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Cardiovascular disease (CVD) is the leading cause of the death worldwide.

An increasing number of studies have found that autophagy is involved in

the progression or prevention of CVD. However, the precise mechanism of

autophagy in CVD, especially the myocardial ischaemia-reperfusion injury

(MI/R injury), is unclear and controversial. Here, we show that the cardio-

myocyte-specific disruption of autophagy by conditional knockout of Atg7
leads to severe contractile dysfunction, myofibrillar disarray and vacuolar

cardiomyocytes. A negative cytoskeleton organization regulator, CLP36,

was found to be accumulated in Atg7-deficient cardiomyocytes. The

cardiomyocyte-specific knockout of Atg7 aggravates the MI/R injury with

cardiac hypertrophy, contractile dysfunction, myofibrillar disarray and

severe cardiac fibrosis, most probably due to CLP36 accumulation in

cardiomyocytes. Altogether, this work reveals autophagy may protect cardi-

omyocytes from the MI/R injury through the clearance of CLP36, and these

findings define a novel relationship between autophagy and the regulation

of stress fibre in heart.
1. Introduction
About one in three of all global deaths are caused by cardiovascular diseases

(CVDs) each year [1,2]. Myocardial infarction (MI) serves as a major cause of car-

diovascular mortality and morbidity, and the reperfusion of ischaemic hearts is a

clinically effective way to cure MI [3–7]. However, when the ischaemic myocar-

dium is reperfused with oxygen and nutrient-rich blood, some detrimental

effects on clinical outcome are also accompanied, including myocardial stunning,

ventricular arrhythmias and microvascular dysfunction, which are collectively

referred to as myocardial ischaemia-reperfusion injury (MI/R injury) [6,8,9].

As almost half of the total myocardial damage is caused by reperfusion injury,

understanding the mechanisms of this process is necessary for myocardial

pathobiology and clinical treatment.

During the process of ischaemia-reperfusion, the energetic status of a cell is

dynamically changed with nutrient deprivation and supply, which is related to

a starvation or cellular stress-induced catabolic process, autophagy. Autophagy

is a tightly regulated and conserved membrane trafficking process delivering

long-lived proteins or organelles to the lysosome for degradation [10]. More
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than thirty autophagy-related (ATG) proteins have been

characterized [11–13]. In the initiation stage of autophagosome

formation, a ubiquitin-activating E1-like enzyme, ATG7,

activates and promotes LC3 conjugating to the lipid/

membrane by cooperating with ATG3 (E2-like enzyme) and

ATG12–ATG5–ATG16 complex (E3-like enzyme). Then the

LC3-lipid/membrane works as a scaffold to drive membrane

expansion and double-membrane vesicle completion to form

autophagosome, and the inner proteins in the autophagosome

are eventually degraded once fused with lysosome [12].

Autophagy participates in many cellular processes, such as

cell survival, anti-ageing, adaptation to stress conditions, intra-

cellular quality control and biogenesis of organelles [11,14–17],

and plays an important role in the pathogenesis of human dis-

eases, in particular heart diseases [6,10,18]. For example,

impaired autophagy by knocking Atg5 out leads to cardiac

hypertrophy and contractile dysfunction [19]. However,

recent findings identified a paradoxical role of autophagy in

MI/R injury [6,20], and the precise mechanism of autophagy

regulating cardiac homeostasis remains elusive.

Stress fibres are contractile actomyosin-based bundles to

provide force for a number of vital cellular processes including

adhesion, migration and mechanotransduction [21,22]. Actin,

myosin, actin binding proteins (ABPs) and focal-adhesion-

associated proteins are the main components of stress fibres

[22]. Stress fibres are commonlyobserved in many CVDs includ-

ing cardiomyopathy, myocardial hypertrophy, as well as

cardiac remodelling after MI [23,24]. Many mutations in stress

fibre component proteins have been identified to be related

to CVDs, such as a-actinin2 (ACTN2), myopalladin (MYPN),

a-tropomyosin 1(TPM1) and so on [25,26]. Stress fibres could

also incorporatea-smooth muscle actin (aSMA) in cardiac fibro-

sis, allowing myofibroblasts to generate increased contractile

force on the matrix surrounding them [27,28]. Some stress

fibre component proteins were also found in MI/R injury;

however, their exact role is largely unknown.

Here, we found that cardiomyocyte-specific knockout of

Atg7 in mouse impaired autophagy process and caused

severe contractile dysfunction, myofibrillar disarray and

vacuolar cardiomyocytes. A negative regulator of cytoskeleton

organization, CLP36, was found to be accumulated in

Atg7-deficient cardiomyocytes. After ischaemia-reperfusion

treatment, the Atg7-deficient mice showed aggravated MI/R

injury with cardiac hypertrophy, contractile dysfunction,

myofibrillar disarray and severe cardiac fibrosis, and CLP36

was found to be accumulated in ischaemia-reperfusion treated

Atg7-deficient cardiomyocytes. Thus, our work reveals that

autophagy may protect cardiomyocytes from the MI/R

injury through the clearance of CLP36.
2. Results
2.1. Cardiomyocyte-specific knockout of Atg7 in mice
To determine the functional role of autophagy in cardiomyo-

cytes and MI/R injury, we generated temporally controlled

cardiomyocyte-specific Atg7-deficient mice by crossing mice

with a floxed Atg7 allele to MerCreMer transgenic mice,

which expresses the Cre recombinase in a tamoxifen-

inducible and cardiomyocyte-specific manner [29,30]. These

mice with both floxed Atg7 allele and MerCreMer recombi-

nase were named Atg7flox/flox;Cre. In Atg7flox/flox;Cre mice that
had been treated with tamoxifen for 7 days, we observed a

dramatic reduction in ATG7 protein levels in whole heart

homogenates (figure 1a). Consistent with a role for ATG7 in

autophagy [31], the protein level of membrane-associated

form LC3-II was decreased and the autophagic substrate

SQSTM1/p62 accumulated in Atg7-deficient cardiomyocytes

(figure 1a). Immunofluorescence analysis of LC3 in mouse

myocardium also showed that its punctate structures (repre-

senting autophagosomes) disappeared in tamoxifen-treated

Atg7flox/flox;Cre mice (figure 1b). Then, we performed immu-

nofluorescence analysis of SQSTM1 and LAMP2, a marker

of lysosome [32], and found that the SQSTM1 was accumulated

and could not be sorted into the lysosome in Atg7-deficient car-

diomyocytes compared with the control groups (figure 1c).

Although we have not got direct in vivo evidence, our results

suggest that the autophagic flux is impaired in Atg7-deficient

cardiomyocytes.

2.2. The knockout of Atg7 in cardiomyocytes causes
severe contractile dysfunction

To explore the role of autophagy in cardiomyocytes under base-

line conditions, we first performed echocardiographic analysis

of tamoxifen-treated Atg7flox/flox;Cre mice, and two types of car-

diac index were identified. One type (6/9) showed normal

physiological parameters, while the other (3/9) was abnormal

with severe contractile dysfunction compared with control

groups (figure 2a–f). Further, histology morphology detection

of hearts from examined mice was performed by hematoxylin

and eosin (H&E) staining, and Atg7-deficient hearts also exhib-

ited two types, defined above. Type I showed no obvious

abnormal structure in histology (i.e. no myofibrillar disarray

or cardiac fibrosis) but had tiny vacuoles in the cross-section

of cardiomyocytes (figure 2g). However, histology analysis of

type II displayed that the myofibre was disorganized and

larger vacuoles appeared in the cross-section of cardiomyocytes

(figure 2g), which corresponded to echocardiographic analysis

results. To further confirm it, transmission electron microscope

(TEM) analysis was performed, and we found some tiny or

larger vacuoles in type I and II Atg7-deficient hearts

(figure 2h), respectively. The ultrastructure of myofibre was

also disorganized in Atg7-deficient mouse hearts (figure 2h).

Thus, we conclude that ATG7 plays important roles in the

normal contraction of cardiomyocytes.

2.3. CLP36 is accumulated in Atg7-deficient
cardiomyocytes

As the cytoskeleton and cytoskeleton-related proteins in cardi-

omyocytes are essential to ensure proper cardiac function,

especially motility [33], we wondered whether the disruption

of autophagy-induced contractile dysfunction was related to

cytoskeleton regulation. Many studies regarding the relation-

ship between the cytoskeleton and autophagy focused on

autophagosome formation and transportation [34,35], but

few studies have investigated how autophagy modulates cyto-

skeletal organization. Our recent work found that autophagy

could promote the degradation of a negative cytoskeleton

organization regulator, CLP36, to regulate cytoskeletal organ-

ization during spermatogenesis [36]. So we detected whether

CLP36 might also be accumulated in Atg7-deficient cardio-

myocytes. First, we examined the CLP36 protein level in
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Figure 1. Cardiomyocyte-specific knockout of Atg7 in mice. (a) The ATG7 protein level was dramatically reduced and the autophagic flux was impaired in
cardiomyocyte-specific Atg7-deficient mouse hearts. Immunoblotting analysis of ATG7, SQSTM1 and LC3 were performed in vehicle or tamoxifen-treated Atg7-
flox/flox and Atg7flox/flox;Cre mouse hearts. GAPDH served as a loading control. (b) LC3 punctate structures disappeared in tamoxifen-treated Atg7flox/flox;Cre mouse
hearts. Immunofluorescence analysis using LC3 (green) was performed in vehicle or tamoxifen-treated Atg7flox/flox and Atg7flox/ flox;Cre mouse hearts. Nuclei
were stained with DAPI (blue). (c) SQSTM1 was accumulated and could not be sorted into the lysosome in cardiomyocyte-specific Atg7-deficient mouse
hearts. Immunofluorescence analysis using SQSTM1 (red) and LAMP2 (green) were performed in vehicle or tamoxifen-treated Atg7flox/flox, Atg7flox/flox;Cre mouse
hearts. Nuclei were stained with DAPI (blue).
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tamoxifen-treated Atg7flox/flox;Cre mouse hearts by immuno-

blotting, and found that CLP36 protein was dramatically

accumulated in Atg7-deficient mouse whole heart homo-

genates (figure 3a). To further confirm the accumulation of

CLP36, which resulted from abnormal protein degradation

but not the upregulated expression, we detected the relative

mRNA level of Clp36 in tamoxifen-treated Atg7flox/flox;Cre
mouse hearts, and found there was no significant difference

in mRNA level between tamoxifen-treated Atg7flox/flox;Cre and

control groups (figure 3b), suggesting that the elevated

CLP36 might be a result of the failure of its degradation.

Then, we performed immunofluorescence analysis of CLP36

in Atg7-deficient heart, and found that CLP36 was localized

on the Z-disc of the sarcomere and accumulated in Atg7-

deficient mice (figure 3b; electronic supplementary material,

figure S1). To further confirm the localization of CLP36, immu-

nofluorescence analysis of CLP36 and Z-disc localized protein

a-actinin was performed, and we found CLP36 indeed co-

localized with a-actinin (electronic supplementary material,

figure S2). As CLP36 could function as a cytoskeletal organiz-

ation scaffold and an adaptor for the recruitment of a-actinin

and palladin to form stress fibres [37], and as stress fibres are

related to cardiac dysfunction [23,24], we therefore speculated

whether the accumulated CLP36 enhanced the stress fibre
formation and influenced cardiomyocyte contractile function

in Atg7-deficient cardiomyocytes. To test this hypothesis,

we examined the a-actinin and palladin protein level by

immunoblotting and immunofluorescence in Atg7-deficient

cardiomyocytes. Both immunoblotting and immunofluores-

cence results showed that a-actinin and palladin were also

accumulated in Atg7-deficient cardiomyocytes compared

with control groups (figure 3d–f ), indicating the stress fibre for-

mation actually increased in Atg7-deficient mice. Together, all

these results indicate that ATG7 may participate in cardiomyo-

cyte contractile function maintenance through the clearance

of CLP36.

2.4. The cardiomyocyte-specific disruption of ATG7
causes CLP36 accumulation after myocardial
ischaemia-reperfusion treatment

To further examine the functional role of autophagy in MI/R

injury under equal initial states, type I Atg7-deficient

mice were selected to perform MI/R experiments, in which

mouse hearts were exposed to ischaemia (60 min) follo-

wed by reperfusion. First, we detected the autophagic

flux in tamoxifen-treated Atg7flox/flox;Cre mice after
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Figure 2. The knockout of Atg7 in cardiomyocytes causes severe contractile dysfunction. (a) Representative trans-thoracic M-mode echocardiograms recorded from the
parasternal short axis on the level of the papillary muscles of the left ventricle (LV) in each group. (b – f ) The parameters of echocardiographic measurements in groups
shown in (a). (b) LVDd, diastolic left ventricle internal dimension; (c) LVDs, systolic left ventricle internal dimension; (d ) FS, fractional shortening of left ventricle dimen-
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mice in each group. *p , 0.05 versus all other groups. (g) The histology of the heart from vehicle or tamoxifen-treated Atg7flox/flox, Atg7flox/flox;Cre mice using hema-
toxylin and eosin (H&E) staining. Arrows indicate disordered myofibre, triangles indicate vacuoles in the cross-section of cardiomyocytes. (h) The TEM analysis of the heart
from vehicle or tamoxifen-treated Atg7flox/flox, Atg7flox/flox;Cre mice. Asterisks indicate vacuoles in the cross-section of cardiomyocytes, triangles indicate disorganized
myofibre, M indicates mitochondria.
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ischaemia-reperfusion treatment, and found the LC3-II

reduced and the SQSTM1 accumulated (figure 4a) and LC3

punctate structures were disappeared in Atg7flox/flox;Cre mice
(figure 4b), suggesting that autophagic flux was impaired.

Then, we examined the protein level of CLP36 by immuno-

blotting and immunofluorescence analysis, and found it
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was also accumulated in ischaemia-reperfusion treated

Atg7-deficient mouse hearts, but no difference in its mRNA

level was found (figure 4a,c,d). Thus, after MI/R treatment,

the cardiomyocyte-specific knockout of Atg7 could also

impair the autophagic flux and cause CLP36 accumulation.

We then detected the stress fibre components in ischaemia-

reperfusion-treated Atg7-deficient mouse hearts, and found

that the a-actinin and palladin were accumulated in MI/R-

treated Atg7-deficient mouse heart compared with their

control groups (figure 4e–g). Therefore, we concluded that

cardiomyocyte-specific disruption of ATG7 causes CLP36
accumulation and enhances stress fibre formation after

MI/R treatment.

2.5. The cardiomyocyte-specific disruption of
ATG7 aggravates the myocardial
ischaemia-reperfusion injury

For further exploration of the influence of autophagy disrup-

tion after MI/R treatment, we performed echocardiographic

analysis of ischaemia-reperfusion-treated Atg7-deficient mice.
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hearts after ischaemia-reperfusion treatment. (g) Immunofluorescence analysis using phalloidin (green, labelled by FITC) and palladin (red) was performed in vehicle
or tamoxifen-treated Atg7flox/flox;Cre mouse hearts after ischaemia-reperfusion treatment. Nuclei were stained with DAPI (blue).
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We found that the diastolic left ventricle posterior wall thick-

ness of the Atg7-deficient mice was significantly increased

and their ejection fraction and fractional shortening of left

ventricle dimension were significantly decreased after ischae-

mia-reperfusion treatment (figure 5a–f), which indicated left
ventricular dilatation and severe contractile dysfunction in

ischaemia-reperfusion treated Atg7-deficient mice.

Next, we detected the histology morphology of hearts from

examined mice by H&E staining, and found that the myofibres

were disorganized and severe cardiac fibrosis appeared in
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ischaemia-reperfusion-treated Atg7-deficient mice (figure 6a).

To further confirm the severe cardiac fibrosis in ischaemia-

reperfusion-treated Atg7-deficient mice, we performed Sirius

red staining, which was used to observe fibrosis levels based

on the tight-binding of the stain sulfonic acid groups with

the basic groups of collagen fibres [38]. We found that

the area of cardiac fibrosis in ischaemia-reperfusion-treated

Atg7-deficient mice was larger compared with that of the

control group (figure 6b). Cardiomyocyte death is an initial

event responsible for activation of fibrogenic signals in

the myocardium [39], and the TEM analysis of ischaemia-

reperfusion-treated Atg7-deficient mice showed some large

vacuoles in the myocardium (figure 6c), suggesting that the

cardiac fibrosis might be associated with cardiomyocyte loss

in Atg7-deficient mice. In addition, we found that the sarco-

mere of ischaemia-reperfusion-treated Atg7-deficient mice

was disorganized (figure 6c). Thus, cardiomyocyte-specific

disruption of ATG7 aggravated the MI/R injury with cardiac

hypertrophy, contractile dysfunction, myofibrillar disarray

and severe cardiac fibrosis. As CLP36 was accumulated in

Atg7-deficient mice and could recruit a-actinin and palladin

to form stress fibres, and cardiac fibrosis was characterized

by the appearance of stress fibres [37,39], so the accumulation

of CLP36 might result in severe cardiac fibrosis, myofibrillar

disarray and contractile dysfunction. All these results indicate

that ATG7 might protect cardiomyocytes from the ischaemia-

reperfusion injury through the clearance of CLP36.
3. Discussion
Autophagy is a catabolic recycling pathway triggered by

various intra- or extracellular stimuli to maintain cellular

homeostasis [40]; it has been widely characterized in cardio-

myocytes, cardiac fibroblasts, endothelial cells and vascular

smooth muscle cells of the cardiovascular system [41].
During cardiac development, autophagy plays an essential

role in cardiac morphogenesis [42]. Under baseline conditions,

autophagy has a housekeeping role in maintaining cardiac

structure and cellular homeostasis in the heart [43]. Con-

ditional knockout of Atg5 in the heart causes a disruption in

autophagy, and results in cardiac hypertrophy and contractile

dysfunction [19]. The deficiency of lysosomal-associated

membrane protein-2 (LAMP-2), which causes a disruption in

the autophagosome–lysosome machinery, also leads to vacuo-

lar myopathy, cardiac hypertrophy and severe cardiac

dysfunction, which is known as Danon’s disease [44,45]. We

specifically disrupted ATG7 in cardiomyocytes, and found

two types of cardiac function index and histological

morphology. Type I showed normal cardiac physiological par-

ameters, but had tiny vacuoles in the cross-section of

cardiomyocytes; Type II exhibited severe contractile dysfunc-

tion and myofibrillar disarray, and mass vacuoles appeared

in the cross-section of cardiomyocytes, which is in agreement

with Atg5 and LAMP-2-deficient mice [19,44,45]. As the pheno-

type of type II is more severe than type I, it was similar to the

different pathogenic stages of cardiomyopathy. The difference

between these two types may be caused by the knockout effi-

ciency due to mosaic-expressed Cre recombinase. On the

other hand, it has been reported that LAMP-2-deficient mice

showed more severe symptoms than Atg5 and Atg7-deficient

mice [19,44,45]. As ATG5 and ATG7 participate in the canonical

autophagy pathway and LAMP2 is important to the autopha-

gosome–lysosome machinery [31,44,46], the non-canonical

autophagy pathway may also be involved in maintaining car-

diac structure and cellular homeostasis in the heart, and this

point still requires further studies in the future.

As autophagy is upregulated in response to stresses such as

nutrient deprivation, hypoxia and infection, many resear-

ches focus on the role of autophagy during cardiovascular

stress, including starvation, chronic ischaemia, infarction–

reperfusion injury, pressure overload, cardiomyopathy and
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heart failure [43]. However, autophagy functioning as a pro-

survival or pro-death programme during heart disease is still

controversial [43,47], especially in ischaemia-reperfusion

injury [48]. Beneficial functions of autophagy during I/R

could be attributed to ATP generation, protein quality control

and the clearance of damaged organelles, while the detrimen-

tal effect of autophagy is excessive induction of autophagy-

induced cardiomyocyte death [47,48]. However, Ma et al.
found autophagosome clearance was markedly impaired with

reperfusion, which is detrimental to cardiomyocyte survival

during reperfusion. It indicates ‘impaired’ but not ‘excessive’

autophagy leads to cardiomyocyte death during ischaemia-

reperfusion injury [49,50]. Recently, hydrogen sulfide,

valsartan, small molecule HDAC inhibitor and intermittent
fasting were also found to protect against MI/R injury by acti-

vating autophagic flux [51–54]. Here, we find that the knockout

of Atg7 in cardiomyocytes aggravates the injury with cardiac

hypertrophy, contractile dysfunction, myofibrillar disarray

and severe cardiac fibrosis, which also indicate that autophagy

is essential for protecting cardiomyocytes from MI/R injury.

Although there are a large amount of studies that empha-

size the crucial role of autophagy in cardiomyocytes under

baseline conditions or stress, the precise mechanism of autop-

hagy in cardiomyopathy remains elusive. The cytoskeleton

and cytoskeleton-related proteins in cardiomyocytes are essen-

tial to ensure proper cardiac function, and cytoskeletal changes

are an important cause of contractile dysfunction and cardiac

remodelling [33,55]. So, we speculated whether the disruption
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of autophagy-induced cardiac hypertrophy and contractile

dysfunction were related to cytoskeleton regulation. While

most studies regarding the relationship between cytoskeleton

and autophagy have focused on the functional role of the

cytoskeleton in autophagosome formation and transportation

[34,35], few studies have investigated how autophagy regulates

cytoskeletal organization. The ciliopathy protein OFD1 (oral-

facial-digital syndrome 1) and mechanically damaged cytoske-

leton proteins were found to be degraded through autophagy

[15,56]. Recently, we found autophagy could regulate cytoske-

leton organization via degradation of a negative regulator of

cytoskeleton organization, CLP36, to facilitate the renovation

of spermatids and ectoplasmic specialization assembly in

Sertoli cells [36]. CLP36 is a member of the PDZ and LIM

protein family, which contains an N-terminal PDZ domain

and a C-terminal LIM domain [57]. It is expressed throughout

the developing heart and interacts with FHL1 (four and a half

LIM domains protein 1) in adult cardiomyocytes, which has

been implicated in muscle development, structural mainten-

ance and signalling [58–60]. CLP36 could also function as a

cytoskeletal organization scaffold and an adaptor for the

recruitment of a-actinin-1 and palladin to form stress fibres

[37]. Ridley & Hall [61] showed that once Swiss 3T3 fibroblasts

were starved by serum deprivation for a few hours, the

pre-existing stress fibres and focal adhesions disappeared,

suggesting that they might be degraded by the autophagy–

lysosome pathway. In this study, we find that CLP36 is

also accumulated in Atg7-deficient cardiomyocytes, which

indicates that autophagy may participate in maintaining

cardiomyocytes’ contractile function by regulating CLP36.

Stress fibres are commonly observed in many CVDs [23,24],

and many mutations in stress fibre component proteins have

been identified to be related to CVDs [25,26]. Many stress

fibre component proteins are localized on Z-disc, which reveals

cross-linked filament arrays that transmit tension and house

myriads of proteins with diverse functions. Mutations in the

genes for these proteins often lead to muscle diseases and car-

diomyopathies [62]. The CLP36 accumulated and localized on

the Z-disc, which might be recruited by or recruit other stress

fibre component protein, such as palladin or a-actinin

(figure 3d–f and 4e–g; electronic supplementary material,

figures S1 and S2). The accumulation of the stress fibre on the

Z-disc may induce sarcomere disorganization and influence

the contractility of cardiomyocytes (figures 5 and 6c).

Cardiac fibrosis is characterized by net accumulation of

extracellular matrix in the myocardium, and contributes to

both systolic and diastolic dysfunction in many cardiac

pathophysiologic conditions [63]. Cardiomyocyte death or

injurious stimuli (such as pressure overload or myocardial

inflammation) is the initial event responsible for activation

of fibrogenic signals in the myocardium. In all conditions

associated with cardiac fibrosis, fibroblast transdifferentiation

into secretory and contractile myofibroblasts is the key cellu-

lar event that drives the fibrotic response [39]. At the earliest

stages of reparative or fibrotic responses, myofibroblasts exhi-

bit stress fibres composed of cytoplasmic actins [64]. The

accumulation of CLP36 and some other stress fibre com-

ponents in Atg7-deficient mice after ischaemia-reperfusion

treatment may also be related to severe cardiac fibrosis. On

the other hand, severe cardiac fibrosis in Atg7-deficient

mice also indicates that autophagy is necessary for protect-

ing against cardiomyocyte death during MI/R. These

possibilities still require further studies in the future.
4. Material and methods
4.1. Animals
The Atg7flox/flox mouse strain (RBRC02759) [29] was purchased

from the RIKEN BioResource Center with permission from Dr

Masaaki Komatsu. The Atg7flox/flox MERCreMER mice were

bred from Atg7flox/flox mice and MERCreMER mice [30]. We

administered an intraperitoneal injection of 0.225 mg g21

(body weight) of tamoxifen (Sigma, T5648) or vehicle to

eight-week-old mice once per day for 3 days. The surgical pro-

cedures were performed as described in previous studies [65].

Briefly, after anaesthetizing 8–10-week-old mice with chloral

hydrate (400 mg kg21 body weight, i.p.), we cannulated the

trachea of mice with a polyethylene tube connected to a respir-

ator with a tidal volume of 0.6 ml (110 breaths min21). The

heart was manually exposed through a small incision, and a

slipknot was made around the left anterior descending coron-

ary artery at 2–3 mm from its origin using a 7–0 silk suture.

After 60 min of ischaemia, the slipknot was released, and

then myocardium was reperfused. Mice that fully recovered

from the surgical procedure were returned to standard

animal housing conditions.
4.2. Antibodies
The mouse anti-ATG7 monoclonal antibody (SAB4200304),

mouse anti-a-actinin monoclonal antibody (A5044) and

rabbit anti-LC3B polyclonal antibody (L7543) were purchased

from Sigma-Aldrich (St Louis, MO, USA). The rabbit anti-LC3

polyclonal antibody (ab128025) and rat anti-LAMP2 mono-

clonal antibody (ab13524) for immunofluorescence were

purchased from Abcam (Cambridge, MA, USA). The rabbit

anti-SQSTM1/p62 polyclonal antibody (5114) was purchased

from Cell Signaling Technology (Danvers, MA, USA). The

rabbit anti-CLP36 antibody (11674-1-AP) was purchased

from Proteintech Group (Chicago, IL, USA). The mouse anti-

palladin monoclonal antibody (NBP1-25959) was purchased

from Novus Biologicals (Littleton, CO, USA). The GAPDH

(ab1019t) antibody was purchased from Bo Ao Rui Jing (Beij-

ing, China). The goat anti-rabbit TRITC, goat anti-rabbit FITC

and goat anti-mouse FITC-conjugated secondary antibodies

were purchased from Zhong Shan Jin Qiao (Beijing, China).

The FITC-phalloidin (40735ES75) was purchased from

YEASEN (Shanghai, China). The Alexa Fluor 680-conjugated

goat anti-mouse and the Alexa Fluor 680-conjugated goat

anti-rabbit secondary antibodies for immunoblotting were

purchased from Invitrogen (Carlsbad, CA, USA).
4.3. Immunoblotting
Heart extracts were prepared in cold RIPA-like buffer (25 mM

Tris HCl, pH 7.6, 150 mM NaCl, 2 mM EDTA, 1% NP-40, 1%

sodium deoxycholate, 0.1% sodium dodecyl sulfate, 1 mM phe-

nylmethylsulfonyl fluoride and a protein inhibitor cocktail;

04693132001, Roche Diagnostics, Basel, Switzerland) for

30 min on ice after sonication. The homogenates were centri-

fuged at 12 000 r.p.m. for 15 min at 48, and the protein

concentrations were determined by the Bio-Rad protein assay.

The protein lysates (approx. 25 mg) were electrophoresced

under reducing conditions in SDS-PAGE gels and transferred

onto nitrocellulose membranes. After incubating in primary
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antibody, immunoblotting was performed using a fluorescent

dye-labelled secondary antibody (Invitrogen), and the blots

were scanned using an Odyssey infrared imager.

4.4. Immunofluorescence
Hearts were dissected from mutant and control mice immedi-

ately after euthanasia, fixed in 4% PFA (P1110, Solarbio,

Beijing, China) at room temperature for up to 24 h, stored in

70% (vol/vol) ethanol, and embedded in paraffin. The 5 mm

sections were prepared and mounted on glass slides. After

deparaffinization, sections were boiled for 15 min in sodium

citrate buffer for antigen retrieval. For phalloidin and CLP36,

hearts were fixed in 4% PFA at room temperature for 4 h and

dehydrated in 30% sucrose. Then, the tissue was embedded

in optimum cutting temperature compound (OCT, 4583,

Tissue-Tek, Torrance, CA, USA) and cut into 6 mm sections

using a microtome-cryostat (Leica CM1950). After washing

with PBS three times and blocking with 5% bovine serum albu-

min (BSA), the primary antibody was added to the sections

and incubated at 48C overnight, followed by incubation with

the secondary antibody. The nuclei were stained with 40,6-

diamidino-2-phenylindole (DAPI). The images were taken

immediately using a TCS SP8 microscope (Leica) and an

Eclipse Ti-S inverted microscope (Nikon).

4.5. Echocardiography
The echocardiography analysis in animals was performed as

described before [17]. Images were obtained using Vevo 770

(Visualsonics, CA, USA) in M-mode with a 12 MHz microp-

robe. The mice were lightly anaesthetized using 1.5%

isoflurane and restrained on a heated imaging table, and hairs

on the chest were removed. Images were obtained from

M-mode of the parasternal short-axis view. All values were

averaged over five consecutive cardiac cycles and measure-

ments were analysed by two independent researchers blinded

to the treatment status.

4.6. Tissue collection and histological analysis
Hearts from at least three mice for each genotype were dis-

sected immediately after euthanasia, fixed in 4% (mass/vol)

paraformaldehyde (PFA) for up to 24 h, stored in 70% (vol/

vol) ethanol and embedded in paraffin. The 5 mm sections

were prepared and mounted on glass slides. After deparaffi-

nization, slides were stained with H&E for histological

analysis and Sirius red for cardiac fibrosis analysis.
4.7. Real-time quantitative PCR (qPCR) analyses
Total RNAs were isolated from mice hearts as previously

described [66]. cDNA was synthesized by using the Prime-

ScriptTM RT Reagent Kit (TaKaRa, RR037A). cDNA (10 ng)

mix was added to KAPA SYBR FAST Master Mix (KAPA Bio-

systems, USA) with specific primer sets (Clp36 forward: 50-CC

ACATCCTTCCTGGTTCTG30; and reverse: 50-TGGTGATCCC

TCAGCTT CAC-30; Gapdh forward: 50- GGTGGTGCTAAGC

GTGTTAT-30; and reverse 50-ACCTCTGT CATCTCTCCA

CA-30). The PCR was carried out with the Roche Light

Cycler 480II System and the results were analysed using the

LightCycle480SW 1.5.1.
4.8. Transmission electron microscopy
The mouse hearts were dissected and fixed with 2.5% glutaral-

dehyde and 2% PFA in 0.2 M cacodylate buffer overnight. The

tissues were immersed in 1% OsO4 in 0.2 M cacodylate buffer

for 1 h at 48C. Then, the samples were dehydrated through a

graded ethanol series and embedded in resin. Ultrathin sec-

tions were cut on an ultramicrotome, stained with uranyl

acetate and lead citrate, and observed using a JEM-1400 TEM.
4.9. Statistical analysis
All data are presented as the mean+ s.e.m. The statistical sig-

nificance of the differences between the mean values for the

different genotypes was measured by Student’s t-test with a

paired, two-tailed distribution. The data were considered

significant when the p-value was less than 0.05 (*).
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