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ABSTRACT. A major unsolved issue of prion biology is the existence of multiple strains with distinct
phenotypes and this strain phenomenon is postulated to be associated with the conformational diversity
of the abnormal prion protein (PrPSc). Real-time quaking-induced conversion (RT-QUIC) assay that
uses Escherichia coli-derived recombinant prion protein (rPrP) for the sensitive detection of PrPSc

results in the formation of rPrP-fibrils seeded with various strains. We demonstrated that there are
differences in the secondary structures, especially in the b-sheets, and conformational stability between
2 rPrP-fibrils seeded with either Chandler or 22L strains in the first round of RT-QUIC. In particular,
the differences in conformational properties of these 2 rPrP-fibrils were common to those of the original
PrPSc. However, the strain specificities of rPrP-fibrils seen in the first round were lost in subsequent
rounds. Instead, our findings suggest that nonspecific fibrils became the major species, probable owing
to their selective growth advantage in the RT-QUIC. This study shows that at least some strain-specific
conformational properties of the original PrPSc can be transmitted to rPrP-fibrils in vitro, but further
conservation appears to require unknown cofactors or environmental conditions or both.
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IN VITRO CONVERSION OF
RECOMBINANT PrP INTO THE
PROTEINASE K (PK) RESISTANT

AMYLOID FIBRILS

Prion diseases, or transmissible spongiform
encephalopathies, are infectious and fatal neu-
rodegenerative disorders that include Creutz-
feldt-Jakob disease in humans, and scrapie and
bovine spongiform encephalopathy in animals.
The infectious agent, prion, is assumed to be
formed mainly or exclusively by abnormal
prion protein, designated PrPSc, which is par-
tially protease-resistant1 and a b-sheet-rich
conformer,2,3 frequently resulting in amyloid
fibril formation. Although the pathogenesis has
not been clarified fully, it is widely accepted
that prion disease occurs through autocatalytic
conformational conversion of the ubiquitous
normal form of prion protein (PrPC) to PrPSc in
a “protein only” manner.4

Studies using Escherichia coli-derived
purified recombinant PrP (rPrP) has contrib-
uted to solving the controversial protein-only
hypothesis. It has been demonstrated that
rPrP fibrils (rPrP-fibrils) formed in vitro
cause the accumulation of PrPSc in the
brains of PrP-overexpressing transgenic (Tg)
mice5–7 and some wild-type hamsters.8 These
studies suggest that rPrP can be converted
into a PrPSc-like form in vitro; however, the
infectious titers seem to be much lower than
that of authentic PrPSc. In contrast, prion
infectivity could be propagated when brain-
derived PrPC or baculovirus-derived PrPC

was used as substrates for protein misfolding
cyclic amplification (PMCA) in the presence
of certain cofactors such as nucleic acids.9,10

Relatively high levels of prion infectivity
was demonstrated by injection of PK-resis-
tant rPrP-fibrils generated by unseeded
PMCA in the presence of 1-palmitoyl-2-
oleoylphosphatidylglycerol and total liver
RNA into wild-type mice. Subsequently,

these mice developed prion disease with an
incubation period of approximately
150 days.11 However, other group failed to
show infectivity of rPrP-fibrils generated by
the same methods.12

TRANSMISSION OF
CONFORMATIONAL PROPERTIES

OF PRION STRAINS TO
rPrP-FIBRILS IN RT-QUIC

Prion is known to provide extensive strain
diversity showing different phenotypic and
pathological states in mammalian species. The
strain-specific characteristics can usually be
serially passaged stably in the same species.
Furthermore, PrPSc generated by PMCA using
brain homogenate from normal animals as a
source of PrPC (BH-PMCA) seeded with differ-
ent mouse prion strains retained the strain-spe-
cific properties, such as incubation time,
neuropathology, and biochemical characteris-
tics from original PrPSc.13 This result indicates
that the intracellular mechanisms and cell-
to-cell transmission are dispensable for the
maintenance and propagation of strain charac-
teristics. The finding that PrPSc from different
strains have distinct secondary structures and
biochemical properties supports the notion that
prion strains are manifested by conformational
variations of the PrPSc.14 For example, strain-
dependent differences in b-sheet-rich structures
of PrPSc have been demonstrated by infrared
spectroscopy.15–18 In addition, the conforma-
tional stability of PrPSc differed among prion
strains, as demonstrated by guanidine hydro-
chloride denaturation assay followed by prote-
ase digestion.19,20 However, the mechanistic
relationship between PrPSc conformational dif-
ferences and the molecular basis of prion
strains remains poorly understood.

The recently developed “real-time quaking-
induced conversion” (RT-QUIC) is a sensitive
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prion detection method, in which intermittent
shaking enhances the conversion of soluble
rPrP into amyloid fibrils in the presence of
PrPSc.21 Recent studies show that RT-QUIC
assays allow highly sensitive detection of PrPSc

in most species and strains, including Creutz-
feldt-Jakob disease in humans,21–24 scrapie in
rodents,25,26 and chronic wasting disease in
cervids.27

We generated the amyloid fibrils seeded with
100 pg of PrPSc derived from either the
Chandler or 22L strain in the first round of
RT-QUIC (1st-rPrP-fibSc).28 Spontaneous for-
mation of rPrP-fibrils (rPrP-fibspon) was
observed by decreasing the concentration of
rPrP, because there was an inverse correlation
between the rate of fibril formation and the con-
centration of rPrP. Previous studies using FTIR
and hydrogen/deuterium exchange have shown
that there are structural differences between
PrPSc-seeded and spontaneous rPrP-fibrils gen-
erated by PMCA.29,30 We found that the PK-
resistant band pattern, structural morphology,
secondary structure, and conformational stabil-
ity distinguish 1st-rPrP-fibSc from rPrP-fibspon.
Although there were no differences in the PK-
resistant band pattern and structural morphol-
ogy between Chandler-seeded (1st-rPrP-fibCh)
and 22L-seeded rPrP-fibrils (1st-rPrP-fib22L),
we observed significant differences in the sec-
ondary structure and conformational stability
between strains. FTIR analysis showed that
native rPrP had an abundance of a-helical
structures, whereas 1st-rPrP-fibCh and 1st-rPrP-
fib22L were substantially enriched in b-sheets.
While the 1st-rPrP-fibCh was characterized by a
major band at 1624 cm¡1 in the b-sheet region
of second-derivative spectra, the 1st-rPrP-fib22L

was characterized by 2 absorbance bands at
1629 and 1617 cm¡1, indicating that there
were conformational differences in b-sheet
structures between the 2 1st-rPrP-fibSc. Simi-
larly, purified Chandler-PrPSc from brains of
mice displayed the spectrum with a peak at
1630 cm¡1, whereas purified 22L-PrPSc had 2
major maxima at 1631 and 1616 cm¡1, as pre-
viously reported. Thus, the differences in
b-sheet spectrum shape between strains were
common to both PrPSc and 1st-rPrP-fibSc. The
conformational stability of 1st-rPrP-fib22L was

significantly lower than that of 1st-rPrP-fibCh,
as with Chandler- and 22L-PrPSc. Furthermore,
wild-type mice inoculated with the 1st-rPrP-
fibSc showed an increased attack rate and a sig-
nificantly shorter survival period compared
with those inoculated with mock preparations.
The infectious titers (per 40 ml) of 1st-rPrP-
fibCh and 1st-rPrP-fib22L were estimated to be
407.2 § 226.6 and 1067.0 § 678.7 LD50,
respectively, whereas the titers of Chandler and
22L prion were 20.2 and 28.9 LD50 units/40 pg
of PrPSc, respectively, indicating that QUIC
reaction in the first round resulted in a 20- to
37-fold increase in the infectious titer. These
results suggest that strain features of PrPSc can
be transmitted to rPrP-fibrils in a simple system
solely consisting of pure rPrP. However, it is
clear that the conformation of 1st-rPrP-fibSc is
not identical to that of authentic PrPSc. It should
be noted that the degrees of vacuolation of mice
inoculated with 1st-rPrP-fibSc were significantly
lower in the hippocampus and cerebellum than
those of inoculated with mock preparations.
The different lesion profiles may result from
the conformational differences between 1st-
rPrP-fibSc and authentic PrPSc.

WHAT IS REQUIRED FOR
MAINTAINING STRAIN-SPECIFIC

CONFORMATIONS?

We found that the strain-specific conforma-
tional features and the infectivity disappeared
in rPrP-fibrils during and after the second
round,28 suggesting that RT-QUIC has the limi-
tation of technology with respect of reproduc-
ing the prion propagation. One possible reason
for the loss of the prion strain-specific traits is
that E. coli-derived rPrP lacks post-transla-
tional modifications. PrP bears 2 N-linked gly-
cosylation sites at amino acids 180 and 196 that
can produce di-, mono-, and unglycosylated
forms. PrPSc has varying degrees of glycosyla-
tion among strains14,31,32 and therefore the gly-
cosylation pattern is postulated to confer strain
specificity. Studies using Tg mice expressing
glycosylation site mutants revealed that the
strain properties of strain 79A were altered by
the glycosylation state of PrPC, but the strain
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properties of strains ME7 and 301C were not
affected.33 Moreover, the glycosylation-defi-
cient PrPC as a substrate of PMCA by treatment
with PNGase F did not affect strain-dependent
neurotropisms in the 2 murine strains RML and
301C.34 Furthermore, the cell tropisms deter-
mined by the cell panel assay were altered in
strains RML, 139A, 79A, and ME7 but not
in strain 22L when the strains were propagated
in Tg mice expressing PrP devoid of a GPI
anchor.35 These results suggest that the neces-
sity of glycans and the GPI-anchor for the
transmission and preservation of strain-specific
properties is dependent on the strains.

An additional reason for the loss of strain
specificity from rPrP-fibrils might be because
of a decrease in cofactor(s) over serial pas-
sages. Strains have been reported to differ in
their RNA requirements for propagation in BH-
PMCA, although RNA is not essential for
maintaining strain-specific characteristics in
mice.36 Moreover, another study showed that
phosphatidylethanolamine is a cofactor

required for the propagation of prion infectivity
in seeded rPrP-PMCA but not for the transmis-
sion of strain-specific properties, because 3 dif-
ferent prion strains changed into a single new
strain after the serial passages of rPrP-PMCA
reactions.37,38 Thus, crucial cofactors or envi-
ronmental conditions for maintaining strain-
specific properties remain to be determined.

We observed the “nonspecific rPrP-fibrils”
displayed no strain-specific differences in IR
spectra and conformational stability after 5
serial rounds of RT-QUIC, which have the abil-
ity to cause the conversion of rPrP but failed to
induce clinical signs of prion disease in the
wild-type mice.28 Additionally, we found that
the b-sheet spectra of rPrP-fibrils generated in
the presence of small amount (1 pg) of PrPSc or
generated at pH4 in the first round were similar
to nonspecific rPrP-fibrils.28 These observations
raise the possibility that nonspecific rPrP-fibrils
lacking prion infectivity can be generated even
in the first round and may interrupt the forma-
tion of the fibrils with strain-specific conforma-

FIGURE 1. Hypothetical models for the formation of rPrP-fibrils in sequential RT-QUIC reac-
tions. (A) The formation of 1st-rPrP-fibSc is induced predominantly in the presence of hypotheti-
cal cofactors and brain-derived PrPSc in the first round. However, a small amount of nonspecific
rPrP-fibrils may be concomitantly generated. (B) In the second round, the nonspecific rPrP-
fibrils become predominant because of the paucity of hypothetical cofactors and/or a selective
growth advantage of nonspecific fibrils. (C) The formation of nonspecific rPrP-fibrils occupies
almost the whole reaction in the fifth round.

240 Sano et al.



tions, because of a selective growth advantage
of nonspecific fibrils (Fig. 1). Of note, the for-
mation of quasi-species that is consisting of a
variety of conformational variants has been
reported in prion-infected cultured cells under
different environmental conditions.39,40 Further-
more, different prion strains can interfere with
each other, and this is known as prion strain
interference.41–44 The competition for substrates
among the variants is thought to act as a selec-
tion pressure in Darwinian evolution and to
cause the phenomenon of prion strain interfer-
ence. Previous work showed that 2 conforma-
tional variants of rPrP-fibrils are mutually
exclusive and compete for monomeric rPrP as a
substrate in the rPrP-PMCA.29 Likewise, com-
petitive amplification of 2 prion strains was
observed in BH-PMCA.45 We postulate that
PrPSc predominantly leads to strain-specific con-
formational conversion of rPrP, particularly in
the presence of hypothetical cofactors, while
some quantity of nonspecific fibrils could be
generated simultaneously in the first round
(Fig. 1A). The conditions of subsequent rounds
would favor growth of nonspecific species
(Fig. 1B and C). The fact that prion infectivity
was often diminished in serial rPrP-PMCA46 or
BH-PMCA47–49 support the hypothesis that the
amplification of nonspecific rPrP fibrils is accel-
erated by certain conditions. Further studies are
needed to ascertain the key factors responsible
for maintaining the infectious and strain-spe-
cific conformations in vitro.
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