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   Abstract: The complex immune system is involved in multiple pathological processes. Single-cell 
RNA sequencing (scRNA-seq) is able to analyze complex cell mixtures correct to a single cell and 
single molecule, thus is qualified to analyze immune reactions in several diseases. In recent years, 
scRNA-seq has been applied in many researching fields and has presented many innovative results. In 
this review, we intend to provide an overview of single-cell RNA sequencing applications in immu-
nology and a prospect of future directions. 
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1. INTRODUCTION 

 The immune system is a combination of immune organs, 
immune cells and immune molecules, dominating multiple 
pathophysiology processes in organisms and keeping a phys-
iology balance. However, due to the diversity of immune 
system composition and the complexity of immune reac-
tions, exploration in immunology has been difficult, and the 
knowledge of it is restricted. Current exploring methods [1] 
based on the single experiment are inefficient and unstable, 
thus a simultaneous, high throughput method is urgently 
needed to detect whole anatomy of the immune system and 
the pathologic changes adapting to various diseases. 
 Single-cell sequencing (SCS) is a new technology to ana-
lyze genomics, transcriptomics and epigenomics on the level 
of single-cell, which complements the shortcomings of tradi-
tional high throughput sequencing by revealing homogeneity 
and heterogeneity among cells individually. As an emerging 
tool to analyze bioinformation, it is valued for its ability to 
collect cell information individually and identify all types of 
cells in a sample unbiasedly without prior knowledge for 
them, which would provide critical supports in understand-
ing the diversity of the immune system. 
 In this review, we intend to offer an overview of the cur-
rent methods and applications for single-cell RNA sequenc-
ing, displaying a general view of the capabilities of this 
technology in the immunology field. 
 

*Address correspondence to these authors at the Department of Urology, 
Zhongshan Hospital, Fudan University, Shanghai 200032, China; Tel: +86-
21-64041990; E-mails: esuperyc@163.com; yang.cheng1@zs-hospital.sh.cn 
and Department of Critical Care Medicine, Zhongshan Hospital, Fudan 
University, Shanghai 200032, China; Tel: +86-21-64041990;  
E-mail: tu.guowei@zs-hospital.sh.cn 
# These authors contributed equally to this work. 

2. scRNA-SEQ: STATE-OF-THE-ART 

 The technology of single-cell measurement has constant-
ly been improving in recent years. Yet steps of current sin-
gle-cell technologies in the laboratory are still quite stable. A 
typical scRNA-seq protocol includes 7 steps [2]: single-cell 
isolation, lysis, reverse transcription, cDNA amplification, 
library preparation, sequencing and computational analysis. 
Among these steps, cell isolation, library construction and 
data analysis are paid most attention in single-cell RNA se-
quencing. 

 Cell isolation is the first step of scRNA-seq. Major cell 
isolation methods include limiting dilution, micromanipula-
tion, flow-activated cell sorting (FACS), laser capture mi-
crodissection (LCM), microdroplets and microfluidics [3]. 
Current sequencing methods are composed of plate-based 
protocols, pooled approaches, and massively parallel ap-
proaches [4]. These methods isolate cells by microfluidics 
and microdroplets. Limiting dilution and micromanipulation 
is both ineffective for massive analysis. LCM is able to re-
serve spatial information, but the limited throughput and 
restricted sample form (tissue dissections) of this technology 
lead to a narrow application. FACS can separate cells with 
specific markers and filter out unviable cells before sequenc-
ing, therefore it is adopted in many experimental designs. 
However, to filter cells with certain known cell types subjec-
tively before scRNA-seq could wipe out valuable hidden 
information in biosamples. Additionally, FACS does not 
really separate cells into individual analyzing units like a 
microplate or microdrop for further manipulation. Introduc-
ing an extra step or equipment will also introduce errors ei-
ther. 

 Commonly used sequencing methods automatically ma-
nipulate cells to accommodate the handling of a massive 
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number of cells. Plate-based methods separate cells into dif-
ferent wells on a plate, whereas droplet-based methods cap-
ture cells in microdrops for further analysis. Both methods 
cannot ensure the accuracy of isolation [5]. Empty wells or 
microdrops may exist, and the inclusion of two (doublet) or 
more cells in a microwell or microdrop cannot be avoided. 
Such technical drawbacks introduce systematic error into the 
later analysis, in which every microunit is considered as a 
single cell. SMART-seq and SMART-seq2 are typical plate-
based sequencing methods. The Fluidigm C1 platform, based 
on the SMART-seq2 method, has improved the manual sepa-
ration process by using a microfluidics chip. Fluidigm also 
allows for visual monitoring of the wells during cell isolation 
to control empty or doublet wells. Droplet-based platforms, 
such as 10x Genomics, have high throughput separating abil-
ity. Despite some noise and loss with this batch manipulation 
method, the advantages of higher throughput and lower cost 
have made these platforms of choice. Of note, both types of 
platforms have pros and cons among isolation methods. 
 Library construction is performed to amplify the weak 
signals of mRNA in a single cell through reverse transcrip-
tion and cDNA amplification. This amplification of the 
cDNA is performed by polymerase chain reaction (PCR), in 
vitro transcription (IVT) or SPLiT-seq [6, 7]. Although vari-
ous protocols have been proposed to improve their efficiency 
and accuracy, none of these methods is perfect for all se-
quencing requirements. These methods can be classified ac-
cording to the coverage of transcripts. Full-length transcript 
sequencing methods, such as Smart-seq2, SUPeR-seq and 
MATQ-seq, enable the detection of rare transcripts. 
SMART-seq2 can detect more genes within the same sample 
than other sequencing methods [8]. Although better sequenc-
ing depth is achieved by full-length sequencing, the ineffi-
cient procedures restrict the cell throughput. In comparing 
different groups of cells, the number of sequenced cells be-
comes a critical indicator. The high throughput and low cost 
of non-full-length sequencing methods, for example, 5´ se-
quencing methods, including Drop-Seq and 3´ sequencing 
methods such as STRT-seq, is an advantage in such cases. 
To perform massive and efficient analysis, all cDNA should 
converge in a pool. To avoid losing information on cell 
origin during this process, mRNA in the same well or droplet 
(not necessarily the same cell) is labeled with a barcode. In 
certain methods, unique molecular identifiers (UMIs) are 
designed to mark every mRNA before amplification, thus, 
enabling quantification of different transcripts from the same 
gene [9, 10].  
 Data processing requires bioinformatics analysis skills. 
As scRNA-seq retrieves enormous amounts of information, 
computational analysis is an important tool for drawing sig-
nificant conclusions. After quality control, the cDNA library 
can be sequenced, thus, producing read data. Through bar-
codes and UMIs, information on the cellular and molecular 
origins of the read data is restored [5]. Further analyses are 
based on these restored data.  
 Library construction multiplies minimal biosignals, 
thereby allowing for the detection of mRNA in single cells 
but enhancing the data noise. Inviable cells, doublets (two 
cells in one droplet) and environmental RNA frequently con-
taminate the raw data. Quality control of the data is neces-

sary for downstream analysis. Although general rules [11] 
and several analysis tools [5] exist for removing noise, de-
termining the quality control strategy in a specific experi-
ment still requires knowledge and experiments. Subjective 
factors among researchers may be involved during this pro-
cess [5]. Reverse transcription also tends to yield biased re-
sults because of several factors, including gene length and 
sequencing depth. To correct the effects due to reverse tran-
scription, normalization methods are used. A given normali-
zation method cannot fit all types of sequencing data. The 
scone tool, apart from deducing the best normalization 
method according to data parameters [12], aids in deciding 
on a normalization method. After the trimming of raw data, 
subsequent analyses such as dimensional reduction and un-
supervised clustering can be performed. To date, several 
calculation tools have been proposed, yet a consensus re-
garding the existing methods is lacking. Technical noise is 
not removed effectively, and the variability in cellular ex-
pression is not measured accurately [13]. The analysis of 
scRNA-seq data remains challenging. 
 scRNA-seq platforms are combined through different 
isolation and sequencing methods. Fluidigm C1 uses micro-
fluidics and plate-based sequencing. 10x Genomics uses mi-
crodroplets and massively parallel approaches. BD Rhapso-
dy uses microwell and massive parallel approaches and can 
be customized. The advent of commercial platforms has 
saved laboratory time and sequencing costs, thus allowing 
more laboratories to use scRNA-seq. Critical technological 
improvements played an important role in the commerciali-
zation of single-cell RNA sequencing. For example, Flu-
idigm C1, based on a switching mechanism at the 5´ end of 
the RNA transcript (Smart-seq), was developed in 2012 [14] 
and improved upon in the subsequent year [15]. Full-length 
sequencing of the transcript enables the detection of selective 
transcription isomers and single nucleotide polymorphisms. 
The improved sequencing coverage ensures less data loss. 
However, the high cost and restricted number of cells have 
prevented its extensive application.  
 Late in the subsequent year, the microdroplet method 
[16] became available, thus solving the problem of high cost 
and low throughput. With microfluidics technology, micro-
droplets of water in oil are generated. Barcodes are trapped 
in these structures together with single cells by using specific 
markers for the transcriptomes of every single cell. Subse-
quently, the cells can be mixed and lysed without the confu-
sion of cell identity, and cDNA libraries can be generated. 
Given a large number of cells, cluster analysis or pseudo 
time analysis can provide further information on subgroups 
or developmental trajectories. Despite increasing sequencing 
information and decreasing costs, droplet-based methods 
cannot measure the full length of the target sequence [17], 
thus resulting in a loss of sequencing depth. Currently, re-
searchers use both methods in a supplementary manner. 
DropSeq methods can be used to investigate the full range of 
cells, among which those of interest are selected for se-
quence and by SMART-seq2, covering both coverage and 
depth of sequencing. 
 Immune repertoire sequencing is a promising tool to de-
termine the status of the immune system. Comprising the 
sum of T cell receptors (TCRs) and B cell receptors, the 
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Table 1. Comparison of different scRNA-seq platforms. 

Platform Cell Isolation Library Construction Capturing Efficiency Cost ($ Per Cell) Cells Sequenced 

Fluidigm C1 Microfluidic Full-length sequencing [70] 10% [70] 3.5 [6] 96 or 800 [70] 

BD Rhapsody Microwell 
Cell barcode + UMI 

PCR 
RT and template switch [71] 

79% [71] 3-6 [71] 100 – 10,000 [71] 

10X Genomics Microdrop 
Cell barcode + UMI 

PCR 
RT and template switch [72] 

65% [6] 0.5 [72] 1,000-80,000 [6] 

indrop Microdrop 
Cell barcode + UMI 

IVT 
RT + 2nd strand synthesis [72] 

7% [9] 0.25 [72] 7,000 [9] 

dropseq Microdrop 
Cell barcode + UMI 

PCR 
RT and template switch [72] 

5% [6] 0.1 [72] 5,000 – 10,000 [72] 

Wafergen ICELL8 Microwell 
Cell barcode + UMI 

PCR 
RT and template switch [73] 

30% [74] 3 [74] 500 - 1,000 [73] 

Illumina/Bio-Rad Microdrop 
Cell barcode 

IVT 
RT + 2nd strand synthesis [75] 

3% [74] 1-4 [6, 74] 500 - 10,000 [6, 74] 

RT, reverse transcription; UMI, unique molecular identifier; IVT, in vitro transcription. 

immune repertoire reflects the pathological state of the or-
ganism. As the heterogeneity of TCRs/B cell receptors origi-
nates from the random transcription and combination of mul-
tiple noncontiguous gene segments (variable, diversity and 
joining, or V(D)J), genomic DNA and mRNA, despite hav-
ing different advantages, can both be used for library con-
struction. The invention of next-generation sequencing ena-
bled massive immune repertoire sequencing, yet these meth-
ods sequence mixed nucleotides from different cells in bulk 
samples. Although these mixed nucleotides can provide gen-
eral information on V(D)J recombination, they cannot reveal 
the pairing states of alpha/beta chains (for antigen-specific 
αβT cells) or light/heavy chains (for B cells) in single cells 
[18]. Therefore, the biological functions of these lympho-
cytes remain undetected. Single-cell sequencing with bar-
codes for identifying each cell appears to be an ideal tool for 
retrieving this critical information, despite decreasing 
throughput for searching for rare V(D)J recombination. 
However, single-cell sequencing of the immune repertoire is 
not a simple and comprehensive solution. Sequencing plat-
forms must achieve a balance among throughput, read length 
and error rate. Raw data must be corrected with methods 
such as UMI to meet the accuracy needed at the single-cell 
and nucleotide level. RNA sequencing can reliably distin-
guish among cells and provide possible evolution maps. 
However, the expression of RNA and protein may differ, and 
proteomics should not be ignored in investigating humoral 
immunity [19]. A combination of immune repertoire, anti-
body proteomics and cell transcriptome analyses should pro-
vide a comprehensive portrait of the immune system.  
 In recent years, scRNA-seq has developed rapidly. Tran-
scriptome in vivo analysis (TIVA) was introduced by Lovatt 

et al. [20] to include spatial information for single cells and 
account for the cell microenvironment. Guided by a cell-
penetrating peptide, a TIVA tag is transported into living 
cells. Then, by selective laser-mediated photoactivation, 
TIVA tags are activated and combine with the mRNAs in the 
cell. TIVA tags and mRNAs are retrieved for further interro-
gation. Despite preserving accurate spatial information with 
a laser, this method is apparently insufficient for massive cell 
analysis. Upstream of transcriptomics, epigenetics is also 
included in single-cell sequencing studies. Assay for Trans-
posase Accessible Chromatin with high-throughput sequenc-
ing (ATAC-seq) [21] was invented in 2013 and has rapidly 
developed since then. This innovative epigenetic technology 
can test for chromatin accessibility with Tn5 transposase. 
The transposase, tagged with known barcodes, binds acces-
sible regions on chromatin. The barcodes are then sequenced 
and detected to confirm the accessible regions. ATAC-seq 
technology, compared with previous methods, including 
DNase-seq and FAIRE-seq, provides greater convenience 
and data validity in epigenetics studies [21]. With its higher 
sensitivity, ATAC-seq can detect epigenomics at the single-
cell level. Single-cell ATAC-seq was invented later in 2015 
[22] and was commercialized on the 10x Genomics platform 
in 2018. It is an important complement to scRNA sequencing 
upstream of transcription. 
 Innovations in measurement tools have provided power-
ful motivation for scientific studies. With the ability to detect 
higher dimensional information, combined temporal and 
spatial information and epigenetics information for individu-
al cells, investigating many aspects of immunology has be-
come accessible. Current knowledge of the immune system 
is rapidly increasing (Table 1). 
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3. THE APPLICATION OF scRNA-SEQ 

 ScRNA-seq has superior abilities to those of traditional 
immunology methods in many fields. The advantages of 
scRNA-seq are based on its greater sensitivity than that of 
most traditional methods and its ability for detection without 
prior knowledge. Reviewing the related literature, we found 
that single-cell sequencing is currently mainly used in the 
following aspects (Table 2). 

3.1. Cell Anatomy: Searching for Rare Subtypes 

 Every organ consists of various cell types. Here, we take 
the kidney as an example. The kidney tends to be affected by 
multiple immune diseases, such as IgA nephropathy and 
lupus nephritis. However, understanding the immune condi-
tions of the kidney remains limited. The complex immune 
composition and immune cell distribution have impeded 
further exploration of the kidney. In disease, specific cells 
and molecules may potentially serve as biomarkers for diag-
nosis or even provide new treatment opportunities. In 2018, 
the first scRNA-seq study on the kidney was conducted. Park 
et al. [23] found 21 cell types in mouse kidneys, three of 
which were newly defined. The comprehensive kidney cell 
atlas contains both kidney cells and immune cells. Diversity 
of immune cells exists in the kidney, including macrophages, 
neutrophils, B and T lymphocytes, and NK cells. Kidney 
cells are usually classified according to features such as 
physiological functions and anatomical positions [24], omit-
ting information on transcriptomics. ScRNA-seq provides 
transcriptomic information that can link specific cell types to 
genetic diseases and distinguish new cell types. 
 Dendritic cells (DCs) in the human body have an im-
portant role in presenting antigens. Apart from plasmacytoid 
dendritic cells (pDCs), two subsets of conventional DCs 
have unknown origins and differentiation pathways. Using 
massively parallel single-cell mRNA sequencing and com-
bining complementary bioinformatic approaches, See, et al. 
[25] deduced a group of pre-DC cells able to differentiate 
into cDC1 and cDC2; they then confirmed the results by 
using other algorithms. Interrogated with CyTOF, these cells 

were found to be CD123+, CD33+ and CD45RA+. These cells 
have been found to share many common markers with pDCs; 
thus, some previous conclusions about pDCs should be re-
vised on the basis of these identifications [26-28]. Pre-DC 
cells had been discovered 2 years before this research [29]. A 
much larger population of this pre-DC cell group by scRNA-
seq has been found, thus, indicating the sensitivity of this 
method. However, scRNA-seq alone was not sufficient to 
confirm a new cell type. CyTOF and cell functional studies 
were performed to validate this classification. Unique mark-
ers of CX3CR1+CD33+ and the unique abilities of polariza-
tion, inducing proliferation of naïve CD4 T cells and produc-
tion of IL-2, were confirmed in this cell group, thereby dis-
tinguishing pre-DCs from conventional pDCs. 
 In 2018, Crinier et al. [30] sequenced NK cells in the 
peripheral blood and spleen of mice. Although both groups 
of cells are denoted NK cells, their transcriptomes showed 
such different patterns that they could not be separated into 
the same cluster through unbiased analysis. Spleen and blood 
NK cells in humans and mice were divided into 4 and 2, and 
3 and 2 groups, respectively, in an unbiased manner. In addi-
tion, according to the functions of the genes highly expressed 
in spleen NK cells, these cells might be more active than 
their relatives in peripheral blood. Although differences were 
found, two groups of NK cells were shared by both organs 
and both species, and were defined as NK1 
(CD56dimCD27lo) and NK2 (XCL1) cells. The results indi-
cated that some immune cells are almost specifically tissue-
resident instead of being present in the lymph system [31]. 
Immunologists are now paying greater attention to tissue-
resident immune cells. The proportion of these immune cells 
is so small in whole organs that few methods are sufficiently 
sensitive to investigate them. Notably, the scRNA-seq meth-
od has not identified conventional CD27+CD11b+ double-
positive cells, which were previously found to be a transient 
maturation stage of NK cells. The authors questioned the 
existence of double-positive cells; dropouts in scRNA-seq 
should be considered a possibility. 
 The accuracy and sensitivity of this technology are indis-
pensable in exploring unknown cells, yet proper sequencing 

Table 2. Comparison of scRNA-seq to traditional experimental methods in immunology applications. 

Applications Advantages of scRNA-seq Disadvantages of scRNA-seq 

Cell anatomy 
Detailed information on transcriptomics 

Providing with new classifications 

Data analyzing tools are insufficient 
Requiring further validation 

Dropouts in a single measurement introduce uncertainty 

Cellular markers 
Providing with new markers 

Unbiased confirmation for conventional 
markers 

Transcriptome is not a direct evidence 
Requiring further validation 

Evolutionary relationships Studied within one timepoint 
Data analyzing tools are insufficient 

Hard to distinguish between the concurrent phenomenon 

Comparison between immune status Sensitive to rare cells 
Requiring further validation 

Data analyzing tools are insufficient 

Translation between species 
Comparing cells of different species unbi-

asedly 
Sensitive to different manipulating methods 
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strategies should be chosen to balance sequencing depth and 
sample amounts. Extensive efforts are necessary to distin-
guish false-positive results in rare data.  

3.2. Redefining Cellular Markers 

 Cell markers are defined on the basis of either occasional 
findings or existing knowledge. In addition, methods to ex-
plore new markers are not unified or standardized. Thus, 
these markers are not regarded as comprehensive or essen-
tial. With scRNA-seq, markers of both known and unknown 
cells can be assessed in an unbiased manner. 
 Cell development in the mammalian lung remained poor-
ly understood for years, partly because of the lack of lineage 
markers and the confounding effects of traditional sequenc-
ing methods [32, 33]. Sequencing the mouse lung epithelium 
late in sacculation, Treutlein et al. [34] separated these cells 
into five subgroups based on single-cell transcriptomes. Ex-
cept for four known subtypes of cells, another subgroup 
showed gene expression intermediate between that in AT1 
and AT2 cells, thus indicating a transitional subgroup be-
tween them or a bipotential precursor. Further interrogation 
of younger mouse lung samples indicated that the group was 
a precursor. In addition, the numbers of new mouse lung 
linage markers were distinguished by unbiased data analysis, 
which could potentially be more specific than the original 
markers. These enriched markers also indicated cell func-
tions, illustrating a broader view of lung lineage cells. The 
full life cycle of Sftpc1 cells was traced, and seven gene sets 
of robustly multipotential, bipotential, nascent and mature 
AT2 cell states were identified, thus indicating the promise 
of this strategy for characterizing developing and mature 
cells. However, because full coverage of the target transcrip-
tome is difficult to attain, and false replications during li-
brary construction are inevitable, scRNA-seq data are always 
one step away from the truth, as with all measurement meth-
ods. Reliable methods, such as CyTOF, for defining cell 
types should additionally be used to enhance scientific con-
clusions [25]. Specifically, in Treutlein’s research, the clus-
tering was confirmed by known markers. Other innovative 
findings have been based on this clustering [34]. 

3.3. Discovering Evolutionary Relationships 

 Cells in a microenvironment are complex to investigate 
immunologically. Cells with different characteristics can be 
distinguished, and similar cells can be clustered, perhaps in a 
developmental sequence. The development of cells is a con-
tinuous process. Thus, by sequencing all states of cells in a 
sample, changes in the composition, structure and function 
of cells during development can be revealed. This analysis 
method is powerful for interrogating the origins of stem cells 
and immune cells. 
 The fetus was believed to be protected from foreign anti-
gens; however, certain types (CD45RO+) of T cells are main-
ly found in the fetal intestine instead of mesenteric lymph 
nodes, fetal thymus or fetal spleen [35]. Work by Li et al. 
[36] in 2019, on the basis of the substantial overlap observed 
in CDR3 repertoires, demonstrated that foreign antigen ex-
posure in fetal guts might explain this conflict. Using a 
pseudo time algorithm, Li et al. further interrogated a differ-
entiation pathway for T cells according to a single cell ex-

pression profile. Transitions between cells could be deduced 
by the regulation of more than 1000 expressing genes, and 
three modules were distinguished. By considering the CD4+ 
marker restricted by mass cytometry before scRNA-seq, the 
authors found that the expression profile of the 2nd module 
mainly concerned transcription, whereas cellular activation 
and immune regulation functions were found in the 3rd 
module, thus, indicating a development pathway of regulato-
ry T (Treg) cells. Massive data have provided a foundation 
for developmental trajectory analysis; however, the current 
analysis techniques are insufficient. Trajectory inference 
methods are used to perform a variety of accuracy, scalabil-
ity, stability and usability analyses based on different data 
sets [37]. Concurrent phenomena are difficult to separate and 
may be easily confused [38]. 

3.4. Comparison between Physiological and Pathological 
States 

 With more detailed interrogation of the mRNA expres-
sion status of single cells, scRNA-seq also enables the dis-
covery of new biomarkers for differentiating among cells. In 
the comparison of physiological and pathological states, fur-
ther validation based on such discoveries has the potential to 
aid in the development of clinical diagnostic or treatment 
tools. 
 HIV infections can lead to a series of immune disorders 
in the human body; among all complications, neurocognitive 
impairment is highly associated with immune activation in 
the central nervous system. Clinical investigation of such an 
inaccessible tissue would be unrealistic; however, Farhadian 
et al. [39] took advantage of the sensitivity of scRNA-seq to 
sequence cells within cerebrospinal fluid, and compared the 
results to those of homologous cells in the peripheral blood. 
A tiny sub-cluster of myeloid cells was distinguished among 
all the cells; these cells showed significant overlap in the 
expression of several genes with the expression in microglia 
from neurodegenerative disease mouse models, as also 
measured by scRNA-seq in previous studies [40, 41]. In the 
simultaneous analysis of cells from different diseases [42, 
43], differences in multiple diseases can preclude conclu-
sions from being drawn. Using scRNA-seq in a specific dis-
ease allows for certain genetic diseases to be linked to spe-
cific cell types [23]. A more accurate understanding of path-
ogenesis can be developed on the basis of scRNA-seq. Anal-
ysis comparing cell subpopulations on the basis of tran-
scriptomics alone can be difficult and may yield unpersua-
sive results [5]. 

3.5. Translating Experiment Results between Species 

 The unique cell identification method of scRNA-seq 
makes this method suitable for investigating differences in 
cell composition and the expression profiles between species 
through the comparison of transcriptomes between cells. 
This capability will be critical in selecting suitable experi-
mental animals and extending the results of animal experi-
ments to human studies. 
 Rodents are the most investigated animals except for 
humans. As readily available and quickly reproducing ani-
mals, they have been considered ideal models for many 
physiology and pathology states for hundreds of years. How-
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ever, mice and rats are essentially different species from hu-
mans, and translation of results from the laboratory to the 
clinic has long been a problem. Similarities in transcriptomes 
could provide a well-defined standard to identify cells across 
animal species, thus potentially providing a translational 
opportunity for immunologists. NK cells in both humans and 
mice were analyzed in 2018 with scRNA-seq, and the NK 
cell anatomy in both species was identified and compared. 
Differences and similarities were observed between species, 
but the NK cells of both species shared a close functional 
pattern, as assessed by single-cell transcriptomes. Such com-
parisons could enable translation between human and mouse 
studies. Similar anatomical results in mice were obtained in 
2017, when Halpern et al. [44] examined mouse liver with 
scRNA-seq and smFISH, and reconstructed relative spatial 
information on mouse liver cells. Three clusters of cells were 
detected in mouse liver. In the next year, Macparland et al. 
[45] extended the previous research by sequencing the hu-
man liver from a deceased donor. In this study, 20 groups of 
cells were identified by unbiased data analysis [45]; the au-
thors attributed this difference to species discrepancy, disso-
ciation methods, and dead or low viability cells. A controlled 
experiment in human and mouse livers might better explain 
these differences. Nonetheless, these experiments remain an 
inspiration for the applications of scRNA-seq. 

4. scRNA-SEQ IN CANCER IMMUNITY 

 Dysfunction of the immune system is important in tumor-
igenesis, tumor development and metastasis. With single-cell 
sequencing, the compositions and roles of both the innate 
and adaptive immune cells in various tumors have been 
clearly revealed.  
 Because tumors are complex tissues, measurements 
based on average numbers leave out much information on 
rare cells. ScRNA-seq might provide a solution for this in-
formation loss. Cancer can be roughly divided into solid tu-
mors and hematological tumors. Immune cells in the tumor 
microenvironment and the composition of hematological 
tumors are of concern in immunology.  

4.1. Solid Tumors 

 The resident immune cells in pancreatic ductal adenocar-
cinoma (PDAC) are highly heterogeneous. To unravel this 
complexity, Peng et al. [46] have analyzed PDAC with 
scRNA-seq. A total of 5, 6, 5 and 8 sub-clusters were found 
for T cells, B cells, macrophages and fibroblasts, respective-
ly, in PDAC, in scRNA-seq data analysis. Further investiga-
tion of the two main types of immune cells, T cells and mac-
rophages, revealed that cell cycle-related genes, such as cen-
tromeric protein-A (CENPA) and centromeric protein-E 
(CENPE), were preferentially expressed in certain cell sub-
types, thus indicating proliferation ability among these cells. 
Homing markers, such as chemokine receptor 7 (CCR7) and 
selectin of lymph cell (SELL), provided evidence of the im-
maturity of a group of naïve CD4 T cells. Additionally, a 
pseudo time analysis was performed, showing a transition 
from naïve T cell and memory T cells to Treg cells. Compo-
sition, expression and developmental trajectory analyses are 
typically performed in scRNA-seq. These analyses offer 
fundamental information on the immune status of diseases. 

 The T cells resident in tumor tissues is mostly dysfunc-
tional. Restarting the intrinsic effectivity of dysfunctional T 
cells resident in tumor tissue is a developing research field. 
Despite being a critical precondition of immune therapies, 
whether the TCRs of these T cells are potentially effective 
remains unknown [47]. In 2019, Scheper et al. [47] isolated 
TCR α/β genes from tumor resident dysfunctional T cells, 
performed scRNA-seq, and transfected the cells into func-
tional donor T cells to observe the potential of these TCRs. 
The authors then tested the TCRs in ovarian tumors. The 
results indicated that TCRs could not recognize tumor anti-
gens (19/20 incapable), owing to a lack of antigens in the 
microenvironment. Similar results were observed in patients 
with colorectal cancer, thus indicating that TCR dysfunction 
may be a more extensive phenomenon than previously rec-
ognized. Single-cell immune repertoire sequencing may be 
an applicable tool in further studies. 
 In 2017, Zheng et al. [48] identified 11 T cell subgroups 
in tumor tissue, normal tissue adjacent to tumor and periph-
eral blood of six patients with hepatocellular carcinoma 
(HCC), by using simultaneous single-cell transcriptomics 
and TCR sequencing. Apart from a marked gene in CD8+ T 
cells found to be responsible for the down-regulation of in-
terferon-γ and poor prognosis, the data showed connections 
among T cells and their potential development trajectories. 
The results were in accordance with those from several pre-
vious studies [49, 50], and were more accurate and less bi-
ased than previous results. Treg cells infiltrating in HCC 
were found to be recruited from the periphery, because they 
were unique, whereas exhausted CD8+ T cells were more 
likely to be a result of local expansion. These results deep-
ened the understanding of tumor-infiltrated T cells and might 
be important for immune therapies for HCC in the future. In 
addition, scRNA-seq demonstrated a unique ability to facili-
tate the exploration of tumor-related T cells, despite the 
complicated microenvironments and cell compositions in 
tumors. 

 Tumor-infiltrating lymphocytes are also important targets 
for diagnosis and treatment. For example, tumor-infiltrating 
myeloid (TIM) cells are promising immunotherapy targets in 
the tumor microenvironment; however, the subgroups and 
markers of these cells are unknown, and the indicators are 
sparse in simultaneous interrogation of groups of TIMs. Zili-
onis et al. [51] sequenced this complex group of cells by 
using the inDrop method in both human and mouse lung 
cancer samples. Although TIMs showed several similarities 
between human and mice, myeloid cells in the peripheral 
blood and those infiltrating tumor sites showed marked dis-
crepancies, thus indicating the limitation of translational 
studies. Moreover, although the patients’ tumors had differ-
ent cell states, TIMs in their microenvironments overlapped 
well, thus indicating the potential for research on the essence 
of tumor immunity. Some specific genes within the TIMs 
were clearly associated with patient survival. These results 
indicated a potential field of research in translational medi-
cine that could be associated with the essence of tumor im-
munity. 

 In 2018, Zhang et al. [52] developed an integrated meth-
od named single T cell analysis by RNA sequencing and 
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TCR tracking (STARTRAC) to examine the developmental 
trajectory of tumor-infiltrating lymphocytes. Based on sin-
gle-cell transcriptomics and TCR sequences, STARTRAC 
demonstrated that in colorectal cancer, CD8+ effector and 
“exhausted” T cells originate from tumor-resident T memory 
effector cells, and identified two IFNγ+ Th1-like cell clusters 
associated with various potential therapeutic effects [53] and 
immune checkpoint inhibition. In the same year, in non-
small-cell lung cancer, Guo et al. [54], by using similar 
methods, found two groups of “pre-exhausted” CD8+ T cells 
associated with better prognosis in lung adenocarcinoma, 
thus validating the TCR-based T cell tracing method. 

4.2. Hematological Tumors 

 Beyond analysis of the composition of typical solid organ 
tumors, hematopoietic tumors can also be deeply analyzed 
by scRNA-seq. Hematopoietic tumors primarily originate 
from mutated or pathological immune cells. Current scRNA-
seq methods have not achieved the sensitivity necessary to 
detect gene mutations among these immune cells. In 2017, 
Giustacchini et al. [55] proposed a sensitive method to ana-
lyze the same single cells by combining FACS, high sensi-
tivity mutation detection and whole-transcriptome analysis. 
With this method, the researchers interrogated chronic mye-
loid leukemia (CML) stem cells from patients and distin-
guished a subgroup responsible for drug resistance, thereby 
partly explaining the sparsity of complete elimination. A 
comparison between CML stem cells and normal stem cells 
from the patients also indicated the possibility of CML relat-
ed cell-extrinsic disruption. The authors believe that the 
same sequencing method could be adapted to similar malig-
nant diseases to provide new insights.  
 Bulk analyses of chronic lymphoid leukemia (CLL) have 
revealed possible gene mutations, yet focusing on only the 
genome would sufficiently reveal the figures of CLL [56]. 
To determine the correlation between the genome and tran-
scriptome, Wang et al. [57] used a two-stage RT-PCR ampli-
fication strategy with scRNA-seq and found that two genes, 
LCP1 and WNK1, are responsible for convergent evolution 
in CLL, thus, causing cells with different mutated genes to 
show similar expression states. Notably, scRNA-seq (by 
Fluidigm C1) indicated the transcriptional states and enabled 
general comparison between cell groups, but the gene cover-
age of the data is a weakness. The researchers reported that 
many dropouts occurred, and targeted qPCR was used to 
compensate for the sequencing data. 
 Whereas Fluidigm C1 cannot accurately detect single 
nucleotide variants (SNVs) [57], the scRNA-seq method 
described by Zheng et al. [58] has an impressive ability in 
sequencing SNVs. On average, as many as 350 SNVs were 
detected in every cell; this number was so high that the 
method was able to identify cell origins according to the 
SNV patterns among many types of immune cells after bone 
marrow transplantation. A possible population of the atypical 
blast and granulocyte precursors relevant to AML chemical 
therapy resistance has been found through this method [58]. 
An extremely high level of blast cells and immature 
erythroid marked by CD34+ and GATA1+ was being found 
to be associated with disease relapse in AML and with poor-
er prognosis.  

 ScRNA-seq is sufficient to depict and compare general 
transcriptomes in hematological tumors, and to search for 
possible reasons for drug resistance or pathological features. 
However, it is not an answer to everything. Drawbacks exist, 
although improvements are being made. Both these aspects 
should be considered when scRNA-seq is used. 

5. scRNA-SEQ IN AUTOIMMUNE DISEASES 

 Autoimmune diseases cause tissue damage due to the 
body's immune response to their own antigens. The primary 
cause is the impairment of immune homeostasis, and multi-
ple congenital and acquired factors are involved in the path-
ogenesis. However, the clinical course of autoimmune dis-
eases greatly varies among different pathologies and indi-
viduals. The pathogenesis of autoimmune diseases remains 
unknown. This heterogeneity hinders immunologists’ deeper 
understanding of autoimmune diseases. 
 The etiology and pathology of rheumatoid arthritis (RA) 
are unknown. Apart from clinical symptoms, pathological 
thickening of the synovial lining composed of lymphocytes, 
macrophages and dendritic cells amid the original subintimal 
synovial fibroblasts is a critical feature of RA. In 2018, Ste-
phenson et al. [59] deployed a 3D-printed low-cost droplet-
based sequencing to the synovial tissue from five patients 
with RA. Fibroblasts were primarily analyzed for their criti-
cal influence on fibrous tissue formation. Meanwhile, typical 
immune cells in fibrous tissue, including CD4+, B and NK 
cells, were identified and analyzed. One subgroup of NK 
cells expressed XCL1 and XCL2, chemokines associated 
with fibroblast secretion. The authors suggest that the results 
provide the first atlas of hematopoietic and fibroblast cells in 
autoimmune diseases [59]. The invention of a portable se-
quencing device also made this method practical in clinic 
settings. In the same year, Kernfeld et al. [60] first took ad-
vantage of a combination of single-cell sequencing and ma-
chine learning to analyze the whole thymus. Some rare non-
conventional lymph cells were first discovered. The suscep-
tibility to autoimmune diseases is generally accepted to be 
associated with genetics and developmental defects. As veri-
fied in this research, BLD4 (myeloid) and BLD5 (non-
conventional lymph cells) acquired from an autoimmune 
patient showed significant up-regulation of autoimmune-
related genes. These single-cell analyses of autoimmune dis-
eases display a capability to reveal cell pathology and the 
nature of diseases, thus providing valuable information for 
future studies. Advanced sequencing tools and algorithms 
were applied in this analysis. 
 Single-cell sequencing can also help scientists identify 
new targets for diagnosis and treatment. Immune biothera-
pies have not always been effective in ileal Crohn`s disease 
(CD). According to therapeutic effects, the patients can be 
divided into two groups; however, pathological differences 
between these two groups had not been found, owing to lim-
ited biomarkers and knowledge of the disease model of CD. 
With scRNA-seq, Martin et al. [61] searched the cellular 
landscapes in CD and found a GIMATS module, identifying 
failure to achieve durable CS-free remission after anti-TNF 
therapy in a pediatric inception cohort. Further research was 
performed using bulk transcription in four independent CD 
cohorts, including 441 patients, and all samples verified the 
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validity of this module. The module could be used in clinical 
diagnosis to distinguish patients resistant to certain therapies 
and achieve more precise treatment, because the GIMATS 
module can be detected without expensive scRNA-seq. Simi-
larly, Der et al. [62] have analyzed skin and kidney biopsy 
samples from patients with SLE with Fluidigm C1, and de-
tected a type I interferon signature in both skin and kidney 
biopsy samples from patients with active SLE, thus, indicat-
ing a potential lupus nephritis diagnosis method by skin bi-
opsy. The discovery of new markers is promising for disease 
diagnosis, and scRNA-seq is specialized in finding novel 
cells and molecules. These studies indicated a strong poten-
tial of scRNA-seq in examining diseases with unknown pa-
thology. After the most critical problem is conquered for a 
disease, diagnosis and accurate treatment would be expected 
to naturally emerge.  
 In autoimmune diseases, scRNA-seq is broadly adopted 
to examine etiology, pathology, clinical diagnosis and treat-
ment. The ability to explore the unknown has become a criti-
cal feature in this field. Because transcriptome sequencing 
does not depict the whole picture of a cell, future directions 
in proteomics and genomics should be complementarily used 
for a thorough investigation of autoimmune pathology. 

6. scRNA-SEQ IN TRANSPLANT IMMUNITY 

 Transplantation has become a relatively mature therapy 
to rescue end-stage patients in the past 70 years, yet it still 
faces new problems [63]. During treatment, the immune sys-
tem fiercely attacks extraneous organs. Although controlled 
by immunosuppressive drugs, the harmful effects remain 
fatal to the graft. In addition，immunosuppression therapy 
after transplantation results in several complications, thus, 
reducing the expected survival time of the recipient. Alt-
hough few restricted transplant studies have used scRNA-
seq, they have inspired other studies in the field. 
 Last year, Wu et al. [64] first attempted to perform 
scRNA-seq on human kidney samples. The comparison be-
tween a rejection case and a healthy human kidney showed a 
wide range of inflammatory responses. The authors also 
found a special non-classical group of monocytes expressing 
both typical monocyte markers and a panel of mature DC 
markers. A comparison of this group of monocytes and a 
peripheral blood mononuclear cell dataset showed a clear 
boundary between groups, thus, indicating a novel cell group 
that appears to be differentiating from monocytes to DCs. A 
reassessment of putative disease-related genes was also per-
formed. The 30 genes indicating T cell-mediated rejection 
were expressed in mostly T cells, thus, providing an ideal 
theoretical basis for prediction based on these genes. Wu  
et al. [64] have also found that some genes previously be-
lieved to be responsible for endothelial cell (EC)-related al-
lograft pathologies were not specifically expressed in ECs. 
Some were even specifically expressed in non-EC cells. 
However, transcripts enriched in antibody-mediated rejection 
coincided well with EC cells, thereby indicating a possible 
specific relationship. Early phage molecular markers could 
be identified by scRNA-seq through these trials. The 10x 
Genomics platform and InDrop methods were more suitable 
for analyzing these biopsy specimens than standard DropSeq 
approaches, possibly because of the incomplete cell lysis in 

DropSeq. Applying scRNA-seq to graft biopsies has been 
demonstrated to have potential, yet obstacles still remain. 
The major challenge is protecting RNA from degradation 
during dissociation. 
 The liver is critical in both metabolic and immune func-
tions in the human body, yet its immune microenvironment 
is poorly understood. Using 10x Genomics scRNA-seq, an 
overview of the hepatic immune microenvironment can be 
illustrated. Macparland et al. [45] performed scRNA-seq on 
donor livers to generate a human liver cell atlas, thereby 
deepening understanding of the physiological environment 
and immune composition in healthy human livers. On most 
occasions, collecting liver samples from healthy individuals 
would be unethical; therefore, the researchers used the cau-
date lobe of a deceased donor’s liver, which was abandoned 
before transplant surgery. This research offers new prospects 
for both clinical studies in transplantation and human cell 
atlases. 
 Studies in lung transplantation are also rapidly progress-
ing. Pathological changes widely occur in cells in tissues 
with lung fibrosis [65]. Except for cells such as alveolar type 
I and type II cells, immune cells such as macrophages, NK 
cells, B cells, monocytes, DCs, plasma cells and mast cells 
showed an array of fibrosis-related gene expression changes. 
With droplet-based microfluidics, 17 clinical tissue samples 
were analyzed, including six donor lungs and six receptor 
lungs. A total of 13 cell populations were identified, and 
patterns of disease changes in all types of cells were ob-
served, including in most major immune cells. Chronic lung 
allograft dysfunction (CLAD) is closely associated with the 
long term survival of patients receiving lung transplantation. 
Currently, CLAD is a clinical diagnosis based on several 
diagnostic standards [66]; however, as with many other clin-
ical diagnoses, once diagnosed according to clinical symp-
toms, the disease is too advanced to be cured or prevented 
from worsening. In 2017, Weigt et al. [66] explored early 
diagnosis by taking advantage of scRNA-seq. CLAD sam-
ples (surveillance bronchoalveolar lavage samples) were 
retrieved from patients who had developed CLAD 2 years 
after sample collection. No differences were detected in the 
total cell number or cell distribution, whereas in CLAD sam-
ples, immune function associated genes in cytotoxic lym-
phocytes were activated, and the reactome and KEGG path-
ways of immune activation abilities were monitored in the 
CLAD samples. The researchers concluded that this se-
quencing method can distinguish clinical pre-CLAD and 
CLAD-free patients, thus, potentially improving the diagno-
sis and prognosis of lung transplant patients. 
 Bone marrow transplantation is the last hope for hemato-
poiesis tumor patients, yet immunosuppression treatment and 
chemical medication are difficult to balance. The ability to 
detect donor and host cells in immune cell chimerism is vital 
in hematopoietic stem cell transplantation to predict the suc-
cess or failure of this therapy, yet current clinical methods 
remain to be improved. By mixing known cell line samples 
(Jurkat and 293T) with those from three healthy donors, 
Zheng et al. [58] tested the ability of two separation meth-
ods. Fresh PBMCs were also obtained from two patients 
with HSC transplantation and AML to further demonstrate 
the feasibility of the sorting method based on SNVs. Donor 
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and host cell proportions were accurately examined and con-
firmed by independent clinical chimerism assays. Compared 
with previous methods, this SNV-based detection method 
performed better in detecting donor and host cells closely 
matched in genotype, and detecting cells with unknown gen-
otypes. This method may lead to better monitoring and pa-
tient survival. 
 After transplantation, although controlled by immuno-
suppressive drugs, harmful effects can be fatal to the graft. 
Detection of early subtle damage is necessary for graft recep-
tors. Potential markers detected in these experiments could 
provide opportunities for life-saving diagnosis. ScRNA-seq 
acts as a sensitive diagnosis instrument in transplant immuni-
ty, thus leading to a better understanding of the immune state 
of transplant receptors. 

CONCLUSION AND PROSPECTIVE 

 ScRNA-seq has become a powerful tool in analyzing 
immune bioinformation in recent years. Currently, it is a 
developing technology with many methods and platforms for 
researchers to choose from, each with unique pros and cons. 
New sequencing methods [67-69] are being developed and 
hold great potential.  
 The ability to retrieve massive information from individ-
ual cells, without preliminary knowledge of target cells, has 
enabled scRNA-seq to surpass other methods, such as FACS, 
bulk RNA sequencing and immunohistochemical staining. 
These characteristics are particularly suitable for examining 
complex cell compositions and microenvironments, such as 
tissue-resident immune cells, developmental biology, tumors 
and the tumor microenvironment, autoimmune pathology 
and immune cells in transplantation. Extensive progress has 
been made in these fields. 
 Apart from these achievements, advanced single-cell 
sequencing methods are emerging rapidly. Chromatin acces-
sibility in single cells can now be sequenced by scATAC-
seq, which enables accurate measurement of epigenomics by 
using hundreds of cells. Adaptive immune cells used to be 
extremely difficult to interrogate, yet with the development 
of immune repertoire sequencing, diversity among T cells 
has become easier to measure. The sequencing process of 
single cells requires dissociation of tissue samples, thereby 
disrupting the spatial information. To restore the spatial in-
formation for further investigation, researchers can take ad-
vantage of spatial transcriptomics methods by tagging each 
cell with RNA probes. Together these approaches have 
opened new gates leading to deeper biological understanding 
and clinical medicine, by increasing the data dimensionality 
and revealing more subtle and essential information.  
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