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Clinical-experimental considerations and an approach to understanding the autonomic

basis of improved surgical outcomes using Perioperative Music Medicine (PMM) are

reviewed. Combined surgical, psycho-physiological, and experimental perspectives on

Music Medicine (MM) and its relationship to autonomic nervous system (ANS) function

are discussed. Considerations are given to the inter-related perioperative effects of MM

on ANS, pain, and underlying vagal and other neural circuits involved in emotional

regulation and dysregulation. Many surgical procedures are associated with significant

pain, which is routinely treated with post-operative opioid medications, which cause

detrimental side effects and delay recovery. Surgical trauma shifts the sympathetic ANS

to a sustained activation impairing physiological homeostasis and causing psychological

stress, as well as metabolic and immune dysfunction that contribute to postoperative

mortality and morbidity. In this article, we propose a plan to operationalize the study of

mechanisms mediating the effects of MM in perioperative settings of orthopedic surgery.

These studies will be critical for the implementation of PMM as a routine clinical practice

and to determine the potential limitations of MM in specific cohorts of patients and how

to improve the treatment.

Keywords: perioperative, music medicine, stress, Heart Rate Variability, autonomic nervous system, vagotomy,
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CLINICAL BENEFITS OF PERIOPERATIVE MUSIC MEDICINE

Surgery is an “indivisible, indispensable part of health care” around the world (1, 2)
but it causes significant physiologic stress (3, 4). Neural (autonomic) and humoral
(circulating or hormonal) mechanisms primarily involve the sympathetic nervous system
(SNS) adrenergic and parasympathetic nervous system (PNS) cholinergic branches of
the autonomic nervous system (ANS). Current perioperative interventions used to
attenuate these stress responses are primarily pharmacologic (anesthetic and analgesic
medications) that are associated with a variety of complications (5). The current epidemic
of opioid overuse in the United States is fueled in part by excessive perioperative
prescriptions around both minor and major surgery (6, 7). Non-pharmacologic
interventions that complement and integrate with pharmacologic interventions in
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the perioperative setting are thus of critical importance to both
decrease psychophysiological stress and decrease opioid use.
Perioperative Music Medicine (PMM), defined as listening to
pre-recordedmusic around surgery (8), is an efficacious, safe, and
low-cost non-pharmacologic intervention that can be delivered
at the point-of-care and reduce opioid use (9–11).

PERIOPERATIVE MUSIC MEDICINE
TRANSLATIONAL RESEARCH
CONTINUUM

While the specific mechanisms of PMM remain unclear,
preclinical (T0) studies suggest that the auditory pathway
must be intact for an effect (Figure 1). In rodent models,
physiological effects include a shift from sympathetic toward
more parasympathetic autonomic activity, suppression of stress
hormones, lowering heart rate, blood pressure, and anxiety, but
increasing immune functions (12). In human volunteers (T1
studies) and clinical trial participants (T2 studies), there is a
strong body of evidence supporting the efficacy of PMM when
compared to ambient noise, ear plugs, or headphones with noise
cancellation or white noise (9–11). This translational strategy has
been critical in implementing the use of PMM at the Durham
VA hospital for the treatment of veterans in North Carolina
(Figure 2). In recent meta-analyses of randomized controlled
trials (RCTs), PMM was estimated to cause clinically important
reduction in pain and anxiety (∼10 and 20mm, respectively, on
the 100mm visual analog scale) (9–11), and decreased opioid use
(∼10mg lower in morphine equivalents over three postoperative
days) (11) (Figure 2). In this section, we briefly review the clinical

FIGURE 1 | Perioperative Music Medicine (PMM) translational research continuum. Schematic diagram of translational research on PMM for the implementation of

new more effective treatments based on mechanistic studies.

benefits of PMM on cognitive and affective pathways, as well as
the favorable modulation of the ANS and implementation.

PMM Acts on Cognitive and Affective
Pathways
Noise contributes to adverse health outcomes in various settings,
and it is a significant stressor in operating rooms (ORs) with an
average intensity between 51 to 75 dB (13). Highest noise levels
are found in the ORs in which orthopedic surgery is performed
(14). Ear plugs and noise canceling headphones can therefore
have benefits, especially around joint replacement surgery (13).
Musical activation of the auditory system has been shown to
inhibit pain pathways beyond noise cancellation effects (15).
Consistent withmodern theories of pain (16), PMMhas cognitive
effects impacting both intensity and quality of pain (9–11), and
PMM also lowers anxiety (on average by 5.72 units vs. standard
care, when measured by the State Trait Anxiety Index) (17) in
both adult and pediatric populations (18). Perioperative Music
Medicine decreased pinprick pain, repeated (conditioned) pain
stimulus, and also increased the threshold for pressure pain (19).
As a distracting stimulus it shifts attention away from competing
noxious stimuli (20). Perioperative Music Medicine is especially
effective in patients with depression (21), increasing emotional
activity centered in the limbic system of the brain which feeds
into the common pain pathways (18), produces endogenous
opioids (18) and oxytocin (18, 22) as well as decreases cortisol
(22) and catecholamines (22, 23). Thus, PMM may work well
in the awake patient. Benefits may be greater when PMM is
self-selected (24), because the way in which patients cognitively
engage with the music is different when patients choose the type
of music.
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FIGURE 2 | The evidence to practice gap in implementing PMM practice. Schematic representation of the translational strategy from evidence to practice to

implement the use PMM into routine clinical practice in orthopedic surgery at the Durham VA Hospital.

PMM Acts on the Autonomic Nervous
System
There is a large body of research on the effects of music on
the ANS in healthy subjects, and findings include significant
reductions in heart rate (especially when listening to soft
music) (25) in both conscious and unconscious volunteers (26).
There is now strong evidence that hearing is perceptive during
general anesthesia (27), and auditory stimuli—including music
under general anesthesia—could modulate the neurohormonal
response to surgery. Cortical auditory evoked responses are
not abolished by inhalational anesthetics at the concentrations
used for surgery (28). This provides a basis to understand
the clinical studies where PMM under general anesthesia
decreased postoperative pain, analgesic use, anxiety, respiratory
rate, blood pressure, cortisol levels, postoperative nausea, and
vomiting (9–11, 29).

How Heart Rate Variability (HRV) is measured and what it
represents is discussed in the next section of this article, but
evidence regarding the effects of PMM on HRV is inconsistent
(25). While it is well-established that HRV decreases during
anesthesia (30, 31) and that decreased HRV is associated with
greater morbidity and mortality (32), it is not known whether
PMM has clinical benefits when changes in HRV are invoked.
Since HRV around surgery may aid in evaluation of the
perioperative nociception-analgesia balance in both adults and
children (32), the effects of PMM may be viewed through the
lens of changes in HRV. In other words, the causal pathway from
PMM under general or spinal anesthesia to clinical benefits may
go through modulation of ANS activity as reflected in changes
in the HRV. The last section proposes an experimental setup

where HRV is measured throughout the perioperative experience
(under general or spinal anesthesia during joint replacement
surgery) with subjects randomly assigned to receive or not PMM.
We hypothesize that clinical benefits (less pain, anxiety, and
medication use) of PMM will depend on its potential to increase
the vagal tone and HRV. Our hypothesis is that a decreased
HRV could signal a surgery-induced sympathetic stress whereas
an increased HRV could signal a parasympathetic resilience to
surgical stress. Our hypothesis is that benefits of PMMon surgical
outcomes are accompanied by increased HRV, indicating that
the effect resides in resilience to surgical trauma due to reduced
stress responses.

PMM Can Be Implemented at the
Point-of-Care
For patients to broadly experience the clinical benefits of PMM,
it has to be adopted with fidelity and become a part of the
local “culture.” We recently conducted (T3) research to translate
evidence (9–11) into routine delivery of PMM to patients in
our daily clinical practice (33). Implementation of PMM was
accelerated by the need to respond to the opioid epidemic, and
by the relative advantage it offered over other non-pharmacologic
interventions including mindfulness, biofeedback, acupuncture,
Yoga, and Tai Chi (33). Perioperative Music Medicine can be
adapted to the local context and the protocol for PMM can be
refined in iterative cycles on a small-scale. Provider credentialing
is not required (as in the case of acupuncture) and patient
training is also not required (as in biofeedback, Yoga, and Tai
Chi). After assessing organizational readiness for implementation
and identifying local champions (34, 35), the capital investment
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to deploy PMM ismodest with the development of playlists based
on local patient preferences, purchase of digital music players
and covers (for infection control), and extracting data already
being collected for clinical purposes (pain scores, medication use,
satisfaction scores). Perioperative Music Medicine was welcomed
as an exciting complement to opioid and non-opioid analgesia
in the perioperative period, and is currently sustained with
moderate penetration (such that over two-thirds of the patients
who want to receive this intervention actually get it) (33).

Further research is warranted because a path to delivery at the
bedside already exists. In the next two sections we review ANS
responding to psychophysiological stress and HRV analyses, and
the last section proposes combining perioperative clinical with a
controlled experimental approach to uncover the mechanisms by
which PMM attenuates stress and improves surgical outcomes.

MUSIC MEDICINE AND THE ANS

Whereas, Music Therapy (MT) is primarily a cognitive
rehabilitation method involving a therapist (36–38), Music
Medicine (MM) is the delivery of prerecorded music through
headphones, musical pillows, or background sound systems as a
treatment for clinical disorders, including peri-operative surgical
procedures. In our view, music is the active component that
accounts for the effectiveness of both approaches, and the two
procedures share much in common for disease management.
Meta-analyses of RCTs of MM and MT (vs. either no music,
white noise, undisturbed bed rest, or usual care in various
pain conditions) found that the reduction in pain, anxiety, and
opioid use exceeded minimum clinically important differences
(39, 40). Surprisingly, and despite the evidence, MM is not
widely used. We propose that the central mechanism underlying
the benefit of PMM, and MM in general, is the enhancing
effect the intervention has on emotional regulation mediated
through ANS homeostasis, which can be indexed by HRV. Our
overall hypothesis is that MM reduces clinical morbidity by
decreasing sympathetic activation and preserving homeostasis
of stress metabolism and immune function via strengthening
parasympathetic cardiac cholinergic output from the myelinated
neurons in the nucleus ambiguous of the vagus nerve. This
strengthening of parasympathetic cardiac cholinergic output
(“vagal tone”) can be indexed quantitatively by changes in HRV.

Autonomic Nervous System Stress and
Heart Rate Variability
Under normal stress, ANS cardiac control reflects an adaptive
level of interplay between the PNS and SNS. The PNS produces
cardiac deceleration (“rest and digest”) via myelinated vagal
nerve (CNX) cholinergic output from nucleus ambiguous (also
referred to as the “ventral vagal complex”) (41) onto the
heart. Acetylcholine (ACh) released by ventral vagal stimulation
reduces heart rate by activating the M2 muscarinic receptors
(M2R) that, in turn, opens the ACh-activated potassium channel
to slow the firing of the pacemaker cells in the sinoatrial (SA)
node (42, 43). The right vagus nerve primarily innervates the SA
node and slows its pacemaker whereas the left vagus innervates

the AV (atrioventricular) node and slows its conduction of the
cardiac impulse to the bundle, but the ventricular myocardium
is sparsely innervated by vagal efferent signals (44). The SNS
produces cardiac acceleration (“fight or flight”) as the individual
orients in the social and physical environment (45). Sympathetic
efferent nerve endings are present in the SA node and throughout
the atria and ventricles (44). In simplified terms, the interplay
of the two branches of the ANS allows adaptation to normal
stress in the face of everyday challenges by SNS signaling to
hypothalamic-pituitary-adrenal (HPA) axis leading to release of
corticosteroids (cortisol in humans, corticosterone in rodents)
and pro-inflammatory factors from the adrenal gland (46, 47).
Adrenal glucocorticoid release is regulated by a negative feedback
signal to hippocampal glucocorticoid receptors that shuts off
stress responding and the corticosteroid and pro-inflammatory
neuromodulators when the stress ends (48).

As previously mentioned, the status of dynamic sympatho-
vagal ANS function can be indexed in real time with HRV
(49). Heart Rate Variability is basically defined as quantitative
analysis of variation in the time interval between heartbeats
(interbeat interval, IBI). Heart Rate Variability is an indicator of
the magnitude and pattern of changes in inter-beat intervals. The
change in successive IBI’s (standard deviation of the normal-to-
normal pulse, SDNN) in a normal individual is typically in the
range of 40–60ms (50). Thus, HRV can be measured so long
as the pulse recording device can sample at a rate ≥1,000Hz
(which corresponds to measurement of a change in IBI of 1ms).
A recording of IBI’s can be reported with a number of different
variables (49). Time domain variables are direct calculations
based on IBI’s; frequency domain variables are produced by a
Fast Fourier Transform of the IBI time series to yield a power
spectrum. In general, lower HRV values indicate SNS dominance
while higher HRV values indicate a shift to PNS dominance (49).

However, the simple definition of HRV as the pattern of
variation between consecutive heartbeats belies the complexity,
meaning, and significance of the many different measures
of HRV (51) and so there is a potential for apophenia—
incorrect conclusions or excessive, unfounded extrapolation
(52)—that must be guarded against. Nonetheless, carefully
applied quantitative analysis of IBI data can be used to
index fundamental systemic clinical physiological processes
(53). Because there are numerous methods of analyzing IBI
data as various HRV indices [time-domain, frequency-domain,
geometric, non-linear, and fractal/complexity (49, 50, 54, 55)],
caution must be taken in the selection of the HRV analyses used
in any particular context.

Healthy HRV contains a regular pattern of increasing
and decreasing IBIs between consecutive beats that increases
HRV, while unhealthy HRV is relatively low when little
variation between IBIs or random, unorganized differences
between consecutive beats exists (50). The rhythm of cardiac
acceleration–deceleration is linked to inhalation–exhalation of
the respiratory cycle (inhale, cardiac acceleration; exhale, cardiac
deceleration), called respiratory sinus arrhythmia (RSA). The
regular respiratory cycle-related of increasing and decreasing IBIs
approaches a sinusoidal pattern. Slow deep breathing (around
six breaths per min) is called resonance frequency breathing
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because at that frequency the amplitude of highest to lowest
IBI over the respiratory cycle reaches a maximum due to inputs
from the baro-receptor and vasomotor reflex maintaining blood
pressure homeostasis. Low HRV is the single most accurate
clinical predictor of mortality after cardiac events, especially in
the elderly (56–59). Current studies reveal that relatively low
HRV is also related to several chronic physical illnesses (60),
stress (61), and certain forms of mental disorder (62–65), while
relatively high HRV is related to optimal physical (66, 67), and
cognitive (68–70) performance.

Chronic Pain, Chronic Stress, and HRV Are
Inter-related
The sensation of acute nociceptive pain is due to injury to
peripheral sub-dermal pain fiber endings, primarily C and Aδ

fibers (71). C fiber pain transmission is mediated by the ANS
(72). When acute nociceptive pain becomes chronic, central pain
sensitization often occurs (73). Chronic HPA stress responding
due to chronic nociceptive pain interacts with ANS cardiac
control and produces persistent sympathetic activation (74).
When central pain sensitization occurs, previously sub-threshold
synaptic inputs to nociceptive neurons augment action potential
output and thus chronic sensitized pain reflects additional
contribution from dysregulated CNS and ANS function to the
experience of pain (75). However, it is important to note that
nociceptive pain that persists after resolution of the initial insult
to nociceptive pain fibers cannot be said to be entirely uncoupled
from the nociceptive receptors. Sensitized chronic pain states in
which tissue inflammation or pathology is not readily apparent
(for example, fibromyalgia, irritable bowel syndrome, painful
bladder syndrome, or migraine) occur despite the absence of a
pathobiological explanation, implicating unresolved nociceptor
sensitization in addition to CNS and ANS contributions (76).

Stress from continual pain creates persistent hyperarousal
of SNS, known as HPA overdrive (77–79). Hypothalamic-
pituitary-adrenal overdrive, such as also arises from social
and environmental chronic stress, increases glucocorticoid
signaling from the adrenal cortex that deregulates the negative
feedback signal to shut off stress, down-regulates hippocampal
glucocorticoid receptor expression, and ends the normal negative
feedback tampering the stress response (80). Chronic sensitized
pain is also associated with inhibition of descending cortical pain
modulation by periaqueductal gray, rostroventromedial medulla,
and serotonergic and adregeneric euromodulators (“nociceptive
braking”), producing further proliferation of peripheral pro-
inflammatory cytokines (81). Thus, pain with chronic stress
responding becomes a self-reinforcing cycle, causing the pain
threshold to be lowered, and a neuro-modulator picture
that is equivalent to depression (77, 78, 82–84). Pain is
thus an internal stressor that first triggers a long-term tonic
response of the hypothalamic-pituitary adrenal system when
pain becomes chronic. Physiological activation leads to both
persistent sympathetic arousal lowering HRV (50). Numerous
studies have confirmed that HRV variables are lowered by
chronic pain (85–94). In addition to chronic stress from chronic
pain signals that originate in nociceptive nerve fiber lesions,

FIGURE 3 | Multifactorial regulation of HRV by music medicine. Proposed

Model for Music Medicine to improve mood management and HRV via

emotional regulation integrating the regulation of pain, inflammation, anxiety,

and depression.

psychological catastrophizing, and unremitting fear rumination
further augment the prolonged stress response and are core
aspects of chronic pain sensitization (95, 96).

HRV, Chronic Pain, and Chronic Stress Are
Associated With Inflammation, Depression,
and Anxiety
Inflammation is commonly known to accompany the stress
reaction, and the association of HRV with persistent sympathetic
arousal typical of stress responding has been well-characterized
(74, 77). There are several studies showing that HRV and
inflammation consistently have an inverse relationship, depicting
that inflammation is associated with SNS arousal (97–104).

The observation of decreased HRV associated with depression
and anxiety has been widely reported in the literature (105–109)
(Figure 3). Findings of increased occurrence of cardio-vascular
diseases among patients with Major Depressive Disorder have
drawn attention to autonomic regulation of the heart rate as
a potential pathophysiological mechanism in depression (110).
Dysregulation of autonomic cardiac control resulting in lowered
HRV is clearly associated with anxiety and traumatic stress
(111, 112). State, trait, and clinical expressions of anxiety are
considered a restricted response range across biological and
behavioral functioning reflecting diminished vagal tone and
thereby HRV (62). Thus, chronic pain is readily observable by
lowered HRV values because chronic pain, chronic stress, and
HRV are inter-related and associated with catecholamines (113),
inflammatory mediators (114), depression, and anxiety (77, 115).

Many Different Procedures Increase HRV
Rhythmic stimulation around the 0.1Hz frequency from a
surprising array of different sources have been shown to have
cardiovascular (CV) effects. Rhythmic stimulation that increases
HRV includes: instrumental autotraining (116), paced breathing
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(HRVB) (49, 117–120), emotionally salient pictures (121),
chanting and toning (122, 123), prayer and yoga mantra (124),
poetry (125–127), skeletal muscle tension (128, 129), orthostatic
tilt (130, 131), thermal stimulation (132), and neck suction
(133). Perhaps the earliest published study of increased HRV
due to biofeedback was authored by Vaschillo et al. (116), who
observed that Russian cosmonauts could control their breathing
while viewing a computer display of their breathing rhythm and
heart rate oscillations until their breathing became synchronized
with their heart rate oscillations. Although Vaschillo termed
this process “instrumental autotraining,” the cosmonauts were
engaging in a form of biofeedback by controlling their breath
cycle to match a computer screen-presented display of heart rate
oscillation. Paced slow breathing is very effective at increasing
HRV (134–137) and appears to be the most widely used method
for increasing heart rate oscillations and associated HRV (138,
139). Current techniques of HRV biofeedback (HRVB) are based
on coaching (140) along with the use of a breath pacer (140) in
addition to visual display feedback of heart rate oscillation and
respiratory cycles.

Increased heart rate oscillations due to paced slow breathing,
which is trained in HRVB results from synchronization, or
phase-locking, of interacting cycles among physiological systems
controlling respiration, heart rate, arterial blood pressure, and
vasomotor tone, which increase heart rate oscillations and HRV
primarily through the baroreceptor reflex (128, 141–143). As a
result, the maximum to minimum IBI during a single breath
cycle—a basic definition of HRV (50)—is amplified. Vagal
afferent signaling from heart rate to cortex (141, 144–147) and
a neural pathway based on delta oscillation reduction from
prefrontal cortex to vagus (148) influencing vagal efferent signals
back to the heart are also recognized.

IncreasedHRV reflects dampenedHPA hyperarousal, calming
of the SNS, stimulation of PNS activity, and lowered heart rate,
resulting in reduced stress responding. The understanding that
heart rate reflects bidirectional heart-brain processes involved in
emotional arousal is hardly recent and was put forth by early
modern life scientists French physiologist Claude Bernard in
1867 (149) and Charles Darwin in 1872 (150). The relationship
of HRV to environmental response and adaptation recently has
been re-affirmed (140):

“. . . the complex mix of physiological, behavioral, emotional, and

cognitive processes involved in self-regulation and adaptability

might have a common basis such that indices of HRV would be

associated with all of these various forms of regulation (p. 82). We

have proposed that the relationship between HRV and important

physiological, cognitive, and emotional regulation functions is

due to the ability of HRV to index activity in a flexible network

of neural structures that is dynamically organized in response to

environmental challenges.” (p. 86)

Underscoring this relationship between HRV and improved
adaptation and stress responding is evidence that a number
of psychotherapies that are based on self-regulation of
thoughts and emotions that improve well-being—such
as Polyvagal-informed Therapy (151, 152), Compassion

Meditation (153), Mindfulness (154–156), Acceptance and
Commitment (157), Cognitive Behavior Therapy (158),
Forgiveness (159), and Creative Arts (160)—when applied
without incorporation of additional training in slow paced
breathing, have also been shown to be accompanied by increases
in HRV.

Emotional Regulation Is Improved by
Increased HRV
Emotional regulation is the ability to exert control over one’s
own emotional state, for example controlling thoughts during
a challenging situation to reduce anger or anxiety, managing
signs of sadness or fear, or focusing on reasons to feel happy or
calm. Emotional regulation involves self-monitoring, initiation,
maintenance, and modulation of positive and negative emotions,
and the avoidance and reduction of high levels of negative
affect (161). The function of emotional regulation is adaptation
produced by interaction between biological constraints and the
physical and social environments. Adaptive emotional regulation
is sometimes mistakenly equated with minimization of negative
emotion. Healthy emotional regulation is based on flexible but
stable behavior patterns of individuals, so both positive and
negative emotions are experienced and expressed with a level of
intensity that is matched to events, with the goal of achieving
successful social interactions and safety.

Perhaps the earliest published study showing that increased
HRV due to an intervention using HRVB was beneficial
for people with psychological disorder was also authored by
Vaschillo et al. (162). HRVB, currently the most widely used
technique to increase HRV, is established as a reliable and
effective way to improve emotional well-being, mental acuity,
and physical function (105, 163). HRVB paced breathing
is used for clinical intervention of psychological disorder
both with and without accompanying “top-down” emotional
regulation coaching (120, 164). Inducing high amplitude heart
rate oscillations via slow paced breathing without intentional
emotional regulation nonetheless enhances the emotional
regulation neural network function. By manipulating HR
oscillations in isolation, Mather (165) demonstrated that an
increase in activation occurred in brain regions associated with
emotional regulation after heart rate oscillations increased, but
activation in the same regions did not occur after oscillations
decreased. Furthermore, a behavioral measure of emotional
regulation viewing pictures also increased in the high but not in
the low HR oscillation group.

MUSIC INCREASES HRV AND IMPROVES
EMOTIONAL REGULATION

We propose that PMM exerts a directional influence that
restores autonomic homeostasis that can be indexed by HRV
and strengthens emotional regulation, thereby leading to
improvements in the individual’s state of chronic pain, stress,
inflammation, anxiety, and depression.
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Music and HRV
Beyond the emotional responses, music affects the CV system
and influences HRV (26). A systematic review has confirmed
that music, as a stimulus acting on the cardiac ANS, increases
parasympathetic activity and HRV. However, there is conflicting
evidence on whether it is the music itself or listener preferences
that matter and the impact of individualized MT of passive
listening vs. preferred soundtracks (25). Optimal music for
therapy varies between individuals. Self-selected pieces tend
to elicit a eustress or joyous response (“positive arousal”),
whereas classical music is associated with the highest HRV for
parasympathetic dominance (166).

While several studies have established the potential of music to
affect HRV as expected, the relationship between music and HRV
is complex; for example, exciting music decreases high frequency
(HF) HRV power, which is associated with PNS activation,
compared to tranquilizing music (167). Overall, excitative music
decreases activation of the PNS (168). For example, auditory
stimulation with heavy metal music decreased the sympathetic
and parasympathetic modulation on the heart, while exposure
to a selected classical baroque music reduced only sympathetic
regulation on the heart without affecting the parasympathetic
activity (169). Acute exposure to heavy metal music also was
shown to increase the sympathetic activity in healthy women
(170). Likewise, the low frequency (LF) component of HRV and
the LF/HF ratio increased (indicating increased parasympathetic
activation) during sad music.

Autonomic responses to musical stimuli were correlated
with subjective preferences regarding the relaxing properties
of silence, classical, new age, or romantic melodies (171). The
LF/HF ratio was significantly higher when subjects were exposed
to “new age”music as compared with silence, while no differences
were found with “classical” or “romantic” melodies. These results
were related to a reduction in the HF component with “new age”
as compared to silence. Subjects’ preferences did not correlate
with autonomic responses to melodies. The results suggest
that “new age” music induced a shift in HRV from higher to
lower frequencies, independently of the music preference of
the listener.

As a preliminary test of our hypothesis that MM positively
affects HRV, we performed a calculation of the effect size of music
on HRV specifically in perioperative surgical settings (PMM,
presented below).

Music and Emotional Regulation
The effects of music on emotional regulation have been well-
studied (172) and music has been shown to be an effective
strategy to regulate affective states (173). People employ music
to induce specific emotional states in everyday situations for the
purpose of emotional regulation, usually expressing preference
for pieces of music that were emotionally congruent with an
emotional situation (174). Musical characteristics such as tempo
and rhythm give can change a listener’s mood and emotions
(175). Desired emotional activation occurs when listening
to preferred and familiar music, while undesired activation
patterns arise when introducing complexity, heightened, or
unfamiliar dissonance emphasizing the connection between

music-influenced changes in attention and a link to emotional
regulation (176). Brain activity in emotional regulation using
music was studied using psychological testing and functional
magnetic resonance imaging (fMRI) (177). In this study, neural
responses tomusic weremeasured in themedial prefrontal cortex
(mPFC) in a cohort of 56 participants. Discharge, that is using
music to express negative emotions, lowered medial pre-frontal
cortex activity in males and diversion, using music to distract
from negative emotions, increased medial pre-frontal activity in
females. These findings suggest that using music to discharge
negative emotions may be associated with a maladaptive pattern
of brain function and have long-term negative effects on
mental health.

EMOTIONAL REGULATION IS AN
IMPORTANT FACTOR IN CHRONIC PAIN,
INFLAMMATION, CHRONIC STRESS, AND
DEPRESSION AND ANXIETY

Emotional Regulation and Chronic Pain
Maladaptive emotional regulation appears to be a risk factor
for the development and maintenance of chronic pain, and
is associated with psychological co-morbidities of pain (178).
Emotional regulation capacities have been empirically linked
to variables of pain coping (179), including opioid abuse (180,
181). In general, emotional regulation mediates the relationship
between pain and quality of life (182).

Emotional Regulation and Chronic Stress
Open and RCTs have demonstrated the utility of emotional
regulation therapy in treating stress-related conditions (183).
Chronic stress is a risk factor for incident CV diseases and
emotional regulation moderates the association between chronic
stress and CV disease risk. In a large scale (n = 754) study,
stress, emotional regulation, and CV risk measures were used
to test whether emotional regulation mitigates the effect of
chronic stress on CV risk (184). Results showed that stress
interacted significantly with difficulties in emotional regulation to
affect CV risk. Emotional regulation therapy using a reappraisal
strategy alters not only affective components but also brain
activity of pathological stress. Reappraisal affects activation of
prefrontal cortical areas that reduce activity in limbic areas
such as the amygdala, and patients with posttraumatic stress
disorder (PTSD) have different brain activity during reappraisal
in comparison to individuals without PTSD (185).

Emotional Regulation and Inflammation
Psychiatric disorders-especially affective disorders including
depressive and anxiety disorders are quite common and
have been linked to dysfunction in endocrine and immune
systems (186). Cytokine signals can access the brain and cause
profound changes in neurochemistry, neuroendocrinology, and
behavior. For instance, physiological consequences of stressful
life experiences derive in part from the effects of stress on
the immune response and have relevance for treatment of
neuropsychiatric disorders (187). The emotional regulation
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strategies of reappraisal and suppression were studied in relation
to inflammation (C reactive protein, CRP), stress and coronary
heart disease in a large cohort of adult offspring from the
Collaborative Perinatal Project (188). In this study, the finding
emerged that the maladaptive emotional regulation strategy
(suppression) was associated with elevated levels of inflammation
whereas the adaptive emotional regulation strategy (reappraisal)
was associated with lower levels of inflammation. Among couples
with marital conflict and poor sleep, people who slept less had
higher interleukin-6 (IL-6) and tumor necrosis factor (TNF)
production after a marital problem discussion, but adaptive
emotional regulation strategies protected who slept less from
inflammatory reactivity (189). Furthermore, linkage between
autonomic fluctuations measured as HRV synchrony appears to
capture engagement with, or an inability to disengage from, a
hostile exchange among married couples (190). Stronger HRV
synchrony related to situational factors during conflict predicted
greater negative affect reactivity, framing conflict as a novel
social-biological pathway to inflammation-related diseases.

Emotional regulation and inflammation was modeled as
bidirectional pathways linking peripheral inflammation and
neural circuitries serving emotional processing and regulation
(191). In this model, levels of peripheral inflammation and
resting state functional connectivity (rsFC) within the emotional
regulation and central executive network are co-regulated.
Relationships between inflammation (CRP, IL-6, IL-10, TNF)
and rsFC (measured by fMRI) involved in immune-to-
brain signaling were found. Key neurobiological correlates of
emotional regulation strategies and their effects on mental and
physical health include the sub-regions of prefrontal cortex
that play a key regulatory role in autonomic, endocrine, and
immunological processes. These effects lead to a novel neuro-
immuno-affective framework that targets improving emotional
regulation, in order to: (1) reduce negative effects associated with
depression and/or anxiety; and (2) alter endocrine and immune
responses (e.g., reduce inflammation) with changes in activity
within (and connectivity between) brain systems that support
(successful) emotional regulation (186). Such a framework may
be adapted for psychiatric treatment protocols that holistically
incorporate neural and immunological biomarkers to promote
mental and physical health.

Emotional Regulation and Depression and
Anxiety
For decades, emotional regulation has been thought to be
an essential, if underemphasized, feature of mental health
(192). Emotional regulation is a factor in mood disorders
and emotional dysregulation is prominent in depression
and anxiety. People with affective disorders have difficulties
implementing the adaptive strategies that are commonly
deployed by normal emotional regulation because depression
and anxiety associated with various mood and affective disorders
negatively impact cognitive processes involved in emotional
regulation (193). Depression is understood to be a disorder
of emotional regulation (194). In a study of the relationship
between depression vulnerability and difficulties with emotional

regulation in groups of recovered-depressed and never-depressed
participants, emotional suppression was found to be ineffective
for down-regulating negative emotions, providing evidence
for a role for endogenous emotional regulation but not
suppression in depression vulnerability (195). Biological and
psychological vulnerabilities associated with anxiety produce
increased emotional reactivity, attentional biases toward threat,
global tendencies to experience emotions as aversive, and to
engage in avoidant processing and behavior (196). In a meta-
analysis of Japanese individuals, poor emotional regulation
correlated with both depression and anxiety, whereas good
emotional regulation had significantly negative correlation with
both disorders (197). Meta-analysis of 94 published studies
of measures of emotional regulation and well-being revealed
relationships in the expected direction (198). These results
showed poor emotional regulation strategies had a moderate
negative correlation with well-being whereas good emotional
regulation strategies had a moderate positive correlation with
well-being. Thus, it appears to be important to improve
emotional regulation when aiming to improve well-being in
people (199) and patients with chronic pain (179, 180),
inflammation (200), and stress-related (183), and mental
disorders (201–203) (Figure 3).

PUTATIVE PATHWAYS OF EFFECTS OF MM
ON CARDIAC AUTONOMIC CONTROL OF
HRV, EMOTIONAL REGULATION, AND
WELL-BEING

Physical (such as pain), social, psychological, and environmental
stressors cause dysfunctional homeostatic regulation of
autonomic cardiac control leading the individual to shift into a
state of persistent sympathetic activation and lowered HRV (74).
We propose that MM exerts a directional effect on mood and
restores autonomic homeostasis via HRV. This shift provides
the individual with top-down control of mood management
and strengthens emotional regulation, thereby reducing anxiety,
depression, inflammation, and sensitized pain. In this article, we
seek to better understand MM by considering its mechanistic
underpinnings, based on the overarching hypothesis that
treatment with MM acts via the vagus nerve to enhance mood,
HRV, and emotional self-regulation and reduces sympathetic
overactivation, physiologic stress, and inflammation. A better
understanding of these mechanisms of MMwill facilitate broader
application and achievement of greater clinical benefits of MM
by seeing how to reduce causative factors leading to mood, pain,
and inflammation in clinical settings while at the same time
developing, deploying, and improving therapeutic strategies to
control autonomic dysfunction.

In our hypothesized model, autonomic control centers in the
brainstem bi-directionally influence and are influenced by the
cerebral circuits that modulate emotional regulation (depression,
anxiety), inflammation, and pain. Cortical higher centers modify
the activity of the medullary centers and are particularly
important in stimulating CV responses to emotions and stress
(44). The literature shows that MM affects HRV in predictable
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ways. It is not surprising that several studies have established that
music affects HRV both in healthy individuals (169–171, 204–
210) and patients (211–224). It is also not surprising that the
relationship between music and HRV is a complex one; for
example, exciting music has the effect of decreasing HF HRV
power, which is associated with PNS activation (49) as compared
to tranquilizing music (225).

EFFECT SIZE CALCULATION OF PMM ON
HRV

As a preliminary test of our hypothesis that MM affects
HRV in a clinical (including peri-operative surgical) setting,
we performed an effect size calculation. Forty-three published
articles were identified as potentially having data that could
be used in calculation of effect sizes for effect size of music
on HRV in the perioperative surgical settings. Of these, 22
articles reported data that could be used in a calculation of
effect size. These studies were selected using two criteria: (1)
Independent groups or mixed random assignment design with
between-subject data (no non-independent i.e. within-subject
data) and (2) tabulated data including group standard deviations
(no graphs) were available. All comparisons used a With MM vs.
NoMM comparison. Comparisons used post-music intervention
group means (not pre-post within group changes). Studies were
sorted for Independent groups or Mixed Design with random
assignment vs. non-independent data and population type. The
ratio of LF power to HF power was selected as the variable to
be used for determination of effect size because LF/HF ratio
is a stable indicator of relative sympathetic to parasympathetic
activation under resting conditions and normal respiration. Low
frequency is associated with SNS output while HF is associated
with PNS output. Thus, a lower LF/HF ratio indicates a relatively
higher proportion of PNS output. Six studies using patient
samples were included in the effect size analysis. Six published
studies met these criteria (211, 212, 217, 220, 221, 226). Mean
LF/HF ratios were: 1.68 (0.48) for With MM and 2.44 (0.65)
for No MM. Independent sample t-test (equal variance shown
by Levene Test) was significant [t(10) = −2.29, p (one-tailed) =
0.023]. The average unweighted effect size estimate was −0.39
(With MM < NoMM).

HYPOTHESIS AND
CLINICAL-EXPERIMENTAL RESEARCH

Our central hypothesis is that activation of efferent myelinated
ventral vagal cholinergic output onto the heart is critical for
the efficacy of PMM, and MM in general. The resulting
strengthening of PNS activity reduces stress responding.
The process can be indexed non-invasively by HRV and
experimentally demonstrated experimentally by vagotomy.

Surgical trauma induces physiologic stress and dysfunction of
the ANS and its modulation of stress and immune responses to
surgical trauma (227, 228). The mechanism of PMM may be to
reduce post-surgical morbidity and improve surgical outcomes
by decreasing sustained sympathetic activation and preserving

metabolic and immune homeostasis (26, 229). We propose to
test this hypothesis with a research team that possesses collective
clinical and experimental expertise in perioperative settings and
experimental animal models. Thus, examining the effects of
surgery on autonomic, stress, immune, and mood (depression
and anxiety) dysfunction, as well as opioid use and recovery
parameters becomes feasible. The long-term goal of this line of
research is to maximize clinical benefits of MM by analyzing
its mechanism of action. There is a critical need to determine
the mechanisms of PMM to maximize its efficacy and broaden
the field of application of allied interventions that share the
same general mechanism of action that can be deployed into the
clinical setting.

DISCUSSION

The significance of PMM in the surgical contemporary
health care system has greater relevance because research on
the cognitive and affective pathways of PMM is occurring
throughout the Translational Continuum, from preclinical lab
studies through implementation in outpatient clinics. Evidence
indicates that music affects the ANS, stimulating PNS activity
and decreasing postoperative pain and analgesic use even in
patients under general anesthesia. Perioperative Music Medicine
implemented at the point-of-care is quite feasible and low-
cost. However, further research is warranted to elucidate the
neural pathways of ANS responding to PMM and whether PMM
reduces psychophysiological stress associated with surgery. The
model of PMM is supported by empirical data and the effect size
calculation of PMM on HRV is significant.

Beyond the surgical suites, MM can be implemented broadly
throughout the health care system either by self-administration
or with the aid of a music therapist. The impact of chronic
pain and chronic stress (due to general stressors in addition
to pain) is to lower HRV indices. Chronic pain, chronic
stress, and HRV are inter-related and strongly associated
with the body’s response of inflammation, depression, and
anxiety. Heart Rate Variability can be increased and stress
responding lowered by a number of interventions other than
MM. The common factor underlying the benefit of MM and
all the interventions that increase HRV, also variously called
“increased resilience” or “well-being,” appears to be due to a
strengthening of emotional regulation and includes interaction
between elements of emotional regulation, chronic pain, chronic
stress, inflammation, depression, and anxiety.

A central pathway of the mechanism of ANS response
to psychophysiological stress is autonomic control of HRV,
reflecting restoration of sympathovagal function from the states
of hyper-arousal caused by chronic pain and stress. Vagal
afference plays an important role in signaling to cortical
and brainstem systems regulating physiological homeostasis.
Increasing the level of an individual’s HRV stimulates activity in
the emotional regulation neural network, while decreased HRV
is associated with loss of emotional regulation.

Experimental animal models allow deconstruction of MM
into its component mechanisms. Strategies to understand the
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sensory and physiological underpinnings of MM effects have
uncovered the important contributions of music preference
and sound perception. Some data have shown that gender
plays a role in animal responses to music, and that music
may improve task performance in rodents and non-human
primates. The brain regions involved in MM responding are
being identified. Lowered stress responding due to MM is
indicated by reduced sympathetic and increased parasympathetic
activity, and reduced blood pressure and serum corticosterone
levels in both normal and hypertensive rodents. Results from
studies of a variety of experimentally-induced pathophysiological
and disease conditions are consistent with the conclusion that
music appears to be an effective treatment.

Surgical procedures are associated with significant pain,
which is routinely treated with opioid medications. However,
opioids have multiple detrimental side effects, delay recovery,
and contribute to complications to postoperative mortality and
morbidity. A primary aim of future research will be to conduct
a RCT powered based on anticipated effects of PMM on HRV.
A related aim of clinical PMM research must be to analyze the
associations between HRV and stress and inflammatory markers,
and patient-reported outcomes of opioid use, pain, depression,
and anxiety.

However, another and equally important aim will be to
determine the neuronal networks mediating the mechanism of
music modulation of peripheral physiology in experimental
animal orthopedic surgery. Functional analyses using
pharmacologic, surgical, and genetic approaches to examine
how music modifies activity of pathways of neuro-modulation:
the HPA and corticosteroids, sympathetic catecholamines,
and parasympathetic vagal and cholinergic system in an

experimental model of orthopedic surgery. In this protocol,
surgical vagotomy and pharmacologic blockade plus genetic
knock-out of cholinergic receptors are hypothesized to eliminate
the role of the vagus in PMM responding and prevent reduction
of inflammation after orthopedic surgery.

The rationale for the need of an animal model in parallel
to clinical trials of PMM is compelling. The clinical and
animal model aims are interdependent. Surgical patients
exposed to PMM may have a range of physiological
responses depending on how much they are engaged with
the music vs. engaged with everything else going on in the
environment. The clinical research model will use HRV
and various inflammation biomarkers and psychological
instruments to detect how much PMM is working in
humans. The HRV response is a way to measure the degree
of psychophysiological response. Experimental animal models
can mimic surgical trauma and undergo selective neurectomies,
genetic, and pharmacological inhibition of the hypothesized
neuronal pathways involved in PMM (230, 231). This level
of experimental control is only possible in experimental
animals. Thus, experimental animal surgery can confirm
the hypothesized mechanism of the human model by using
specific neural and humoral interruptions. These mechanistic
studies will be critical to define the potential limitations
of MM in specific cohorts of patients and how to improve
the treatments.
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