COMMUNICATIONS

Received 20 January 2021
Accepted 19 February 2021

Edited by V. Jancik, Universidad Nacional Autónoma de México, México

Keywords: crystal structure; nicotinic acid N oxide; copper; hydrogen bond.

CCDC reference: 2063970
Supporting information: this article has supporting information at journals.iucr.org/e

A redetermination of the structure and Hirshfeld surface analysis of poly[diaquadi- μ-hydroxidotetrakis(μ-nicotinato N-oxide)tricopper(II)]

Masoud Mirzaei, ${ }^{\text {a* }}$ Maryam Bazargan, ${ }^{\text {a }}$ Pouria Ebtehaj ${ }^{\text {a }}$ and Joel T. Mague ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 9177948974, Mashhad, Iran, and
${ }^{\text {b }}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: mirzaeesh@um.ac.ir

The product obtained from the reaction of pyridine-2,3-dicarboxylic acid and hydrated copper(II) chloride in hot aqueous NaOH solution was determined by low temperature X-ray diffraction to be $\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{4}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ or $\left[\mathrm{Cu}_{3}(\mu-\mathrm{OH})_{2}(\mu \text {-nicNO })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ (nicNO is pyridine-3-carboxylate N-oxide), a structure obtained from room temperature data and reported previously. The present determination is improved in quality and treatment of the H atoms. A Hirshfeld surface analysis of the intermolecular interactions is presented.

1. Chemical context

N-oxidation of the pyridine ring can significantly increase its electron-donating ability because the charge-polarized pyri-dine- N-oxide moiety can donate three pairs of electrons while a neutral nitrogen atom in pyridine only gives one pair of electrons. Therefore, it is expected that N-oxidation can increase the coordination capacities and flexibility of the ligand. Metal complexes of pyridine- N-oxide ligands have been found to be particularly useful in the selective adsorption and separation of gases $\left(\mathrm{CO}_{2}\right.$ over $\left.\mathrm{CH}_{4}\right)$ and as anti-HIV and luminescent agents (Noro et al., 2015; Xiong et al., 2014; Balzarini et al., 2005; Lis et al., 2002). These features have motivated our interest in the chemistry of carboxylic acid derivatives of pyridine- N -oxide for investigating the influence of the N-oxide moiety on the coordination mode(s) in the crystal lattice (Mirzaei et al., 2020; Hosseini-Hashemi et al., 2018, 2019; Bazargan et al., 2016, 2020; Mirzaei, EshtiaghHosseini, Bazargan et al., 2015; Shahbazi et al., 2017; Mirzaei, Eshtiagh-Hosseini, \& Bazargan, 2015). Here, we report the isolation and X-ray crystal structure of the coordination polymer $\left[\mathrm{Cu}_{3}(\mu-\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mu-\mathrm{nicNO})_{4}\right]_{n}$ (1) (nicNO is pyridine-3-carboxylate N-oxide) as the unexpected product from the reaction of pyridine-2,3-dicarboxylic acid with hydrated $\mathrm{Cu}^{\mathrm{II}}$ chloride. It appears that oxidation and decarboxylation of the starting acid occurred during the reaction, as has been seen previously (Hosseini-Hashemi et al., 2018; Mirzaei, Eshtiagh-Hosseini et al., 2015). During the course of this work, we found two prior reports of this structure [NICTCU (Knuutilla, 1981) and NICTCU01 (Kang et al., 2020)], both obtained with room-temperature data. Overall, the present structure is the same as the previous ones, but with some differences in metrical parameters as a result of the lower temperature of the data collection used here, a lower R value $[0.0250$ for all reflections (3592) vs 0.0416 for 2525 with I
$>3 \sigma(I)$ in NICTCU and 0.0538 for 3349 with $I>2 \sigma(I)$ in NICTCU01. The present structure has slightly better s.u.'s on all derived parameters than obtained for NICTCU and significantly better ones than those obtained by Kang et al.. One deficiency of the NICTCU structure is the free refinement of hydrogen-atom parameters, a risky procedure with room-temperature data when heavy atoms are present, which led to $\mathrm{C}-\mathrm{H}$ distances for the aromatic rings varying from 0.97 (2) to 0.84 (3) \AA and $\mathrm{O}-\mathrm{H}$ distances of 0.77 (3) to 0.41 (4) \AA, the last three being particularly unrealistic. In addition, there was no absorption correction despite a linear absorption coefficient of $2.422 \mathrm{~mm}^{-1}$. Kang et al. performed an absorption correction and treated hydrogen atoms appropriately, but with an R_{int} of 0.0780 their data are clearly of poorer quality than in the present case $\left(R_{\text {int }}=0.0208\right)$.

2. Structural commentary

The monomer unit plus one N-oxide atom from the bridging nicotinato- N-oxido ligand on each end copper atom ($\mathrm{O} 3^{\mathrm{ii}}$ and $\mathrm{O} 3^{\mathrm{iii}}$) is shown in Fig. 1. This moiety is centrosymmetric with Cu 2 lying on the crystallographic center of symmetry. The coordination about Cu 1 is square pyramidal with the N-oxide atom from the bridging nicotinato- N -oxido ligand $\left(\mathrm{O}^{\mathrm{ii}}\right)$ in the apical site and the basal sites occupied by the bridging hydroxide ($\mathrm{O} 7-\mathrm{H} 7$) and the water molecule (O8) in trans positions, and a carboxylate oxygen atom from the bridging nicotinato- N -oxido ligand (O 1) and the bridging nicotinato- N oxide ligand $\left(\mathrm{O5}^{\mathrm{i}}\right)$. The $\mathrm{Cu} 1-\mathrm{O}$ distances and bond angles are in line with those typically seen for tetragonally elongated, square-pyramidal $\mathrm{Cu}^{\mathrm{II}} . \mathrm{Cu} 2$ is coordinated by the bridging hydroxide $(\mathrm{O} 7-\mathrm{H} 7)$ and a carboxylate oxygen of the nicoti-nato- N-oxide ligand (O 4) and their symmetry-related counterparts. Although rigorously planar, the coordination about Cu 2 shows a rhombic distortion from square geometry due to the difference in the $\mathrm{Cu} 2-\mathrm{O} 4[1.9687$ (11) \AA] and $\mathrm{Cu} 2-\mathrm{O} 7$ [1.9240 (11) A] bond lengths and the $\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{O} 7$ angle of $87.69(5)^{\circ}$. This geometry is quite comparable to those in the previously reported structures (Table 1). One feature noted by Kang et al. (2020) but not by Knuutilla (1981) is a weak contact by the N-oxide oxygen atoms coordinated to $\mathrm{Cu} 1\left(\mathrm{O} 3^{\mathrm{ii}}\right.$ and $\mathrm{O} 3^{\text {iii }}$) to Cu 2 with the $\mathrm{Cu} 2-\mathrm{O} 3^{\text {ii }}$ distance of 2.6828 (15) \AA being considerably longer than the $\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{ii}}$ distance [2.4208 (13) A $]$ but definitely shorter than the sum of the van

Table 1
Comparison of structures $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

Metric	This work	NICTCU	NICTCU01
$\mathrm{Cu} 1-\mathrm{O} 1$	1.9542 (12)	1.943 (2)	1.953 (3)
Cu1-O7	1.9003 (12)	1.925 (1)	1.893 (4)
Cu1-O8	1.9539 (12)	1.876 (1)	1.947 (4)
$\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$	1.9911 (12)	1.979 (2)	1.987 (3)
$\mathrm{Cu} 1-\mathrm{O}^{\text {ii }}$	2.4208 (13)	2.426 (2)	2.434 (4)
Cu2-O4	1.9687 (11)	1.954 (1)	1.981 (3)
$\mathrm{Cu} 2-\mathrm{O} 7$	1.9240 (11)	1.912 (2)	1.922 (4)
$\mathrm{Cu} 2-\mathrm{O}^{\text {ii }}$	2.6828 (15)		2.699 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	158.98 (5)	158.73 (7)	158.83 (16)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 7$	97.79 (5)	97.55 (6)	97.87 (14)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 8$	84.60 (5)	84.84 (6)	84.72 (15)
O7-Cu1-O8	176.16 (5)	176.28 (6)	176.18 (14)
$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 5^{\text {i }}$	92.38 (5)	92.27 (5)	92.13 (14)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3^{\text {ii }}$	103.19 (5)	103.56 (7)	103.40 (15)
$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 3{ }^{\text {ii }}$	89.57 (5)	89.84 (6)	89.24 (15)
$\mathrm{O} 8-\mathrm{Cu} 1-\mathrm{O}^{\text {ii }}$	92.82 (5)	92.37 (6)	92.89 (15)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 3^{\text {ii }}$	95.20 (5)	92.56 (7)	95.31 (14)
$\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{O} 4{ }^{\text {i }}$	180.00 (8)		
$\mathrm{O} 7-\mathrm{Cu} 2-\mathrm{O} 4^{\text {i }}$	87.69 (5)	87.28 (7)	87.79 (15)
$\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{O} 7^{\text {i }}$	92.31 (5)	92.72 (7)	92.21 (15)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x+1, y+1, z$.
der Waals radii $(2.92 \AA$) , indicating a short contact. The O7$\mathrm{Cu} 2-\mathrm{O} 3^{\mathrm{ii}}$ and $\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{O} 3^{\mathrm{ii}}$ angles of 81.66 (5) and $98.34(5)^{\circ}$, which differ greatly from 90°, suggest the coordination of Cu 2 should not be described as an elongated octahedron. There are close to 100 structures listed in the CSD (Groom et al., 2016) with Cu - O distances of $2.69 \AA$ or greater and we cite three examples close to those observed here: 2.693 (4) \AA (Laborda et al., 2004), 2.757 (5) A (Lazarou et al., 2018) and 2.696 (3) A (Procházková et al., 2017). In these, the first involves a coordinated water molecule while in the latter

Figure 1
A portion of the title molecule showing the coordination spheres of the independent copper ions with labeling scheme and 50% probability ellipsoids [symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x+1, y+1, z$; (iii) $-x,-y,-z+1] . \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are depicted, respectively, by red and black dashed lines while the weak $\mathrm{Cu} 2 \cdots \mathrm{O} 3^{\mathrm{ii}}$ and $\mathrm{Cu} 2 \cdots \mathrm{O}^{\text {iii }}$ interactions are depicted by aqua/red dashed lines.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H7A \cdots O2	0.82 (1)	2.04 (1)	2.8057 (17)	156 (2)
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 6^{\mathrm{i}}$	0.83 (1)	1.84 (1)	2.6684 (17)	173 (3)
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\text {ii }}$	0.84 (1)	1.88 (1)	2.6976 (18)	168 (3)
C9-H9.. ${ }^{\text {O } 2}$	0.95	2.28	3.216 (2)	168
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 3^{\text {iii }}$	0.95	2.23	3.079 (2)	148

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x+1, y+1, z$; (iii) $-x,-y,-z+1$.
two, the distance is to a ligand oxygen atom bridging copper centers and so more comparable to the present work. Where commented on, the long distance is attributed to a Jahn-Teller distortion, but in our case the $\mathrm{Cu} 2-\mathrm{O} 3^{\mathrm{ii}}$ distance not only is long, but also its direction is tilted away from the Cu 2 coordination plane normal by $\sim 8^{\circ}$. This suggests that $\mathrm{O}^{\text {ii }}$ is close to Cu 2 for sterical convenience, not due to the formation of a $\mathrm{Cu} 2-\mathrm{O}^{\mathrm{ii}}$ bond. The intramolecular $\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2$ hydrogen bond (Table 2) belongs to a $S_{1}^{1}(6)$ graph set (Bernstein et al., 1995).

3. Supramolecular features

The monomer units, $\left[\mathrm{Cu}_{3}(\mu-\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mu \text {-nicNO })_{4}\right]$, are connected into chains extending along the c-axis direction by coordination of N-oxide oxygen atom O 3 to atom $\mathrm{Cu} 1^{\mathrm{i}}$ of the next unit (Fig. 1). The chains are linked into layers parallel to (110) by pairwise $\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 6^{\mathrm{i}}$ hydrogen bonds [Table 2 and Fig. 2; graph-set $\left.R_{2}^{2}(9)\right]$ together with offset π-stacking between inversion-related $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{N} 1 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6$ rings [centroid-centroid $=3.4753(13) \AA$, slippage $=0.53 \AA$] and inversion-related $\mathrm{N} 2 / \mathrm{C} 9 / \mathrm{C} 8 / \mathrm{C} 12 / \mathrm{C} 11 / \mathrm{C} 10$ rings [centroidcentroid $=3.6432$ (12) \AA, slippage $=1.5 \AA$] (Fig. 3). The O8$\mathrm{H} 8 B \cdots \mathrm{O}^{\mathrm{ii}}$ hydrogen bond (Table 2) is part of a $C_{1}^{1}(11)$ graph set through $\mathrm{O} 4^{\mathrm{ii}}, \mathrm{Cu} 2^{\mathrm{ii}}, \mathrm{Cu} 1^{\mathrm{ii}}$ and $\mathrm{O} 8^{\mathrm{ii}}$ [symmetry code: (ii) $x+1$, $y+1, z)$ as well as a $R_{2}^{2}(18)$ graph set through $\mathrm{O}^{2 \mathrm{ii}}, \mathrm{Cu} 2^{2 \mathrm{ii}}, \mathrm{Cu} 1^{\mathrm{iv}}$, $\mathrm{O}{ }^{\text {iv }}$ and O^{i} [symmetry codes: (i) $-x+1,-y+1,-z+1$; (iv)

Figure 2
Plan view of one layer seen along the a-axis direction with $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds depicted by dashed lines.
$-x+2,-y+2,-z)$ and a $C_{2}^{2}(22)$ graph set through $\mathrm{O} 4^{\mathrm{ii}}, \mathrm{Cu} 2^{\mathrm{ii}}$, $\mathrm{O}^{\mathrm{v}}, \mathrm{O}^{\mathrm{v}}, \mathrm{O8}^{\text {vi }}, \mathrm{Cu} 1^{\text {vi }}, \mathrm{Cu} 2^{\text {vi }}, \mathrm{Cu} 1^{\text {vii }}$ and $\mathrm{O}^{\text {vii }}$ [symmetry codes: (v) $2-x, 2-y,-1-z$; (vi) $1+x, 1+y,-1+z$; (vii) $2-x$, $2-y,-1-z)$.

4. Database survey

A search of the Cambridge Crystallographic Database (CSD, Version 5.41 updated to March 2020; Groom et al., 2016) using the fragments 2-, 3- and 4-carboxypyridine- N -oxide yielded 20 hits, of which 16 were complexes of 4-carboxypyridine- N oxide, three contained 3 -carboxypyridine- N -oxide, including the prior report of the title compound, and one contained 2-carboxypyridine- N-oxide. The last (IJOHAR; Wang et al., 2011) is also a polymeric $\mathrm{Cu}^{\mathrm{II}}$ complex in which the organic ligand chelates through one carboxylate oxygen and the N-oxide oxygen and bridges to two adjacent metals through the other carboxylate oxygen and the N-oxide oxygen. The other two complexes of 3-carboxypyridine- N -oxide are $\left[\mathrm{Dy}\left(\mathrm{H}_{2} \mathrm{O}\right)(3 \text {-carboxypyridine- } N \text {-oxide)(squarate) }]_{n} \quad\right.$ (OXOROK; Liu et al., 2016) in which the 3-carboxypyridine- N-oxide chelates to one metal through the carboxyl group and bridges to a second through the N-oxide oxygen and $\left[\mathrm{Tb}_{2}(3\right.$-carb-oxypyridine- N -oxide $)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (oxalate) $]_{n}$ (QUBKEF; Yu et al., 2015). The complexes of 4-carboxypyridine- N-oxide include a dinuclear $\mathrm{Cu}^{\text {II }}$ complex containing bidentate bridging and monodentate carboxylate ligands in which the N-oxide oxygen is not coordinated (BULWIO; Knuutilla, 1983) and a polymeric $\mathrm{Cu}^{\text {II }}$ complex in which all three oxygen atoms of the carboxylate ligand are involved in bridging coordination modes (YISLAQ; Ghosh et al., 2018).

5. Hirshfeld surface analysis

An effective means of probing intermolecular interactions is Hirshfeld surface analysis (McKinnon et al., 2007; Spackman \& Jayatilaka, 2009), which can be conveniently carried out

Figure 3
Elevation view of a portion of two layers seen along the c-axis direction and showing the π-stacking interactions (orange dashed lines) holding them together. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds within layers are depicted by red and black dashed lines, respectively.

The Hirshfeld surface plotted over (a) $d_{\text {norm }}$, (b) shape index and (c) curvature.
with Crystal Explorer 17 (Turner et al., 2017). A detailed description of the use of Crystal Explorer 17 and the plots obtained has been published (Tan et al., 2019) so will not be given here. Fig. $4 a$ presents the surface mapped over $d_{\text {norm }}$ over the range -0.7162 to 1.5102 arbitrary units in which the bright-red spots indicate the strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and the lighter red spots the weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds listed in Table 2. Mapping of the Hirshfeld surface over shape-index is illustrated in Fig. $4 b$ and provides a picture of possible π-stacking interactions. These are indicated by red-orange triangles surrounded by blue triangles, which occur over the pyridine rings, confirming the slipped π stacking interaction discussed in Section 3. This is also indicated by the surface mapped over curvature (Fig. 4c) where the substantially flat regions of the plot again occur over the pyridine rings. Parsing the intermolecular interactions into specific types is accomplished with the fingerprint plots (Fig. 5). Fig. $5 a$ shows the full fingerprint plot while Fig. $5 b$ presents the $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ interactions which, not surprisingly, constitute the largest of the intermolecular interactions at 35.8% of the total. These are followed by $\mathrm{H} \cdots \mathrm{H}$ (Fig. $5 c, 25.9 \%$), $\mathrm{H} \cdots \mathrm{C} /$ $\mathrm{C} \cdots \mathrm{H}$ (Fig. $5 d, 10.8 \%$) and $\mathrm{O} \cdots \mathrm{Cu}$ (Fig. $5 e, 10.8 \%$) interactions. Not shown are the C $\cdots \mathrm{C}(7.9 \%)$ and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ (2.5%) contacts, with the former corresponding primarily to the slipped π-stacking interactions.
pyridine-2,3-dicarboxylic acid ($0.04 \mathrm{~g}, 0.2 \mathrm{mmol}$) and NaOH $\left(0.2 \mathrm{ml}, 1 \mathrm{~mol} \mathrm{~L}^{-1}\right)$, the mixture was stirred at 333 K for 2 h and then cooled to room temperature. After standing for a week, the light-blue precipitate that formed was filtered off and dried. Dark-blue, block-like crystals were obtained by slow evaporation of a solution of the precipitate in 5 mL of distilled water at room temperature. (yield: 30.61% based on $\mathrm{Cu})$. Analysis calculated for: C, 27.00; H, 1.94; N, 4.50%. Found: C, 26.86; H, 2.02; N, 4.46\%. IR ($\mathrm{cm}^{-1} \mathrm{KBr}$): 445, 489, 547, 612, 674, 688, 768, 798, 948, 1019, 1044, 1130, 1225, 1376, 1408, 1441, 1564, 1594, 1619, 2994, 3043, 3069, 3355.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to carbon were placed in idealized locations $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and were included as riding contributions with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Those attached to oxygen were placed in locations obtained from a difference map and were refined with DFIX $\mathrm{O}-\mathrm{H}=$ 0.84 (1) A restraints.

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

6. Synthesis and crystallization

An aqueous solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.034 \mathrm{~g}, 0.2 \mathrm{mmol}$ in

References

Balzarini, J., Stevens, M., De Clercq, E., Schols, D. \& Pannecouque, C. (2005). J. Antimicrob. Chemother. 55, 135-138.

Fingerprint plots showing (a) all intermolecular interactions and resolved into (b) $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H},(c) \mathrm{H} \cdots \mathrm{H},(d) \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ and (e) $\mathrm{O} \cdots \mathrm{Cu} / \mathrm{Cu} \cdots \mathrm{O}$ contacts.

Table 3
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{4}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{\text {r }}$	813.07
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	150
$a, b, c(\AA)$	7.8669 (17), 9.710 (2), 10.424 (2)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	97.016 (3), 110.701 (3), 109.049 (3)
$V\left(\AA^{3}\right)$	678.2 (2)
Z	1
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	2.42
Crystal size (mm)	$0.31 \times 0.25 \times 0.22$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.50, 0.62
No. of measured, independent and observed [$I>2 \sigma(I)$] reflections	12893, 3592, 3390
$R_{\text {int }}$	0.021
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.685
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.023, 0.065, 1.06
No. of reflections	3592
No. of parameters	226
No. of restraints	3
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.52, -0.31

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2018/1 (Sheldrick, 2015b), DIAMOND (Brandenburg \& Putz, 2012) and SHELXTL (Sheldrick, 2008).

Bazargan, M., Mirzaei, M., Aghamohamadi, M., Tahmasebi, M. \& Frontera, A. (2020). J. Mol. Struct. 1202, 127243.
Bazargan, M., Mirzaei, M., Eshtiagh-Hosseini, H., Mague, J. T., Bauzá, A. \& Frontera, A. (2016). Inorg. Chim. Acta, 449, 44-51.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brandenburg, K. \& Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Ghosh, D., Ferfolja, K., Drabavičius, Z., Steed, J. W. \& Damodaran, K. K. (2018). New J. Chem. 42, 19963-19970.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hosseini Hashemi, Z., Mirzaei, M., Eshtiagh-Hosseini, H., Fereshteh, S., Shamsipur, M., Ardalani, M. \& Blake, A. J. (2018). J. Coord. Chem. 71, 4058-4071.

Hosseini-Hashemi, Z., Mirzaei, M., Jafari, A., Hosseinpour, P., Yousefi, M., Frontera, A., Lari Dashtbayaz, M., Shamsipur, M. \& Ardalani, M. (2019). RSC Adv. 9, 25382-25404.
Kang, Y.-F., Wang, Y.-L., Xu, L., Zhang, W.-Q., Cuo, L.-L. \& Ma, Y.-M. (2020). J. Solid State Chem. 291, 121260.

Knuutilla, H. (1981). Inorg. Chim. Acta, 50, 221-225.
Knuutilla, H. (1983). Inorg. Chim. Acta, 72, 11-16.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Laborda, S., Clérac, R., Anson, C. E. \& Powell, A. K. (2004). Inorg. Chem. 43, 5931-5943.
Lazarou, K. N., Savvidou, A., Raptopoulou, C. P. \& Psycharis, V. (2018). Polyhedron, 152, 125-137.

Lis, S., Hnatejko, Z., Barczynski, P. \& Elbanowski, M. (2002). J. Alloys Compd. 344, 70-74.
Liu, C.-M., Zhang, D., Нао, X. \& Zhu, D.-B. (2016). ACS Omega, 1, 286-292.
McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Comтии. 3814-3816.
Mirzaei, M., Eshtiagh-Hosseini, H., Alipour, M., Bauzá, A., Mague, J. T., Korabik, M. \& Frontera, A. (2015). Dalton Trans. 44, 88248832.

Mirzaei, M., Eshtiagh-Hosseini, H. \& Bazargan, M. (2015). Res. Chem. Intermed. 41, 9785-9803.
Mirzaei, M., Eshtiagh-Hosseini, H., Bazargan, M., Mehrzad, F., Shahbazi, M., Mague, J. T., Bauzá, A. \& Frontera, A. (2015). Inorg. Chim. Acta, 438, 135-145.
Mirzaei, M., Sadeghi, F., Molčanov, K., Zaręba, J. K., Gomila, R. M. \& Frontera, A. (2020). Cryst. Growth Des. 20, 1738-1751.
Noro, S., Mizutani, J., Hijikata, Y., Matsuda, R., Sato, H., Kitagawa, S., Sugimoto, K., Inubushi, Y., Kubo, K. \& Nakamura, T. (2015). Nat. Coттии. 6, 5851.
Procházková, S., Kubíček, V., Böhmová, Z., Holá, K., Kotek, J. \& Hermann, P. (2017). Dalton Trans. 46, 10484-10497.
Shahbazi, M., Mehrzad, F., Mirzaei, M., Eshtiagh-Hosseini, H., Mague, J. T., Ardalani, M. \& Shamsipur, M. (2017). Inorg. Chim. Acta, 458, 84-96.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 1932.

Tan, S. L., Jotani, M. M. \& Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). Cryst. Explorer 17. The University of Western Australia.
Wang, X.-Y., Zhang, X.-Q. \& Wu, W.-S. (2011). Acta Cryst. E67, m225.
Xiong, Y., Fan, Y.-Z., Yang, R., Chen, S., Pan, M., Jiang, J.-J. \& Su, C.-Y. (2014). Chem. Commun. 50, 14631-14634.

Yu, Y., Zhang, L., Zhou, Y. \& Zuhra, Z. (2015). Dalton Trans. 44, 4601-4612.

supporting information

A redetermination of the structure and Hirshfeld surface analysis of poly[di-aquadi- μ-hydroxido-tetrakis(μ-nicotinato N-oxide)tricopper(II)]

Masoud Mirzaei, Maryam Bazargan, Pouria Ebtehaj and Joel T. Mague

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg \& Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[diaquadi- μ-hydroxido-tetrakis $(\mu$-pyridine-3-carboxylato N-oxide)tricopper(II)]

Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{4}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=813.07$
Triclinic, $P \overline{1}$
$a=7.8669$ (17) \AA
$b=9.710$ (2) \AA
$c=10.424(2) \AA$
$\alpha=97.016$ (3) ${ }^{\circ}$
$\beta=110.701(3)^{\circ}$
$\gamma=109.049(3)^{\circ}$
$V=678.2(2) \AA^{3}$

Data collection

Bruker SMART APEX CCD

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.50, T_{\text {max }}=0.62$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.065$
$S=1.06$
3592 reflections
226 parameters
3 restraints

$$
Z=1
$$

$$
F(000)=409
$$

$$
D_{\mathrm{x}}=1.991 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA
$$

Cell parameters from 9998 reflections
$\theta=2.3-29.1^{\circ}$
$\mu=2.42 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, blue
$0.31 \times 0.25 \times 0.22 \mathrm{~mm}$

12893 measured reflections
3592 independent reflections
3390 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=29.2^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-14 \rightarrow 14$

Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0347 P)^{2}+0.5335 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.52 \mathrm{e}^{-3}
\end{aligned}
$$

$$
\Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3}
$$

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at $\varphi=$ $0.00,90.00$ and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at $\omega=-30.00$ and 210.00°. The scan time was $5 \mathrm{sec} /$ frame.
Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R -factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger. H -atoms attached to carbon were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give $\mathrm{O}-\mathrm{H}=0.84 \% \mathrm{~A}$. The former were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms while the latter were refined subject to the restraint DFIX 0.84 (1).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\hbar^{2}\right)$

	x	y	z	$U_{\text {iso }} *^{*} U_{\mathrm{eq}}$
Cu1	$0.55161(3)$	$0.76197(2)$	$0.22674(2)$	$0.01203(6)$
Cu2	0.500000	0.500000	0.000000	$0.01188(7)$
O1	$0.44050(18)$	$0.71790(14)$	$0.36494(13)$	$0.0175(2)$
O2	$0.2406(2)$	$0.47108(14)$	$0.27160(14)$	$0.0245(3)$
O3	$0.22121(19)$	$0.36322(14)$	$0.73304(14)$	$0.0189(2)$
O4	$0.38030(18)$	$0.32089(13)$	$0.05837(12)$	$0.0146(2)$
O5	$0.35598(18)$	$0.12662(13)$	$-0.09985(12)$	$0.0154(2)$
O6	$0.09294(18)$	$0.09404(14)$	$0.36357(12)$	$0.0166(2)$
O7	$0.35789(17)$	$0.59314(13)$	$0.07123(12)$	$0.0126(2)$
H7A	$0.308(3)$	$0.534(2)$	$0.110(2)$	$0.029(6)^{*}$
O8	$0.74783(18)$	$0.94425(13)$	$0.37813(12)$	$0.0152(2)$
H8A	$0.788(4)$	$0.931(3)$	$0.4591(16)$	$0.041(8)^{*}$
H8B	$0.848(3)$	$0.981(3)$	$0.362(3)$	$0.035(7)^{*}$
N1	$0.2291(2)$	$0.47710(16)$	$0.67356(14)$	$0.0135(3)$
N2	$0.13829(19)$	$0.03830(15)$	$0.26216(14)$	$0.0119(2)$
C1	$0.3226(2)$	$0.59140(18)$	$0.36527(17)$	$0.0138(3)$
C2	$0.2845(2)$	$0.59731(18)$	$0.49796(16)$	$0.0122(3)$
C3	$0.2577(2)$	$0.47220(18)$	$0.55191(17)$	$0.0136(3)$
H3	0.259212	0.383122	0.504107	0.016^{*}
C4	$0.2081(2)$	$0.59753(19)$	$0.73601(17)$	$0.0155(3)$
H4	0.178573	0.595901	0.816802	0.019^{*}
C5	$0.2293(3)$	$0.7225(2)$	$0.68303(17)$	$0.0171(3)$
H5	0.212768	0.806108	0.726578	0.020^{*}
C6	$0.2751(2)$	$0.72616(19)$	$0.56552(17)$	$0.0152(3)$
H6	0.299241	0.814314	0.532209	0.018^{*}
C7	$0.3409(2)$	$0.18427(17)$	$0.00894(16)$	$0.0111(3)$
C8	$0.2615(2)$	$0.07659(17)$	$0.08634(15)$	$0.0109(3)$

C9	$0.2181(2)$	$0.13269(17)$	$0.19519(16)$	$0.0117(3)$
H9	0.244784	0.237223	0.221998	0.014^{*}
C10	$0.0996(2)$	$-0.11165(18)$	$0.22703(17)$	$0.0143(3)$
H10	0.043095	-0.176028	0.275773	0.017^{*}
C11	$0.1424(2)$	$-0.17042(18)$	$0.12053(18)$	$0.0160(3)$
H11	0.115782	-0.275146	0.096237	0.019^{*}
C12	$0.2246(2)$	$-0.07639(18)$	$0.04886(17)$	$0.0141(3)$
H12	0.254937	-0.115727	-0.024337	0.017^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.01623(11)$	$0.01106(10)$	$0.01109(10)$	$0.00360(8)$	$0.00955(8)$	$0.00412(7)$
Cu2	$0.01632(14)$	$0.01104(13)$	$0.01417(13)$	$0.00581(10)$	$0.01150(10)$	$0.00645(10)$
O1	$0.0224(6)$	$0.0161(5)$	$0.0160(5)$	$0.0030(5)$	$0.0142(5)$	$0.0056(4)$
O2	$0.0389(8)$	$0.0147(6)$	$0.0243(6)$	$0.0046(5)$	$0.0241(6)$	$0.0038(5)$
O3	$0.0230(6)$	$0.0195(6)$	$0.0238(6)$	$0.0098(5)$	$0.0156(5)$	$0.0165(5)$
O4	$0.0201(6)$	$0.0122(5)$	$0.0169(5)$	$0.0053(4)$	$0.0138(5)$	$0.0070(4)$
O5	$0.0228(6)$	$0.0136(5)$	$0.0134(5)$	$0.0048(5)$	$0.0131(5)$	$0.0053(4)$
O6	$0.0206(6)$	$0.0191(6)$	$0.0132(5)$	$0.0050(5)$	$0.0132(5)$	$0.0046(4)$
O7	$0.0149(5)$	$0.0125(5)$	$0.0134(5)$	$0.0043(4)$	$0.0099(4)$	$0.0044(4)$
O8	$0.0211(6)$	$0.0128(5)$	$0.0131(5)$	$0.0036(5)$	$0.0113(5)$	$0.0045(4)$
N1	$0.0124(6)$	$0.0157(6)$	$0.0148(6)$	$0.0050(5)$	$0.0073(5)$	$0.0090(5)$
N2	$0.0125(6)$	$0.0144(6)$	$0.0099(5)$	$0.0036(5)$	$0.0069(5)$	$0.0048(5)$
C1	$0.0169(7)$	$0.0156(7)$	$0.0157(7)$	$0.0087(6)$	$0.0110(6)$	$0.0075(6)$
C2	$0.0118(7)$	$0.0144(7)$	$0.0123(6)$	$0.0045(6)$	$0.0070(5)$	$0.0053(5)$
C3	$0.0151(7)$	$0.0144(7)$	$0.0151(7)$	$0.0060(6)$	$0.0096(6)$	$0.0059(6)$
C4	$0.0158(7)$	$0.0217(8)$	$0.0118(6)$	$0.0077(6)$	$0.0078(6)$	$0.0061(6)$
C5	$0.0222(8)$	$0.0187(8)$	$0.0148(7)$	$0.0106(6)$	$0.0102(6)$	$0.0047(6)$
C6	$0.0190(8)$	$0.0150(7)$	$0.0153(7)$	$0.0076(6)$	$0.0096(6)$	$0.0074(6)$
C7	$0.0107(7)$	$0.0135(7)$	$0.0111(6)$	$0.0041(5)$	$0.0064(5)$	$0.0060(5)$
C8	$0.0110(7)$	$0.0128(7)$	$0.0105(6)$	$0.0037(5)$	$0.0063(5)$	$0.0061(5)$
C9	$0.0126(7)$	$0.0116(6)$	$0.0110(6)$	$0.0025(5)$	$0.0065(5)$	$0.0046(5)$
C10	$0.0142(7)$	$0.0141(7)$	$0.0172(7)$	$0.0043(6)$	$0.0087(6)$	$0.0095(6)$
C11	$0.0177(8)$	$0.0128(7)$	$0.0208(8)$	$0.0064(6)$	$0.0100(6)$	$0.0078(6)$
C12	$0.0161(7)$	$0.0144(7)$	$0.0153(7)$	$0.0067(6)$	$0.0094(6)$	$0.0052(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cu} 1-\mathrm{O} 7$	$1.9003(12)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.3462(19)$
$\mathrm{Cu} 1-\mathrm{O} 8$	$1.9539(12)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.360(2)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9542(12)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.513(2)$
$\mathrm{Cu}-\mathrm{O} 5^{\mathrm{i}}$	$1.9911(12)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.386(2)$
$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{ii}}$	$2.4208(13)$	$\mathrm{C} 2-\mathrm{C} 6$	$1.396(2)$
$\mathrm{Cu} 2-\mathrm{O} 7^{\mathrm{i}}$	$1.9240(11)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{Cu} 2-\mathrm{O} 7$	$1.9240(11)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.379(2)$
$\mathrm{Cu} 2-\mathrm{O} 4$	$1.9687(11)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{Cu} 2-\mathrm{O} 4$	$1.9688(11)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.395(2)$

$\mathrm{O} 1-\mathrm{C} 1$	1.276 (2)	C5-H5	0.9500
O2-C1	1.232 (2)	C6-H6	0.9500
O3-N1	1.3270 (17)	C7-C8	1.507 (2)
O4-C7	1.2541 (19)	C8-C12	1.393 (2)
O5-C7	1.2638 (19)	C8-C9	1.394 (2)
O6-N2	1.3381 (17)	C9-H9	0.9500
O7-H7A	0.819 (10)	C10-C11	1.381 (2)
O8-H8A	0.833 (10)	C10-H10	0.9500
O8-H8B	0.836 (10)	C11-C12	1.390 (2)
N1-C4	1.354 (2)	C11-H11	0.9500
N1-C3	1.362 (2)	C12-H12	0.9500
O7-Cu1-O8	176.16 (5)	O1-C1-C2	113.52 (14)
O7-Cu1-O1	97.79 (5)	C3-C2-C6	119.94 (14)
O8-Cu1-O1	84.60 (5)	C3-C2-C1	119.12 (14)
O7-Cu1-O5	92.38 (5)	C6-C2-C1	120.94 (14)
O8-Cu1-O5 ${ }^{\text {i }}$	84.42 (5)	N1-C3-C2	119.92 (15)
O1-Cu1-O5 ${ }^{\text {i }}$	158.98 (5)	N1-C3-H3	120.0
O7-Cu1-O3 ${ }^{\text {ii }}$	89.57 (5)	C2-C3-H3	120.0
O8-Cu1-O3 ${ }^{\text {ii }}$	92.82 (5)	N1-C4-C5	120.41 (15)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O3}^{\text {ii }}$	103.19 (5)	N1-C4-H4	119.8
$\mathrm{O} 5^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{O}^{3 i}$	95.20 (5)	C5-C4-H4	119.8
O7- ${ }^{\text {i }}$ Cu2-07	180.0	C4-C5-C6	119.99 (15)
O7- ${ }^{\text {- }}$ - ${ }^{\text {2-O4 }}$	92.31 (5)	C4-C5-H5	120.0
O7-Cu2-O4	87.69 (5)	C6-C5-H5	120.0
O7- $7^{\text {i }}$ Cu2- $4^{\text {i }}$	87.69 (5)	C5-C6-C2	118.49 (15)
O7-Cu2-O4 ${ }^{\text {i }}$	92.31 (5)	C5-C6-H6	120.8
O4-Cu2-O4 ${ }^{\text {i }}$	180.00 (8)	C2-C6-H6	120.8
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu} 1$	128.46 (11)	O4-C7-O5	127.42 (14)
$\mathrm{N} 1-\mathrm{O} 3-\mathrm{Cu} 1^{\text {ii }}$	125.82 (9)	O4-C7-C8	116.01 (13)
$\mathrm{C} 7-\mathrm{O} 4-\mathrm{Cu} 2$	129.98 (10)	O5-C7-C8	116.56 (14)
C7-O5-Cu1 ${ }^{\text {i }}$	125.97 (10)	C12-C8-C9	119.83 (14)
$\mathrm{Cu} 1-\mathrm{O} 7-\mathrm{Cu} 2$	106.58 (6)	C12-C8-C7	121.94 (14)
Cu1-07-H7A	102.7 (18)	C9-C8-C7	118.19 (14)
Cu2-07-H7A	104.7 (18)	N2-C9-C8	119.81 (14)
Cu1-O8-H8A	115 (2)	N2-C9-H9	120.1
Cu1-O8-H8B	110.4 (19)	C8-C9-H9	120.1
H8A-O8-H8B	106 (3)	N2-C10-C11	120.03 (14)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 4$	118.78 (13)	N2-C10-H10	120.0
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 3$	120.31 (14)	C11-C10-H10	120.0
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3$	120.91 (14)	C10-C11-C12	120.01 (15)
O6-N2-C9	118.69 (13)	C10-C11-H11	120.0
O6-N2-C10	119.75 (13)	C12-C11-H11	120.0
C9-N2-C10	121.54 (14)	C11-C12-C8	118.77 (15)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	127.26 (15)	C11-C12-H12	120.6
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	119.22 (14)	C8-C12-H12	120.6
$\mathrm{Cu} 1{ }^{\text {iii- }} \mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 4$	-133.95 (13)	$\mathrm{Cu} 2-\mathrm{O} 4-\mathrm{C} 7-\mathrm{O} 5$	-5.8(3)

$\mathrm{Cu} 1{ }^{\text {ii }}-\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 3$	46.08 (19)	Cu2-O4-C7-C8	175.93 (10)
$\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-6.2 (3)	$\mathrm{Cu1}-\mathrm{O} 5-\mathrm{C} 7-\mathrm{O} 4$	0.0 (2)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	174.06 (10)	$\mathrm{Cu1}-\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 8$	178.24 (10)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	35.0 (2)	O4-C7-C8-C12	-175.48 (15)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-145.22 (15)	$\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12$	6.0 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	-144.61 (17)	O4-C7-C8-C9	6.8 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	35.1 (2)	O5-C7-C8-C9	-171.71 (14)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	-173.87 (14)	O6-N2-C9-C8	-178.18 (13)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	6.2 (2)	C10-N2-C9-C8	0.5 (2)
C6-C2-C3-N1	-2.3 (2)	C12-C8-C9-N2	-0.9 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	178.07 (14)	C7-C8-C9-N2	176.91 (13)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	175.41 (15)	O6-N2-C10-C11	178.72 (14)
C3-N1-C4-C5	-4.6 (2)	C9-N2-C10-C11	0.1 (2)
N1-C4-C5-C6	-0.8 (3)	N2- $\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	-0.2 (2)
C4-C5-C6-C2	4.5 (3)	C10-C11-C12-C8	-0.2 (2)
C3-C2-C6-C5	-2.9 (2)	C9-C8-C12-C11	0.8 (2)
C1-C2-C6-C5	176.69 (15)	C7-C8-C12-C11	-176.96 (14)

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7 — \mathrm{H} 7 A \cdots \mathrm{O} 2$	$0.82(1)$	$2.04(1)$	$2.8057(17)$	$156(2)$
O8—H8A $\cdots 6^{\text {ii }}$	$0.83(1)$	$1.84(1)$	$2.6684(17)$	$173(3)$
O8—H8B $\cdots \mathrm{O}^{\text {iii }}$	$0.84(1)$	$1.88(1)$	$2.6976(18)$	$168(3)$
C9—H9 $\cdots \mathrm{O} 2$	0.95	2.28	$3.216(2)$	168
$\mathrm{C} 10 — \mathrm{H} 10 \cdots \mathrm{O}^{\text {iv }}$	0.95	2.23	$3.079(2)$	148

Symmetry codes: (ii) $-x+1,-y+1,-z+1$; (iii) $x+1, y+1, z$; (iv) $-x,-y,-z+1$.

