nB and mB are taken the birth and death rate. B is the rate of infection from SB when
contact with IB .

Host Population: 2:) Population of host is also divided in four compartments:
(SH ), (EH ), (IH ) and (RH ) denoted susceptible, exposed, infected, and removed hosts. Here
we leave all the compartments of the Hosts population, due to no role in human population
infection.

Reservoir Population: Here W denoted SARS-CoV-2 in reservoir (the seafood market).
In our study the rate of asymptomatic infected people and symptomatic infected people export
virus with μp and μ̂p respectively from markets or any other source.

People Population: This population is divided in to five classes, there five compartments
are: (Sp), (Ep), (Ip), (Ap) and (Rp) denoted susceptible, exposed, symptomatic infected,
asymptomatic infected, and removed peoples compartments. Here mp represent death rate.
δp was defined for the proportion of asymptomatic infection, also the Sp infected from W
and Ip with the transmission rate βW and βp .

5 The new bats and visitors model

Here we drawn some more assumptions for our model:

Assumption 1 In our study we considered the Bats population only.

Assumption 2 We ignored the transmission of Bats-Host population due to unknown spread-
ing source.

Assumption 3 Hosts population ofBats is totally ignored in this study because of its unknown
relation and infection.

Assumption 4 We leave other related terms and contact in reservoir population in this article.

Assumption 5 We taken the class of susceptible Bats to check weather this class spread any
infection in the concern model.

Assumption 6 In this study we introduced visitors population compartment separately.
During in any outbreak the death rate is normally high, therefore, the model BHRP con-

verted into BRP and then in BRV(Bats-reservoir-visitors) model by the following,

S•
B = AB − mBSB − βB SB IB ,

S•
p = AB − mBSB − βB SB(IP + κAp) − βW SpW ,

E•
p = βB SB(IP + κAp) + βW SpW − (1 − δp)WpEp − δpWpEp − mpEp,

I •
p = (1 − δp)WpEp − (γp + mp)Ip,

A•
p = δpW

′
pEp − (γ ′

p + mp)Ap,
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R•
p = γp Ip + γ ′

p Ap − mpRp,

W • = μp Ip + μ′
p Ap − εW . (1)

In outbreak the visitors and hosts interaction was very slow in “Wuhan” or other country.
Now introducing dynamic population of the visitors to any city or country is as in separate
for estimation of infection,

S• = μN − σ(t)SI − αS,

E• = σ(t)SI − λE − αE,

I • = λE − ηI − α I . (2)

6 Transmissibility of Corona Virus or SARS-CoV-2 based on the BRP And
Bats-visitors model

In article, R0 is assessed for transmissibility of Corona virus(SARS-CoV-2). While the, R0

we defined as, the expected number of secondary infections with introducing any single
infected individual to susceptible population [7,29,36]. The value of R0 having two faces
that is, R0 > 1, or R0 < 1, showing different characteristics of the model in any outbreak
to control or for no out control. In this study, R0 was deduced from the BRP model and
Bats-visitors population by next generation matrix approach [12].

7 Some results

Here in this subsection of study, we given some basic definition of the fractional calculus,
which we used later,

Definition A Let HεG1(c, d) and d is greater then c, also τε[0, 1] then CFF derivative [6]
is given as,

Pτ
t (h(t)) = M(τ )

(1 − τ)

∫ τ

0
ĥ(x)e−τ( τ−x

1−τ
)dx .

Here M(τ ), which implies normality with M(0) = M(1) = 1 [6]. But if H is not contain in
G1(c, d) then we get,

Pτ
t (h(t)) = τM(τ )

(1 − τ)

∫ τ

a
(h(t) − h(x))e−τ( τ−x

1−τ
)dx .

Definition B When υ = (1−τ)
τ

ε[0,∞) and τ = 1
1+υ

ε[0, 1] we have the following result,

Pτ
t (h(t)) = K (υ)

υ

∫ t

a
ĥ(x)e(− t−x

υ
)dx .

With

K (0) = K (∞) = 1.

Applying lim υ → 0 we get,

Pτ
t (h(t)) = lim

υ→0

1

υ
e(− t−x

υ
)dx = υ(x − t).

This integral definition was provided by Losada and J. Nieto [24].
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Definition C Suppose that “0 < τ < 1” then CFFD integral of given function h is as,

I τ
t h(t) = 2(1 − τ)

(2 − τ)M(τ )
h(τ ) + 2τ

(2 − τ)M(τ ))

∫ t

0
h(s)ds, t ≥ 0. (3)

The above equation will also be written in the following as,

2(1 − τ)

(2 − τ)M(τ )
+ 2τ

(2 − τ)M(τ ))
= 1.

This gives us that M(τ ) = 2
(2−τ)

, with 0 < τ < 1. From Eq. (3) a new form of the
above “Caputo−Fabri zio f ractinal derivative of order 0 < τ < 1 which was further
investigated by Losada and J. Nieto [24].

Pτ
t h(t) = 1

(1 − τ)

∫ t

0
ĥ(x)e(τ

(t−x)
(1−τ)

)dx .

We use the above form in mathematical model of HBV and diabetes model [28,33].

8 Formulation of Model BVP from BRPV

Now we are going to replace system (1) by the new CF fractional derivative, as,

C0FDτ
t SB = AB − mBSB − βB SB IB ,

C0FDτ
t Sp = AB − mBSB − βB SB(IP + κAp) − βW SpW ,

C0FDτ
t E p = βB SB(IP + κAp) + βW SpW − (1 − δp)WpEp − δpWpEp − mpEp,

C0FDτ
t Ip = (1 − δp)WpEp − (γp + mp)Ip,

C0FDτ
t Ap = δpW

′
pEp − (γ ′

p + mp)Ap,

C0FDτ
t Rp = γp Ip + γ ′

p Ap − mpRp,

C0FDτ
t W = μp Ip + μ′

p Ap − εW . (4)

Similarly we also replace Eq. (2) by CF fractional derivative by below,

C0FDτ
t S = μN − σ(t)SI − αS,

C0FDτ
t E = σ(t)SI − λE − αE,

C0FDτ
t E = λE − ηI − α I . (5)

9 Basic reproductive number

The calculate the basic reproductive number for system (1) is as,

R0 = AB(1 − δp)Wp + (γp Ip)Ap

μp + μ
,
p Ap − W

+ βW Ap

(γ
,
p + mp)

.
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10 Methodology for our model

For existence for the model we use Fixed point theory. Now Caputo-Fabrizio fractional
derivative for system (1), is,

SB(t) − SB(0) = C0F I τ
t {AB − mBSB − βB SB IB},

Sp(t) − Sp(0) = C0F I τ
t {AB − mBSB − βB SB(IP + κAp) − βW SpW },

Ep(t) − Ep(0) = C0F I τ
t {βB SB(IP + κAp)

+βW SpW − (1 − δp)WpEp − δpWpEp − mpEp},
Ip(t) − Ip(0) = C0F I τ

t {(1 − δp)WpEp − (γp + mp)Ip},
Ap(t) − Ap(0) = C0F I τ

t {δpW ′
pEp − (γ ′

p + mp)Ap},
Rp(t) − Rp(0) = C0F I τ

t {γp Ip + γ ′
p Ap − mpRp},

W (t) − W (0) = C0F I τ
t {μp Ip + μ′

p Ap − εW }. (6)

Similarly using Caputo-Fabrizio fractional derivative for Eq. (4), is in below,

S(t) − S(0) = C0F I τ
t {μN − σ(t)SI − αS},

E(t) − E(0) = C0F I τ
t {σ(t)SI − λE − αE},

I(t) − I(0) = C0F I τ
t {λE − ηI − α I }. (7)

Now we applying the idea which used in [24] on Eqs. (6), and (7), while we get Eqs. (8) and
(9), from Eqs. (6), and (7),

SB(t) − SB(0) = 2(1 − τ)

(2 − τ)M(τ )
{AB − mBSB − βB SB IB}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{AB − mBSB − βB SB IB}dy,

Sp(t) − Sp(0) = 2(1 − τ)

(2 − τ)M(τ )
{AB − mBSB − βB SB(IP + κAp) − βW SpW }

∫ t

0
{AB − mBSB

−βB SB(IP + κAp) − βW SpW }dy,
Ep(t) − Ep(0) = 2(1 − τ)

(2 − τ)M(τ )
{βB SB(IP + κAp) + βW SpW

−(1 − δp)WpEp − δpWpEp − mpEp}
∫ t

0
{AB − mBSB

−βB SB(IP + κAp) + βW SpW − (1 − δp)WpEp − δpWpEp − mpEp}dy,
Ip(t) − Ip(0) = 2(1 − τ)

(2 − τ)M(τ )
{1 − δp)WpEp − (γp + mp)Ip}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{1 − δp)WpEp − (γp + mp)Ip}dy,

Ap(t) − Ap(0) = 2(1 − τ)

(2 − τ)M(τ )
{δpW ′

p Ep − (γ ′
p + mp)Ap}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{δpW ′

p Ep − (γ ′
p + mp)Ap}dy,

Rp(t) − Rp(0) = 2(1 − τ)

(2 − τ)M(τ )
{γp Ip + γ ′

p Ap − mpRp}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{γp Ip + γ ′

p Ap − mpRp}dy,
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W (t) − W (0) = 2(1 − τ)

(2 − τ)M(τ )
{μp Ip + μ′

p Ap − εW }

+ 2τ

(2 − τ)M(τ )

∫ t

0
{μp Ip + μ′

p Ap − εW }dy. (8)

Here we applying the new idea of Losada and J.Nieto [24] on the system given in above, and
we get,

S(t) − S(0) = 2(1 − τ)

(2 − τ)M(τ )
{μN − σ(t)SI − αS} + 2τ

(2 − τ)M(τ )

∫ t

0
{μN − σ(t)SI − αS},

E(t) − E(0) = 2(1 − τ)

(2 − τ)M(τ )
{σ(t)SI − λE − αE}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{σ(t)SI − λE − αE}dy,

SB (t) − SB (0) = 2(1 − τ)

(2 − τ)M(τ )
{λE − ηI − α I }

+ 2τ

(2 − τ)M(τ )

∫ t

0
{λE − ηI − α I }dy. (9)

Now the simplified form of the Eqs. (10) and (11), after Eqs. (8) and (9), is below,

�1(t, SB) = {AB − mBSB − βB SB IB},
�2(t, Sp) = {AB − mBSB − βB SB(IP + κAp) − βW SpW },
�3(t, Ep) = {βB SB(IP + κAp) + βW SpW − (1 − δp)WpEp − δpWpEp − mpEp},
�4(t, Ip) = {(1 − δp)WpEp − (γp + mp)Ip},
�5(t, Ap) = {δpW ′

pEp − (γ ′
p + mp)Ap},

�6(t, Rp) = {γp Ip + γ ′
p Ap − mpRp},

�7(t,W ) = {μp Ip + μ′
p Ap − εW }. (10)∏

1

(t, S) = {μN − σ(t)SI − αS},
∏
2

(t, S) = {σ(t)SI − λE − αE},
∏
3

(t, S) = {λE − ηI − α I }. (11)

Theorem 10.1 The Kernals of�1,�2,�3,�4,�5,�6 and�7 fulfill the Lipschitz condition
and contraction if the following inequality hold. 0 ≤ (mB + βmψ)e+ IB < 1, where ψ = 1
and e = 1

2 .

Proof We prove the theorem for �1,�2,�3,�4,�5,�6 and �7 respectively. First suppose
that S and S1 are two function for �1, then,

‖ �1(t, SB)−�1(t, S1B) ‖=‖ −mBSB{SB(t)− SB(t1)}−βB IB{SB(t)− SB(t1)} ‖ . (12)

For Eq. (12) we apply triangle in-equality, we get,

‖ �1(t, SB) − �1(t, S1B) ‖≤‖ −mBSB{SB(t) − SB(t1)} ‖
+ ‖ {−βB IB{SB(t) − SB(t1)}} ‖ .

≤ ‖ mB ‖ + ‖ {βB ‖‖ IB ‖ {‖ SB(t) − SB(t1) ‖}.
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≤ (mB + βm .1){1
2
} + IB ‖ SB(t) − SB(t1) ‖ .

≤ ϕ ‖ SB(t) − SB(t1) ‖ . (13)

Here while we use ϕ = (mB + βm) with ψ = 1 and e = 1
2 .

This implies the given function is a bounded function, so we have,

‖ �1(t, SB) − �1(t, S1B) ‖≤ ϕ ‖ SB(t) − SB(t1) ‖ . (14)

Hence, we see that the Lipschitz condition for Eq. (12) is satisfied, also 0 ≤ (mB +βmψ)e+
IB < 1, whereψ = 1 and e = 1

2 , which also emphasized that the said Eq. (12) is contraction.
The Lipschitz condition for other equations by the similar way are given below,

‖ �2(t, Sp) − �2(t, S1p) ‖≤ ϕ ‖ Sp(t) − Sp(t1) ‖ .

‖ �3(t, Ep) − �2(t, E1p) ‖≤ ϕ1 ‖ Ep(t) − Ep(t1) ‖ .

‖ �4(t, Ip) − �2(t, I1p) ‖≤ ϕ2 ‖ Ip(t) − Ip(t1) ‖ .

‖ �5 − �2(t, A1p) ‖≤ ϕ3 ‖ Ap(t) − Ap(t1) ‖ .

‖ �6(t, Rp) − �2(t, R1p) ‖≤ ϕ4 ‖ Rp(t) − Rp(t1) ‖ .

‖ �7(t,W ) − �2(t,W ) ‖≤ ϕ5 ‖ W (t) − W (t1) ‖ . (15)

Theorem 10.2 The Kernals of Eq. (10)
∏

1,
∏

2 and
∏

3 fulfill the Lipschitz condition and
contraction if the following inequality hold. 0 ≤ (σ (t) + αψ)e + I < 1, where ψ = 1 and
I = e = 1

2 .

Proof To prove the concern condition suppose that D and D1 are any two function then, from∏
1 we write as,

‖
∏
1

(t, D) −
∏
1

(t, D1) ‖=‖ −σ(t)SI − αS ‖ . (16)

By triangle inequality Eq. (15) becomes,

‖
∏
1

(t, D) −
∏
1

(t, D1) ‖ ≤ ‖ −σ(t)SI ‖ + ‖ −αS ‖ .

≤ ‖ σ(t)SI ‖ + ‖ αS ‖ .

≤ ‖ σ(t)I S{D(t) − D1(t)} ‖ + ‖ αS{D(t) − D1(t)} ‖ .

≤ ‖ σ(t) ‖‖ I ‖ + ‖ α ‖‖ {D(t) − D1(t)} ‖ .

≤ {σ(t) + α.1}{1
2
} ‖ {D(t) − D1(t) ‖}.

≤ � ‖ {D(t) − D1(t) ‖ . (17)

Where � = σ(t) + α, while again we see that ψ = 1 and I = e = 1
2 showing the same

effect of disease spread rate through visitors to “Wahan” city or the people living there in
“Wahan”.

Hence, Lipschitz condition for Eq. (16) is satisfied, and by similar waywe find the remain-
ing Eq. (10) are below, as,

‖
∏
1

(t, D) −
∏
1

(t, D1) ‖≤ �1 ‖ E(t) − E(t1) ‖ .

‖
∏
2

(t, D) −
∏
2

(t, D1) ‖≤ �2 ‖ I(t) − I(t1) ‖ . (18)
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Conclusion : 1 In this subsection we conclude that both the population showing the same
effect on the new disease “Corona Virus” spread in China “Wahan” city. The Eqs. (13),
(14), (16), and (17) providing the same values i.e, ψ = 1 and e = 1

2 , indicated that if the
visitors visit the particular city or no visitors there in the concern city the spreading ratio
of the disease remain same from the fixed values taken both population. These fixed values
of both the population ψ and e create a perception that visitors have not a key role in this
epidemic disease which spread in particular region of the “Wahan” city.

Taking Eqs. (8) and (9) with kernal notation becomes,

SB(t) = SB(0) + 2(1 − τ)

(2 − τ)M(τ )
{�1(t, SB)} + 2τ

(2 − τ)M(τ )

∫ t

0
{�1(y, SB)}dy,

Sp(t) = Sp(0) + 2(1 − τ)

(2 − τ)M(τ )
{�2(t, Sp)} + 2τ

(2 − τ)M(τ )

∫ t

0
{�2(y, Sp)}dy,

Ep(t) = Ep(0) + 2(1 − τ)

(2 − τ)M(τ )
{�3(t, Ep)} + 2τ

(2 − τ)M(τ )

∫ t

0
{�3(y, Ep)}dy,

Ip(t) = Ip(0) + 2(1 − τ)

(2 − τ)M(τ )
{�4(t, Ip)} + 2τ

(2 − τ)M(τ )

∫ t

0
{�4(y, Ip)}dy,

Ap(t) = Ap(0) + 2(1 − τ)

(2 − τ)M(τ )
{�5(t, Ap)} + 2τ

(2 − τ)M(τ )

∫ t

0
{�5(y, Ap)}dy,

Rp(t) = Rp(0) + 2(1 − τ)

(2 − τ)M(τ )
{�6(t, Rp)} + 2τ

(2 − τ)M(τ )

∫ t

0
{�6(y, Rp)}dy,

W (t) = W (0) + 2(1 − τ)

(2 − τ)M(τ )
{�7(t,Wσ)} + 2τ

(2 − τ)M(τ )

∫ t

0
{�7(y,W )}dy. (19)

Using technique in Eq. (19), we obtain Eqs. (17) and (18) as Eqs.(20) and (21),

S(t) = S(0) + 2(1 − τ)

(2 − τ)M(τ )
{
∏
1

(t, S)} + 2

(2 − τ)M(τ )

∫ t

0
{
∏
1

(y, S)}dy,

E(t) = E(0) + 2(1 − τ)

(2 − τ)M(τ )
{
∏
2

(t, E)} + 2

(2 − τ)M(τ )

∫ t

0
{
∏
1

(y, E)}dy,

I (t) = I (0) + 2(1 − τ)

(2 − τ)M(τ )
{
∏
3

(t, I )} + 2

(2 − τ)M(τ )

∫ t

0
{
∏
1

(y, I )}dy. (20)

Using recurrence formula for Eqs. (19) and (20) we get,

SBn(t) = 2(1 − τ)

(2 − τ)M(τ )
{�1(t, SB(n − 1))} + 2τ

(2 − τ)M(τ )

∫ t

0
{�1(y, SB(n − 1))}dy,

Spn(t) = 2(1 − τ)

(2 − τ)M(τ )
{�2(t, Sp(n − 1))} + 2τ

(2 − τ)M(τ )

∫ t

0
{�1(y, Sp(n − 1))}dy,

Epn(t) = 2(1 − τ)

(2 − τ)M(τ )
{�3(t, Ep(n − 1))} + 2τ

(2 − τ)M(τ )

∫ t

0
{�1(y, Ep(n − 1))}d,

Ipn(t) = 2(1 − τ)

(2 − τ)M(τ )
{�4(t, Ip(n − 1))} + 2τ

(2 − τ)M(τ )

∫ t

0
{�4(y, Ip(n − 1))}dy,

Apn(t) = 2(1 − τ)

(2 − τ)M(τ )
{�5(t, Ap(n − 1))} + 2τ

(2 − τ)M(τ )

∫ t

0
{�5(y, Ap(n − 1))}dy,
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Rpn(t) = 2(1 − τ)

(2 − τ)M(τ )
{�6(t, Rp(n − 1))} + 2τ

(2 − τ)M(τ )

∫ t

0
{�6(y, Rp(n − 1))}dy,

Wn(t) = 2(1 − τ)

(2 − τ)M(τ )
{�7(t,W (n − 1))} + 2τ

(2 − τ)M(τ )

∫ t

0
{�7(y,W (n − 1))}dy.(21)

And we get also

Sn(t) = 2(1 − τ)

(2 − τ)M(τ )
{
∏
1

(t, S(n − 1))} + 2

(2 − τ)M(τ )

∫ t

0
{
∏
1

(y, S(n − 1))}dy,

En(t) = 2(1 − τ)

(2 − τ)M(τ )
{
∏
2

(t, E(n − 1))} + 2

(2 − τ)M(τ )

∫ t

0
{
∏
1

(y, E(n − 1))}dy,

In(t) = 2(1 − τ)

(2 − τ)M(τ )
{
∏
3

(t, I (n − 1))} + 2

(2 − τ)M(τ )

∫ t

0
{
∏
3

(y, I (n − 1))}dy. (22)

With the initial conditions for Eqs. (21) and (22) are,

S0B(t) = SB (t), S0p(t) = Sp(t), E
0
p(t) = Ep(t), I

0
p(t) = Ip(t), A

0
p(t) = Ap(t), R

0
p(t) = Rp(t),W

0(t) = W (t).

Now to calculate the successive terms, we use the following difference formula,

�1n(t) = SBn(t) − SB (n − 1)t

= 2(1 − τ)

(2 − τ)M(τ )
{�1(t, SB (n − 1) − φ1(t, SB (n − 2))}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{�1(y, SB (n − 1) − φ1(y, SB (n − 2))}dy,

�2n(t) = Spn(t) − Sp(n − 1)t = 2(1 − τ)

(2 − τ)M(τ )
{�2(t, Sp(n − 1) − φ2(t, Sp(n − 2))}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{�2(y, Sp(n − 1) − φ2(y, Sp(n − 2))}dy,

�3n(t) = Epn(t) − Ep(n − 1)t = 2(1 − τ)

(2 − τ)M(τ )
{�3(t, Ep(n − 1) − φ3(t, Ep(n − 2))}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{�3(y, Ep(n − 1) − φ3(y, ep(n − 2))}dy,

�4n(t) = Ipn(t) − Ip(n − 1)t = 2(1 − τ)

(2 − τ)M(τ )
{�4(t, Ip(n − 1) − φ4(t, Ip(n − 2))}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{�2(y, Ip(n − 1) − φ4(y, Ip(n − 2))}dy,

�5n(t) = Apn(t) − Ap(n − 1)t = 2(1 − τ)

(2 − τ)M(τ )
{�5(t, Ap(n − 1) − φ5(t, Ap(n − 2))}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{�5(y, Ap(n − 1) − φ5(y, Ap(n − 2))}dy,

�6n(t) = Rpn(t) − Rp(n − 1)t = 2(1 − τ)

(2 − τ)M(τ )
{�6(t, Rp(n − 1) − φ6(t, Rp(n − 2))}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{�6(y, Rp(n − 1) − φ6(y, Rp(n − 2))}dy,

�7n(t) = Wn(t) − W (n − 1)t = 2(1 − τ)

(2 − τ)M(τ )
{�7(t,W (n − 1) − φ7(t,W (n − 2))}

+ 2τ

(2 − τ)M(τ )

∫ t

0
{�7(y,W (n − 1) − φ7(y,W (n − 2))}dy.

(23)
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Now applying the recurrence formula for visitors population dynamic in Eq. (22) is given by,

�1n(t) = Sn(t) − S(n − 1)t

= 2(1 − τ)

(2 − τ)M(τ )
{
∏
1

(t, S(n − 1) −
∏
1

(t, S(n − 2))}

+ 2

(2 − τ)M(τ )

∫ t

0
{
∏
1

(y, S(n − 1) −
∏
1

(y, S(n − 2))}dy,

�2n(t) = En(t) − E(n − 1)t

= 2(1 − τ)

(2 − τ)M(τ )
{
∏
2

(t, E(n − 1) −
∏
2

(t, E(n − 2))}

+ 2

(2 − τ)M(τ )

∫ t

0
{
∏
2

(y, E(n − 1) −
∏
2

(y, E(n − 2))}dy,

�3n(t) = I n(t) − I (n − 1)t

= 2(1 − τ)

(2 − τ)M(τ )
{
∏
3

(t, S(n − 1) −
∏
3

(t, I (n − 2))}

+ 2

(2 − τ)M(τ )

∫ t

0
{
∏
3

(y, I (n − 1) −
∏
3

(y, I (n − 2))}dy. (24)

Here we have the following Eq. (25) with i = 1, 2, 3, 4, 5, 6, 7 and Eq. (26) with j = 1, 2, 3
are given,

SBn(t) =
n∑

i=1

�1i(t), Spn(t) =
n∑

i=1

�2i(t), Epn(t) =
n∑

i=1

�3i(t).Ipn(t) =
n∑

i=1

�4i(t),

Apn(t) =
n∑

i=1

�5i(t), Rpn(t) =
n∑

i=1

�6i(t),Wn(t) =
n∑

i=1

�7i(t).

(25)

Sn(t) =
n∑

i=1

∏
1

i(t), En(t) =
n∑

i=1

∏
2

i(t),

I n(t) =
n∑

i=1

∏
3

i(t).

(26)

Here we use the same strategy and assume the following,

‖ �1n(t) ‖ = ‖ SBn(t) − SB(n − 1)(t) ‖
= ‖ 2(1 − τ)

(2 − τ)M(τ )
{�1(t, SB(n − 1) − φ1(t, SB(n − 2))}

2τ

(2 − τ)M(τ )

∫ t

0
{�1(y, SB(n − 1) − φ1(y, SB(n − 2))} ‖ dy.

Now for above equation we using triangle inequality, we get,

‖ SBn(t) − SB(n − 1)(t) ‖
≤‖ 2(1 − τ)

(2 − τ)M(τ )
{�1(t, SB(n − 1) − φ1(t, SB(n − 2))} ‖

+ 2τ

(2 − τ)M(τ )

∫ t

0
‖ {�1(y, SB(n − 1) − φ1(y, SB(n − 2))} ‖ dy.
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But we have proved that the kernal satisfied the Lipschits criteria then the above becomes,

‖ Sn(t) − S(n − 1)(t) ‖ ≤ ‖ 2(1 − τ)

(2 − τ)M(τ )
{�1 ‖ {SB(n − 1) − SB(n − 2))} ‖

+ 2τ

(2 − τ)M(τ )
�1

∫ t

0
‖ {SB(n − 1) − SB(n − 2))} ‖ dy.

(27)

From simplifying form Eq. (27) implies,

‖ �1n(t) ‖≤ 2(1 − τ)

2 − τM(τ )
�1 ‖ �1(n − 1)(t) ‖ + 2τ

2 − τ(M(τ ))
�1

∫ t

0
‖ �1(n − 1)y ‖ dy.

(28)

By the same way we get the following result,

‖ �2n(t) ‖≤ 2(1 − τ)

2 − τM(τ )
�2 ‖ �2(n − 1)(t) ‖ + 2τ

2 − τ(M(τ ))
�2

∫ t

0
‖ �2(n − 1)y ‖ dy,

‖ �3n(t) ‖≤ 2(1 − τ)

2 − τM(τ )
�3 ‖ �3(n − 1)(t) ‖ + 2τ

2 − τ(M(τ ))
�3

∫ t

0
‖ �3(n − 1)y ‖ dy,

‖ �4n(t) ‖≤ 2(1 − τ)

2 − τM(τ )
�4 ‖ �4(n − 1)(t) ‖ + 2τ

2 − τ(M(τ ))
�4

∫ t

0
‖ �4(n − 1)y ‖ dy,

‖ �5n(t) ‖≤ 2(1 − τ)

2 − τM(τ )
�5 ‖ �5(n − 1)(t) ‖ + 2τ

2 − τ(M(τ ))
�5

∫ t

0
‖ �5(n − 1)y ‖ dy,

‖ �6n(t) ‖≤ 2(1 − τ)

2 − τM(τ )
�6 ‖ �6(n − 1)(t) ‖ + 2τ

2 − τ(M(τ ))
�6

∫ t

0
‖ �6(n − 1)y ‖ dy.

(29)

Similarly from Eq. (24) we have below result,

‖ �1n(t) ‖≤ 2(1 − τ)

2 − τM(τ )

∏
1

‖ �1(n − 1)(t) ‖ + 2τ

2 − τ(M(τ ))
�1

∫ t

0
‖ �1(n − 1)y ‖ dy,

‖ �2n(t) ‖≤ 2(1 − τ)

2 − τM(τ )

∏
2

‖ �2(n − 1)(t) ‖ + 2τ

2 − τ(M(τ ))
�2

∫ t

0
‖ �2(n − 1)y ‖ dy,

‖ �3n(t) ‖≤ 2(1 − τ)

2 − τM(τ )

∏
3

‖ �3(n − 1)(t) ‖ + 2τ

2 − τ(M(τ ))
�3

∫ t

0
‖ �3(n − 1)y ‖ dy.

(30)

Now considered the theorem given below,

Theorem 10.3 The model defined in system (1) has exact coupled solution if the condition
below hold that is we find that

2(1 − τ)

(2 − τ)M(τ )
�1 + 2τ)

(2 − τ)M(τ )
�1 < 1.

Proof We shown that all the Eqs. in (28) and (29) are bounded and the functions
SB , Sp, Ep, Ip, Ap, Rp,W fulfill the Lipschitz condition, so Eqs. (28) and (29) by recursive
method its succeeding relation are given below,
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‖ �1 ‖≤‖ SBn(0) ‖ [ 2(1 − τ)

(2 − τ)M(τ )
�1 + 2τ)

(2 − τ)M(τ )
�1]n,

‖ �2 ‖≤‖ Spn(0) ‖ [ 2(1 − τ)

(2 − τ)M(τ )
�2 + 2τ)

(2 − τ)M(τ )
�2]n,

‖ �3 ‖≤‖ Epn(0) ‖ [ 2(1 − τ)

(2 − τ)M(τ )
�3 + 2τ)

(2 − τ)M(τ )
�3]n,

‖ �4 ‖≤‖ Ipn(0) ‖ [ 2(1 − τ)

(2 − τ)M(τ )
�4 + 2τ)

(2 − τ)M(τ )
�4]n,

‖ �5 ‖≤‖ Apn(0) ‖ [ 2(1 − τ)

(2 − τ)M(τ )
�5 + 2τ)

(2 − τ)M(τ )
�5]n,

‖ �6 ‖≤‖ Rpn(0) ‖ [ 2(1 − τ)

(2 − τ)M(τ )
�6 + 2τ)

(2 − τ)M(τ )
�6]n,

‖ �7 ‖≤‖ Wn(0) ‖ [ 2(1 − τ)

(2 − τ)M(τ )
�7 + 2τ)

(2 − τ)M(τ )
�7]n . (31)

which shows that the existence and as well as the continuity of the concern solutions is valid
and proved. Furthermore, to ensure that the above function is a solution of Eq. (3), we proceed
as follows:

SB(t) − SB(0) = SBn(t) − T1(t),

Sp(t) − Sp(0) = Spn(t) − T2(t),

Ep(t) − Ep(0) = Epn(t) − T3(t),

Ip(t) − Ip(0) = Ipn(t) − T4(t),

Ap(t) − Ap(0) = Apn(t) − T5(t),

Rp(t) − Rp(0) = Rpn(t) − T6(t),

W (t) − W (0) = Wn(t) − T7(t). (32)

Where the terms T1(t), T2(t), T3(t), T4(t), T5(t), T6(t) and T7(t) are classified as below,

‖ T1n(t) ‖ = ‖ 2(1 − τ)

2 − τM(τ )
�1(t, SBn) − �1(t, SB(n − 1)

+ 2τ

2 − τM(τ )

∫ t

0
(�1(y, SBn) − �1(y, SB(n − 1)) ‖ dy.

‖ T1(t) ‖≤‖ 2(1 − τ)

2 − τM(τ )
‖ �1(t, SBn) − �1(t, SB(n − 1) ‖

+ 2τ

2 − τM(τ )

∫ t

0
‖ (�1(y, SBn) − �1(y, SB(n − 1)) ‖ dy.

≤ 2(1 − τ)

(2 − τ)M(τ )
�1 ‖ SB − SB(n − 1) ‖ + 2τ

(2 − τ)M(τ )
�1 ‖ SB − SB(n − 1) ‖ .

(33)

In recurrence manner we write as

‖ T1(t) ‖≤ ((
2(1 − τ)

2 − τM(τ )
+ 2τ

2 − τM(τ )
t0)

n+1�n+1
1 . (34)

Now using limit n → ∞ on Eq. (34)

‖ T1(t) ‖→ 0.
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Table 1 Parameters Used In
BHRP And BRP Visitors Model Notation Parameter description

nB Bats Birth rate

nH Hosts Birth rate

n p People Birth rate

mB Bats death rate

mH hosts death rate

1/ωB Bats incubation period

1/ωH Host incubation period

1/ωp People incubation period

1/ω̂B Latent people period

1/γB Bats infection period

1/γH Hosts infection period

1/γp The symptomatic people infectious period

1/γ̂p The asymptomatic people infectious period

βB IB to SB transmission rate

βBH IB to SH transmission rate

βH IH to SH transmission rate

βp Ip to Sp transmission rate

βW W to Sp transmission rate

The same procedure using for Eq. (32) we get,

‖ T2(t) ‖→ 0, ‖ T3(t) ‖→ 0, ‖ T4(t) ‖→ 0,

‖ T5(t) ‖→ 0, ‖ T6(t) ‖→ 0, ‖ T7(t) ‖→ 0.

To show system (3) having unique solution, we suppose that there exists another solution of
system (3) are S1B(t), S1p(t), E1p(t), I1p(t), A1p(t), R1P (t) and W1(t), such that,

SB(t) − S1B(t) = 2(1 − τ)

(2 − τ)M(τ )
�1(t, SB) − �1(t, S1B)

+ 2τ

(2 − τ)M(τ )

∫ t

0
�1(y, SB) − �1(y, S1B)dy. (35)

Now for Eq(34) using ‖ . ‖, and applying Lipschitz condition of kernelwe,

‖ SB(t) − S1B(t) ‖ (1 − 2(1 − τ)

(2 − τ)M(τ )
�1

− 2τ

(2 − τ)M(τ )
�1(t)) ≤ 0. (36)

Conclusion: 2 The model defined in system (4) by using the strategies of Eqs. (28) and (29),
we see that the succeeding relation with continivity like in Eq. (32) the terms T̂1, T̂2, T̂3,
showing same behavior of Eq. (34) with assigning new supposition of solution Ŝ1, Ŝ2, Ŝ3,
provides us Eq. (36) of the form of Eq. (35) revealed that the spreading of Corona virus in
“Wahan city” do not effected by visitors (Table 1).

Theorem 10.4 The model (3) solution will unique if

(1 − 2(1 − τ)

(2 − τ)M(τ )
�1 − 2τ

(2 − τ)M(τ )
�1t) > 0.
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Fig. 1 The Plot Show A Random Behavior of Both population model

Fig. 2 The plot show a random behavior of both population model

Proof If condition defined in above theorem hold then Eq. (36) written as,

‖ SB(t) − S1B(t0 ‖= 0. (37)

We easily get that,

SB(t) = S1B (38)

Provided that the following solution of all concern,

Sp(t) = S1p(t), Ep(t) = E1p(t), Ip(t) = I1p(t),
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Fig. 3 The plot show a random behavior of both population model

Ap(t) = A1p(t), Rp(t) = R1p(t),W (t) = W1(t).

Similarly apply the same theorem (above) and procedure we also find the visitors population
as below, provided that the following solution of all concern,

S(t) = S1(t), E(t) = E1(t), I (t) = I1(t).

11 Conclusion

considering the published data with calculating all parameters, we concluded that the models
“BHRP”, and “RP” showed that the spread of Corona virus is very high then MERS in any
population. But the addition of ourmodel to published datamodel showed that the susceptible
Bats and visitors to Wuhan or any country having same estimation as that population, more
specially visitors of any country are not responsible in the spread of more infection in that
area. In simulation from Fig. 1 show that the spread is randomly occurred in your model
which shows that, in spread of Corona virus no external agent is involved (visitors). Fig 2
also indicate that the virus may be started from any point where there will be no visitors and
susceptible Bats exist. From Fig. 3 we see that the spread of this virus is very fast and then
it change in any region of the country. But here our objective of this mathematical model
is to estimate the role of susceptible Bats and visitors in spread of “Corona virus′′ in any
population. Finally we say that the spread of virus is free from any type of visitors and
susceptible Bats.
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5. Brzeziński, D.W.: Review of numerical methods for NumILPT with computational accuracy assessment
for fractional calculus. Appl. Math. Nonlinear Sci. 3(2), 487–502 (2018)

6. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract.
Differ. Appl. 1(2), 1–13 (2015)

7. Chen, T., Rui, J., Wang, Q., Zhao, Z., Cui, J-A., Yin, L.: A mathematical model for simulating the
transmission of Wuhan novel Coronavirus. bioRxiv. 2020: 2020.2001.2019.911669. Accessed 13 Feb
(2020)

8. Chen, T., Rui, J., Wang, Q., Zhao, Z., Cui, J-A., Yin, L.: A mathematical model for simulating the
transmission of Wuhan novel Coronavirus. bioRxiv. 2020: 2020.2001.2019.911669. Accessed 13 Feb
2020. bibitem31A Dynamic Compartmental Mathematical Model Describing The Transmissibility Of
MERS-CoV Virus In Public,Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 51(4) pp.
57-71(2019)

9. Chen, T.-M., Rui, J., Wang, Q.-P., Zhao, Z.-Y., Cui, J.-A., Yin, L.: A mathematical model for simulating
the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty, https://doi.org/10.1186/
s40249-020-00640-3

10. Chen, T., Ka-Kit Leung, R., Liu, R., Chen, F., Zhang, X., Zhao, J., et al.: Risk of imported Ebola virus
disease in China. Travel Med. Infect. Dis. 12, 650–8 (2014)

11. Chen, T.M., Chen, Q.P., Liu, R.C., Szot, A., Chen, S.L., Zhao, J., et al.: The transmissibility estimation
of influenza with early stage data of small-scale outbreaks in Changsha, China, 2005–2013. Epidemiol.
Infect. 145, 424–33 (2017)

12. Cui, J.-A., Zhao, S., Guo, S., Bai, Y., Wang, X., Chen, T.: Global dynamics of an epidemiological model
with acute and chronic HCV infections. Appl. Math. Lett. 103, 106203 (2020)

13. De la Sen, M., Agarwa, Ravi P., Ibeas, A., Alonso-Quesada, S.: On the Existence of Equilibrium Points,
Boundedness, Oscillating Behavior and Positivity of a SVEIRS Epidemic Model under Constant and
Impulsive Vaccination,Advances in Difference Equations Volume 2011, Article ID 748608, 32 pages
https://doi.org/10.1155/2011/748608.

14. Fanelli, D., Piazza, F.: Analysis and forecast of COVID-19 spreading in China. Italy and France. Chaos
Solitons Fractals 134, 109761 (2020). https://doi.org/10.1016/j.chaos.2020.109761

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fractalfract4030030
https://doi.org/10.1140/epjp/i2019-12680-4
https://doi.org/10.1140/epjp/i2019-12680-4
https://doi.org/10.1186/s40249-020-00640-3
https://doi.org/10.1186/s40249-020-00640-3
https://doi.org/10.1155/2011/748608.
https://doi.org/10.1016/j.chaos.2020.109761


136 M. Tahir et al.

15. Gao, W., Baskonus, H.M., Shi, L.: New investigation of bats-hosts-reservoir-people coronavirus model
and application to 2019-nCoV system. Adv Differ Equ 2020, 391 (2020)

16. Gao, W., Senel, M., Yel, G., Baskonus, H.M., Senel, B.: New complex wave patterns to the electrical
transmission line model arising in network system. AIMSMath. 5(3), 1881–1892 (2020). https://doi.org/
10.3934/math.2020125

17. Gao, W., Veeresha, P., Prakasha, D.G., Baskonus, H.M., Yel, G.: New numerical results for the time-
fractional Phi-four equation using a novel analytical approach. Symmetry. 12(3), 478 (2020). https://doi.
org/10.3390/sym12030478

18. Gao, W., Yel, G., Baskonus, H.M., Cattani, C.: Complex solitons in the conformable (2+1)-dimensional
Ablowitz-Kaup-Newell-Segur equation. AIMS Math. 5(1), 507–521 (2019). https://doi.org/10.3934/
math.2020034

19. Kumar, S.,Nisar,K.S.,Kumar,R.,Cattani,C., Semet,B.:AnewRabotnov fractional-exponential function-
based fractional derivative for diffusion equation under external force. Math. Methods Appl. Sci. (2020).
https://doi.org/10.1002/mma.6208

20. Kumar, D., Singh, J., Al Qurashi, M., Baleanu, D.: A new fractional SIRS-SI malaria disease model with
application of vaccines, antimalarial drugs, and spraying. Adv. Differ. Equ. 2019, 278 (2019)

21. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., et al.: Early transmission dynamics in Wuhan,
China, of novel coronavirus-infected pneumonia. N Engl. J. Med. (2020). https://doi.org/10.1056/
NEJMoa2001316

22. Liu, J., Zhang, T.: Global stability for a tuberculosis model. Math. Comput. Model 54, 836–845 (2011)
23. Longini Jr., I.M., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D.A., et al.:

Containing pandemic influenza at the source. Science. 309, 1083–7 (2005)
24. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ.

Appl. 1(2), 87–92 (2015)
25. Pand, S.K., Abdeljawad, T., Ravichandran, C.: A complex valued approach to the solutions of Riemann-

Liouville integral, Atangana-Baleanu integral operator and non-linear telegraph equation via fixed point
method. Chaos Solitons Fractals. 130, 109439 (2020)

26. Rushchitsky, J.J., Simchuk, Y.V.: Modeling cylindrical waves in nonlinear elastic composites. Int. Appl.
Mech. 43, 638–646 (2007)

27. Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer
viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018). https://doi.
org/10.1016/j.amc.2017.08.048

28. Singh, J., Kumar, D., Baleanu, D.: On the analysis of fractional diabetes model with exponential law.
Adv. Differ. Equ. 2018(1), 231 (2018)

29. Tahir, et al.: Ebola virus epidemic disease its modeling and stability analysis required abstain strategies.
Cogent Biol. 4, 1488511 (2018). https://doi.org/10.1080/23312025.2018.1488511

30. Tahir M., et al.: Stability Behaviour of Mathematical Model MERS Corona Virus Spread in Population.
Filomat 33:12 , 3947–3960 (2019) https://doi.org/10.2298/FIL1912947T

31. Tahir, M., Nousheen, A., syed I., Ali S., Tahir K.: Modeling and stability analysis of epidemic expansion
diseaseEbola viruswith implications prevention in population,CogentBiology 5, 1619219 (2019). https://
doi.org/10.1080/23312025.2019.1619219

32. Tahir, M., Shah, S., Inayat A., Zaman, G., Khan, T.: A Dynamic Compartmental Mathematical Model
Describing The Transmissibility OfMERS-CoVVirus In Public,Punjab University Journal of Mathemat-
ics (ISSN 1016-2526) Vol. 51(4)(2019) pp. 57-71

33. Tahir, M., Shah, S.I.A., Zaman, G.: Prevention strategy for superinfection mathematical model tuber-
culosis and HIV associated with AIDS. Cogent Math. Stat. 6, 1637166 (2019). https://doi.org/10.1080/
25742558.2019.1637166

34. World Health Organization. Coronavirus. World Health Organization, cited January 19, 2020. Available:
https://www.who.int/health-topics/coronavirus
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