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Metabolic syndrome, characterized by central obesity, hypertension, and hyperlipidemia, 
increases the morbidity and mortality of cardiovascular disease, type 2 diabetes, 
nonalcoholic fatty liver disease, and other metabolic diseases. It is well known that insulin 
resistance, especially hepatic insulin resistance, is a risk factor for metabolic syndrome. 
Current research has shown that hepatic fatty acid accumulation can cause hepatic 
insulin resistance through increased gluconeogenesis, lipogenesis, chronic inflammation, 
oxidative stress and endoplasmic reticulum stress, and impaired insulin signal pathway. 
Mitochondria are the major sites of fatty acid β-oxidation, which is the major degradation 
mechanism of fatty acids. Mitochondrial dysfunction has been shown to be involved in 
the development of hepatic fatty acid–induced hepatic insulin resistance. Mitochondrial 
autophagy (mitophagy), a catabolic process, selectively degrades damaged mitochondria 
to reverse mitochondrial dysfunction and preserve mitochondrial dynamics and function. 
Therefore, mitophagy can promote mitochondrial fatty acid oxidation to inhibit hepatic 
fatty acid accumulation and improve hepatic insulin resistance. Here, we review advances 
in our understanding of the relationship between mitophagy and hepatic insulin resistance. 
Additionally, we also highlight the potential value of mitophagy in the treatment of hepatic 
insulin resistance and metabolic syndrome.

Keywords: hepatic insulin resistance, metabolic syndrome, mitochondrial dysfunction, hepatic fatty acid 
accumulation, mitophagy

INTRODUCTION

Metabolic syndrome is characterized by hyperglycemia, hyperlipidemia, hypertension, and obesity 
(Bonamichi et al., 2017; Mohammadbeigi et al., 2018). The increasing prevalence of metabolic 
syndrome is posing a great threat to human health worldwide (Mohammadbeigi et al., 2018). Insulin 
resistance is a pathological manifestation that target tissues including liver, muscle, and adipose 
tissues are less sensitive to the effect of insulin (Barseem and Helwa, 2015). There is a consensus 
that insulin resistance including liver, skeletal muscle, and adipose tissue insulin resistance is the 
leading risk factor for metabolic syndrome, obesity, and type 2 diabetes (Bonamichi et al., 2017; 
Tahrani, 2017). In view of the vital role of liver in glycometabolism and lipid metabolism, hepatic 
insulin resistance (central insulin resistance) is regarded as the more important risk factor for the 
development of whole-body insulin resistance and metabolic syndrome (Perseghin, 2009; Ibarra-
Reynoso et al., 2014). Therefore, a better understanding of the mechanism by which insulin resistance 
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develops in liver tissue may offer novel therapeutic directions 
for the treatment or prevention of metabolic syndrome (Ibarra-
Reynoso et al., 2014).

Mitochondria are the major sites of fatty acid β-oxidation, 
which is the major degradation mechanism of fatty acids in 
hepatocytes and skeletal muscle cells (Chow and From, 2010; 
Crescenzo et al., 2016). Recent studies have proposed that 
mitochondrial dysfunction can impair mitochondrial fatty 
acid β-oxidation, which may cause fatty acid accumulation 
in liver and skeletal muscle tissues (Chow and From, 2010; 
Crescenzo et al., 2016). Moreover, accumulating studies 
have recognized that free fatty acid–induced mitochondrial 
dysfunction can cause accumulation of hepatic fatty acids, 
which in turn leads to hepatic insulin resistance (Gonzalez-
Franquesa and Patti, 2017; Wu et al., 2018). In the initial 
study, a decreased number of mitochondria have been 
found in insulin-resistant skeletal muscle cells, suggesting 
that mitochondrial function is impaired in insulin-resistant 
skeletal muscle cells (Perreault et  al., 2018). As research 
progresses, hepatic fatty acid–induced mitochondrial 
dysfunction has also been proved to play an important role 
in the development of hepatic insulin resistance (Wang et al., 
2017b; Wang et al., 2018; Wang et al., 2019b). Recently, it 
has been widely recognized that mitochondrial autophagy 
(mitophagy), a catabolic process, can selectively remove 
damaged mitochondria by autophagolysosomes to maintain 
mitochondrial function and energy metabolism (Redmann 
et al., 2018; Li et al., 2018a). As a mitochondrial quality control 
mechanism, mitophagy can target and degrade damaged 
mitochondria to suppress damaged mitochondria-derived 
reactive oxygen species (ROS), which can dramatically impair 
healthy mitochondria, leading to mitochondrial dysfunction. 
Theoretically, mitophagy can preserve mitochondrial 
function to accelerate fatty acid oxidative degradation and 
suppress hepatic fatty acid accumulation, which may be 
conducive to the treatment of hepatic insulin resistance. 
However, the therapeutic potential and molecular mechanism 
of mitophagy on hepatic insulin resistance are still unclear.

The purpose of this review is to investigate the complex 
association between mitophagy and hepatic insulin resistance. 
First, we review the role and molecular mechanism of insulin-
mediated glycometabolism and the associated abnormalities 
observed in insulin resistance. We then discuss the pivotal role 
of hepatic insulin resistance in whole-body insulin resistance 
and metabolic syndrome. Moreover, we discuss the role and 
molecular mechanism of hepatic fatty acid accumulation on 
hepatic insulin resistance. Next, we discuss the relationship 
among mitophagy, mitochondrial dysfunction and hepatic fatty 
acid accumulation. We also briefly review the related signaling 
pathways that regulate mitophagy. After discussing the potential 
role of mitophagy on hepatic insulin resistance with a focus on 
mitochondrial function and fatty acid oxidation, we put forward 
a novel idea that mitophagy can preserve mitochondrial function 
to suppress hepatic fatty acid accumulation, which is conducive 
to the prevention or treatment of hepatic insulin and metabolic 
syndrome. Therefore, our major objective is to summarize the 
role of mitophagy on hepatic insulin resistance and also discuss 

whether mitophagy is a potential target for the treatment of 
insulin resistance and metabolic syndrome.

INSULIN RESISTANCE

Insulin, an important endocrine hormone secreted by pancreatic 
β cells, acts on the insulin receptors (IRs) to regulate the metabolic 
process of carbohydrate, protein, and lipid in liver, muscle, and 
adipose tissues (Nicholas et al., 2017; Honka et al., 2018). Under 
normal circumstances, pancreatic β cells can secrete insulin in 
response to meal-induced increase in blood glucose (Kang et al., 
2017). First, insulin promotes muscle tissue to assimilate blood 
glucose and convert it into muscle glycogen and protein (Kleinert 
et al., 2013; Ruby et al., 2017). Second, insulin not only promotes 
hepatocytes to absorb blood glucose and convert it into liver 
glycogen, but also inhibits glycogenolysis and gluconeogenesis to 
reduce postprandial blood glucose (Unger, 2011). Thirdly, insulin 
stimulates adipose cells to absorb blood glucose and converts it 
into fat (Gastaldelli, 2011; Sears and Perry, 2015). Collectively, 
insulin commonly acts on hepatocytes, skeletal muscle, and 
adipose cells to maintain glycemic homeostasis (Figure 1) (Sears 
and Perry, 2015).

Under insulin-resistant conditions, reduced insulin sensitivity 
of hepatocytes, skeletal muscle, and adipose cells is found. 
Insulin resistance is caused by plenty of risk factors such as 
fatty acid accumulation in liver and skeletal muscle tissues, 
inflammation, changes in intestinal flora, endoplasmic reticulum 
stress responses, and environment–gene interactions (Liu et al., 
2014; Zhang et al., 2015a; Kikuchi et al., 2018; Vatner et al., 
2018; Xu et al., 2018; Crossland et al., 2019). Recently, study has 
focused on the cause–effect relationship between hepatic fatty 
acid accumulation and hepatic insulin resistance (He et al., 2013; 
Finck and Hall, 2015; Dallak, 2018; Vatner et al., 2018).

MECHANISM OF HEPATIC INSULIN 
RESISTANCE

Liver is the most important organ in the regulation of 
glycometabolism and lipid metabolism (Ding et al., 2018). 
Generally, insulin binds to the IR and stimulates the 
autophosphorylation of IR tyrosine residues, which further 
activates tyrosine kinase in hepatocytes (Brunetti, 2014; Wang 
et al., 2015). And then tyrosine kinase phosphorylates insulin 
receptor substrate 1 and 2 (IRS-1 and IRS-2), which can bind 
to and activate phosphatidylinositol 3-kinase (PI3K). PI3K then 
activates the serine/threonine kinase AKT and further increases 
glucose transporter 2 expression. This process promotes 
hepatocytes to absorb blood glucose and maintain normal lipid 
and glucose homeostasis (Cai et al., 2016; Li et al., 2017). Taken 
together, insulin signal pathway plays a major role in maintaining 
cell energy metabolism.

Growing evidence has revealed that hepatic lipid 
accumulation may impair hepatic insulin action (Petersen 
et  al., 2017). Additionally, disordered liver and adipose tissue 
lipolysis can elevate fatty acid flux to liver and further deteriorate 
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hepatic lipid accumulation, which significantly impair insulin 
signal pathway and cause hepatic insulin resistance (Yang 
et al., 2016). In the meantime, the expression of acetyl-CoA 
carboxylase and pyruvate carboxylase, two specific risk factors 
for insulin resistance, is also promoted in hepatocytes (Figure 1) 
(Perry et al., 2015; Goedeke et al., 2018). Collectively, hepatic 

lipid accumulation can cause hepatic insulin resistance 
through multiple mechanisms (Konstantynowicz et al., 2011). 
Therefore, it is widely accepted that suppression of hepatic lipid 
accumulation is a promising approach for the therapy of hepatic 
insulin resistance (Konstantynowicz et al., 2011; Mohamed and 
Jornayvaz, 2013; Kubo et al., 2017).

FIGURE 1 | Diagram illustrates the mechanisms of insulin resistance. Normally, after a meal, pancreatic β cells secrete insulin in response to meal-induced 
increase in blood glucose. First, insulin promotes muscle tissue to assimilate blood glucose and convert it into muscle glycogen and protein. Additionally, insulin 
also promotes hepatocytes to absorb blood glucose and converts it into liver glycogen. Meanwhile, insulin can inhibit glycogenolysis and gluconeogenesis to 
reduce postprandial blood glucose in liver tissues. Moreover, insulin can stimulate adipose cells to assimilate blood glucose and convert it into fat. Under starvation 
conditions, the secretion of insulin will be inhibited, and the hypoglycemic activity of insulin on liver, muscle, and adipose is also suppressed. Under insulin-resistant 
conditions, lipolysis is promoted in adipose tissue, thereby releasing excess fatty acids into the blood and then transporting them to the liver and skeletal muscle 
tissue. Then, fatty acids can activate PKC, which may markedly impair insulin signal pathway to cause hepatic and skeletal muscle insulin resistance. IR, insulin 
resistance; DNL, de novo lipogenesis; DAG, diacylglycerol; IRS, insulin receptor substrate; PKC, protein kinase C; ChREBP, carbohydrate responsive element-
binding protein; ACC, acetyl-CoA carboxylase; GLUT, glucose transporter.
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THE LIVER IS THE FIRST ORGAN TO 
DEVELOP INSULIN RESISTANCE

Accumulating evidence has demonstrated that hepatic insulin 
resistance is the primary event in free fatty acid–induced whole-
body insulin resistance. And muscle and adipose tissue insulin 
resistance may be the consequence of hepatic insulin resistance 
(Perry et al., 2014; Badi et al., 2019; Medak and Townsend, 
2019). Recent evidence has shown that muscle- and adipose 
tissue–specific IR knockout mice only show muscle or adipose 
tissue insulin resistance, but total body glucose metabolism still 
remains normal (Perseghin, 2009). It is surprising that hepatic 
IR knockout mice are characterized by liver, muscle, and adipose 
tissue insulin resistance, as well as fasting and postprandial 
hyperglycemia (Perseghin, 2009). Further research has confirmed 
that hepatic lipid accumulation is responsible for hepatic insulin 
resistance and whole-body insulin resistance (Ye et al., 2016; 
Sabater et al., 2017; Santos et al., 2017). Furthermore, Lee et al. 
(2015) have discovered that obese adolescents with fatty liver have 
a higher risk of systemic insulin resistance than obese adolescents 
with normal liver. Consistent with previous studies, Rotman and 
Neuschwander-Tetri (2017) have also proved that hepatic insulin 
resistance is most likely to be caused by minimal stimulation 
from hepatic fatty acid accumulation. However, skeletal muscle 
insulin resistance is less likely to be caused by ectopic fatty acid 
accumulation in skeletal muscle tissues, and adipose tissue 
insulin resistance is least likely to be caused by adipose tissue fatty 
acid accumulation (Rotman and Neuschwander-Tetri, 2017). In 
summary, growing evidence supports the viewpoint that hepatic 
fatty acid accumulation can give rise to hepatic insulin resistance 
and subsequent development of systemic insulin resistance and 
metabolic disorders.

WHAT ARE FATTY ACIDS?

Fatty acids are carboxylic acids with a long hydrocarbon chain 
(Tamil and Nagarajan, 2013). There are various kinds of fatty 
acids such as essential fatty acid, omega-3 fatty acids, trans-fatty 
acids, and free fatty acids (Williams et al., 2017; Shahidi and 
Ambigaipalan, 2018).

Essential fatty acids mainly consisting of polyunsaturated 
fatty acids are very important constituents of the human body. 
It cannot be generated by the human body, while it can only be 
absorbed from the diet (Amjad et al., 2017).

Omega-3 fatty acids, kind of polyunsaturated fatty acids, are 
found in deep sea fishes, sea dog, and linseed. A growing body 
of study has shown that omega-3 fatty acids have positive effects 
on cardiovascular disease, diabetes, cancer, Alzheimer disease, 
dementia, and depression (Shahidi and Ambigaipalan, 2018).

Trans-fatty acids, kind of unsaturated fatty acids, can increase 
the level of cholesterol and low-density lipoprotein in the blood 
and have a negative effect on coronary heart disease (Takeuchi 
and Sugano, 2017; Ahmed et al., 2018).

Free fatty acids are by-products of fat metabolism in adipose 
tissues. The cause–effect relationship between hepatic free fatty 

acid accumulation and hepatic insulin resistance has been well 
described (Liu et al., 2015; Kubo et al., 2017).

Given the definite role of free fatty acids on mitochondrial 
dysfunction and hepatic insulin resistance, this review aims 
to explore the complex relationship among hepatic fatty acid 
accumulation, mitochondrial dysfunction, hepatic insulin 
resistance, and mitophagy (Garcia-Ruiz et al., 2013; Chen et al., 
2015; Mohamad et al., 2015).

THE ROLE OF HEPATIC FREE FATTY 
ACID ACCUMULATION ON HEPATIC 
INSULIN RESISTANCE

In general, fatty acids are mainly stored in adipose tissue, and 
liver tissue is not the physiologic reservoir of fatty acids (Barry 
and Marry, 2015; Rotman and Neuschwander-Tetri, 2017). 
Nevertheless, long-term consumption of high-fat diet can lead to 
excess fatty acids flowing into adipose tissue (Wensaas et al., 2010; 
Barry and Marry, 2015). When the storage capacity of adipose 
tissue becomes saturated, superfluous fatty acids will overflow to 
the blood and further accumulate in nonadipose tissues such as 
liver, muscle, bone, pancreas, and heart as free fatty acids. This 
is the process of ectopic fatty acid accumulation (Hagberg et al., 
2012; Malinska et al., 2015; Xu et al., 2017). Free fatty acids are 
the primary sources of hepatic lipid accumulation (Chen et al., 
2017c). Under fasting conditions, circulating free fatty acids are 
the main fuel sources for various tissues except the brain tissue. 
Hence, plenteous free fatty acids are secreted into the blood by 
adipose tissue and further transported into the mitochondria 
of liver and skeletal muscle cells, in which free fatty acids will 
be oxidized and degraded to provide energy for cellular activity 
(Grattagliano et al., 2012; Peter and Georg, 2013; Zoladz et al., 
2017). Therefore, as one of the important fuel sources, moderate 
levels of fatty acids in liver and muscle tissues are essential 
for cellular activities. However, excessive fatty acid accumulation 
in liver and muscle tissues is a pathological condition (Kubo 
et al., 2017).

Lipotoxicity is regarded as a pathological state in which 
high-fat diet impairs the normal metabolism of free fatty acids, 
resulting in accumulation of free fatty acids in the plasma and 
tissues (Lee et al., 2018). These fatty acids may impair glucose 
oxidation and glycogen synthesis and inhibit glucose transport 
or phosphorylation by suppressing insulin signal pathway and 
multiple steps of intracellular glucose metabolism (Yazıcı and 
Sezer, 2017). Therefore, markedly elevated hepatic fatty acids 
accumulation is a risk factor for hepatic insulin resistance. 
And the cause–effect relationship between hepatic fatty acid 
accumulation and hepatic insulin resistance has been confirmed 
in numerous human and animal researches (Wang et al., 2016; 
Sabater et al., 2017). The proposed mechanisms of hepatic 
fatty acid accumulation on hepatic insulin resistance include 
elevated gluconeogenesis, lipogenesis and chronic inflammation, 
impaired insulin signal pathway, excessive oxidative stress, and 
endoplasmic reticulum stress (Pereira et al., 2014; Yoon and Cha, 
2014; Wang et al., 2017b).
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Hepatic gluconeogenesis, a process of converting nonsugar 
substances into glucose, is an important regulatory mechanism 
of blood glucose homeostasis. Hepatic insulin resistance is 
characterized by overactive gluconeogenesis in liver, which 
can significantly increase blood glucose level. Glucose-6-
phosphatase and glucokinase are two pivotal enzymes that 
regulate gluconeogenesis (Qi et al., 2018; Song et al., 2018b). 
Initially, free fatty acids are converted to long-chain fatty acyl 
coenzyme A by acyl-CoA synthase and then transformed 
into acetyl CoA in mitochondria of hepatocytes. This will 
activate hepatic gluconeogenesis to increase hepatic glucose 
production (Estee and Fiona, 2013; Adeva-Andany et al., 2019). 
Furthermore, free fatty acids evidently promote the expression 
of glucose-6-phosphatase to activate gluconeogenesis in liver 
tissue (Petersen et al., 2017; Tyrrell et al., 2017). Taken together, 
free fatty acids have a tremendous ability to activate hepatic 
gluconeogenesis to promote hepatic glucose production, 
which results in hyperglycemia and hepatic insulin resistance.

De novo lipogenesis is another mechanism of free fatty 
acid–induced hepatic insulin resistance. Free fatty acids 
promote lipogenic gene expression by regulating transcription 
factors including sterol regulatory element-binding protein-1c 
(SREBP-1c), carbohydrate responsive element-binding protein, 
and peroxisome proliferator-activated receptor γ2 (PPARγ2) 
(Siculella et al., 2016). Qin et al. (2016) have further identified 
that free fatty acids increase intracellular lipid accumulation by 
inhibiting PPARα expression and increasing SREBP-1c level 
(Figure 1).

Moreover, free fatty acid–induced inflammation also plays 
a central role in the development of hepatic insulin resistance 
(Wang et al., 2013; Chen et al., 2017c; Zhang et al., 2018). Free 
fatty acids promote the activity of IKK-β and nuclear factor 
κB through degrading IκB-α, which further increases the 
expression of interleukin 1β (IL-1β), tumor necrosis factor 
α, and IL-6 in liver tissues (Zhang et al., 2015b; Peng et al., 
2017). These inflammatory factors can inhibit the activation of 
PI3K and IRS-1/2 tyrosine phosphorylation to impair insulin 
signaling pathway (Sharma et al., 2015; Yuan et al., 2016). 
Additionally, free fatty acids also trigger the expression of 
hepatic diacylglycerol and protein kinase C-δ (PKCδ) to prevent 
IRS-1/2 tyrosine phosphorylation, resulting in the occurrence 
of hepatic insulin resistance (Figure 1) (Pereira et al., 2014; Ter 
Horst et al., 2017).

It is well established that oxidative stress is a crucial risk factor 
for hepatic insulin resistance. Interestingly, PKCδ, an activator 
of nicotinamide adenine dinucleotide phosphate (NADPH), can 
promote the generation of ROS to increase oxidative stress. And 
ROS in turn promotes the activation of PKCδ, IKK-β, and c-Jun 
N-terminal kinase (JNK) to exacerbate oxidative stress. In line 
with previous researches, antioxidants like N-acetyl-l-cysteine 
and taurine can significantly prevent hepatic insulin resistance 
through suppression of excessive oxidative stress in rats (Guo-
Guang et al., 2013; Pereira et al., 2014; Pereira et al., 2015; Cui 
et  al., 2017; Villagarcía et al., 2018). Moreover, Pereira et al. 
(2014) have reported that hepatic fatty acid accumulation may 
activate PKCδ to increase NADPH oxidase-dependent oxidative 
stress, which further promotes the expression of IKK-β/JNK 

to impair hepatic insulin signaling pathway and finally cause 
hepatic insulin resistance. In summary, the pathway of free 
fatty acid–induced hepatic insulin resistance is free fatty acids 
→ PKCδ → NADPH oxidase → oxidative stress → IKK-β/JNK → 
insulin signaling pathway → hepatic insulin resistance (Pereira 
et al., 2014).

MITOPHAGY AND LIPID METABOLISM

Autophagy widely existing in eukaryotic cells is essential for 
maintaining cellular energy homeostasis (Vargas et al., 2017). It 
is a conservative self-digestion process that relies on lysosomes, 
by which excessive fatty acids, damaged cell structures, and 
organelles can be degraded by lysosomal enzymes (Miyamoto 
and Heller, 2016; Chu et al., 2018). Depending on how they bind 
to lysosome, autophagy can be divided into macroautophagy, 
microautophagy, and chaperone-mediated autophagy (Cerri 
and Blandini, 2018). Moreover, autophagy can be also classified 
as selective autophagy and nonselective autophagy (Kim 
et  al., 2016). Mitophagy is a highly selective autophagy, which 
can selectively degrade damaged mitochondria through 
macroautophagy (McWilliams et al., 2018). To be more specific, 
damaged mitochondria are swallowed up by LC3-positive 
autophagosomes, which subsequently fuse with lysosomes and 
degrade these mitochondria (McWilliams et al., 2018). Recently, 
a growing body of research has shown that mitophagy is of vital 
importance for mitochondrial quality control and mitochondrial 
dynamics including biosynthesis and degradation (Youle and 
Narendra, 2011; Michael et al., 2015; Kim et al., 2016).

There is a consensus that mitochondrial dysfunction is 
closely involved in the development of Parkinson disease and 
Alzheimer disease (Ganguly et al., 2017). Fortunately, these 
diseases can be reversed by mitophagy (Kerr et al., 2017; Sliter 
et al., 2018). Recent research has shown that impaired mitophagy 
is responsible for the development of insulin resistance diseases, 
such as metabolic syndrome, type 2 diabetes, obesity, and 
hyperlipidemia (Seillier et al., 2015; Rovira-Llopis et al., 2017; 
Che et al., 2018). Nevertheless, whether mitophagy can improve 
insulin resistance diseases is still not clear (Gonzalez-Franquesa 
and Patti, 2017). Therefore, we then explore the potential role and 
molecular mechanism of mitophagy on insulin resistance with a 
focus on lipid metabolism. We hope to elucidate the connection 
between mitophagy and insulin resistance and finally reveal a 
novel therapeutic target for insulin resistance.

SIGNALING PATHWAYS INVOLVED 
IN MITOPHAGY

Mitophagy selectively degrades damaged mitochondria, which 
contributes to mitochondrial quality control and maintenance of 
mitochondrial function. There are three main types of mitophagy: 
PINK1/Parkin-mediated mitophagy, BNIP3/NIX-mediated 
mitophagy, and FUN14 domain-containing 1 (FUNDC1)–
mediated mitophagy (Sato and Furuya, 2017; Yuan et al., 2017; 
Li et al., 2018c).
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PINK1/Parkin-Mediated Mitophagy
It is well recognized that the mitochondrial serine/threonine 
kinase PTEN-induced putative kinase 1 (PINK1) and the E3 
ubiquitin ligase Parkin are two important proteins mediating 
mitophagy in mammalian cells (Williams et al., 2015; Harper 
et al., 2018). In healthy mitochondria, PINK1 is transported 
into the inner mitochondrial membrane and then cleaved by 
the inner membrane protease PARL. Ultimately, the truncated 
form of PINK1 is released into the cytoplasm for N-terminal 
recognition and then degraded by the proteasome to remain at a 
low basal level (Wu et al., 2015; Wang et al., 2019a). In damaged 
mitochondria, mitochondrial membrane potential (ΔΨm) is 
insufficient to transport PINK1 to the inner mitochondrial 
membrane. Therefore, PINK1 mainly locates on the outer 
mitochondrial membrane of depolarized mitochondria and 
then phosphorylates some outer mitochondrial membrane 
protein (Greene et al., 2012; Lemasters and Zhong, 2018). 
This process can recruit autophagy adaptors including NDP52 
and OPTN, which can bind to the double membrane vacuoles 
(autophagosomes). Therefore, damaged mitochondria can be 
captured by autophagosomes, which then fuse with lysosomes to 
degrade these mitochondria (Michael et al., 2015; Moreira et al., 
2017). In order to further activate mitophagy, PINK1 located on 
the outer mitochondrial membrane of damaged mitochondria 
recruits cytosolic Parkin to damaged mitochondria to activate 
mitophagy by Mnf1 and Mnf2 phosphorylation. Additionally, 
PINK1 can phosphorylate Ser65 in ubiquitin and ubiquitin-like 
domain of Parkin to enhance Parkin E3 ubiquitin ligase activity 
to induce mitophagy (Wang et al., 2019a).

Generally, Parkin promotes mitophagy through two main 
pathways: First, Parkin ubiquitinates mitochondrial GTPase such 
as Miro and Mitofusin proteins including Mnf1 and Mnf2 to 
cause mitochondrial fragmentation and motility arrest, followed 
by sequestration and degradation of damaged mitochondria 
by autophagolysosomes (Eid et al., 2016; Moreira et al., 2017). 
Additionally, Parkin induces the ubiquitination of mitochondrial 
outer membrane proteins such as voltage-dependent anion 
channel, which can be identified by ubiquitin-binding adaptors 
including histone deacetylase 6 and SQSTM1/p62. This 
process contributes to propelling damaged mitochondria to the 
autophagic isolation membrane, for subsequent degradation of 
damaged mitochondria by mitophagy (Moreira et al., 2017).

Recent study has found that hepatic fatty acid accumulation 
can cause damaged mitochondria accumulation, which can 
impair mitochondrial respiratory chain function and fatty acid 
oxidative degradation (Ashrafi and Schwarz, 2013; Wu et al., 
2015). Surprisingly, PINK1/Parkin-mediated mitophagy can 
reverse mitochondrial dysfunction and preserve mitochondrial 
function through eliminating damaged mitochondria in time 
(Wu et al., 2015; Nguyen et al., 2016; Xiong et al., 2018; Song 
et al., 2018a; Wang et al., 2019a).

BNIP3/NIX -Mediated Mitophagy
In response to hypoxia and nutrient deprivation, programmatic 
elimination of mitochondria by mitophagy is induced to inhibit 
excessive mitochondrial mass and maintain mitochondrial function. 

This kind of stress-responsive mitophagy is regulated by two key 
mitophagy adaptors: BCL-2/adenovirus E1B interacting protein 3 
(BNIP3) and Nip-like protein X (NIX). BNIP3 and NIX, two pivotal 
BCL-2 homology domain 3–only proteins, play important roles 
in mitophagy–mediated mitochondrial quality control (Lampert 
et al., 2019; Xu et al., 2019). It is noteworthy that PINK1 and Parkin 
activate mitophagy through indirect binding to autophagosomes, 
while BNIP3 and NIX activate mitophagy through direct binding to 
autophagosomes (Moreira et al., 2017).

Initially, BNIP3/NIX may promote the moderate expression 
of ROS to enhance mitophagy (Scherz-Shouval and Elazar, 2011). 
Second, phosphorylation is an important process in BNIP3-
induced mitophagy. The phosphorylation can promote BNIP3 to 
bind to LC3 II, a molecule critical for autophagosome formation, 
and phosphorylation of Ser24 on BNIP3 can further promote 
the affinity (Moreira et al., 2017). Additionally, Beclin-1, the 
mammalian ortholog of yeast Atg6, activates autophagy in the 
form of Beclin-1–Vps34 (lipid kinase Vps-34 protein)–Vps15 (lipid 
kinase Vps-15 protein) complexes (Ma et al., 2014; Wang et al., 
2017a). Bcl-2 and Bcl-XL can bind to the BH3 domain of Beclin-1 
in the form of Beclin-1–Bcl-2 and Beclin-1–Bcl-XL complexes to 
inhibit mitophagy. However, BNIP3 and NIX can compete with 
Beclin-1 to bind to Bcl-2 and Bcl-XL. And then Beclin-1 is liberated 
from these complexes to activate mitophagy (Chiara Maiuri et al., 
2014; Chiang et al., 2018). Thirdly, Ras homolog enriched in brain 
(Rheb) can suppress mitophagy through activating mammalian 
target of rapamycin (mTOR), while BNIP3 can block Rheb-mTOR 
signaling pathway to enhance mitophagy (Lin et al., 2014; Gong 
et al., 2017). Moreover, NIX can directly bind to LC3. LC3 can bind 
to γ-aminobutyric acid receptor–associated protein (GABARAP) to 
form LC3–GABARAP complex, which promotes the mobilization 
of autophagosomes to damaged mitochondria (Moreira et al., 2017).

Taken together, metabolic stress, including hypoxia, 
nutrient deprivation, and fatty acid–induced dysfunctional 
mitochondria accumulation, can induce BNIP3/NIX-mediated 
mitophagy to clear damaged mitochondria and preserve 
mitochondrial integrity and function (Danielle et al., 2012; 
Moreira et al., 2017).

FUNDC1-Mediated Mitophagy
FUN14 domain-containing 1 located on the mitochondrial outer 
membrane contains a motif of Y (18) xxL (21), an LC3-interacting 
region (LIR), at the N-terminal (Lei et al., 2012). Under hypoxic 
conditions, similar to BNIP3 and NIX, FUNDC1 can directly bind 
to LC3 through its LIR motif to induce mitophagy (Wenxian et al., 
2014; Yu et al., 2019a). Under nonstress conditions, Sc and CK2 
kinases can phosphorylate Tyr-18 in LIR motif of FUNDC1 to 
interfere with the interaction between FUNDC1 and LC3, which 
subsequently impairs FUNDC1-mediated mitophagy (Wenxian 
et al., 2014). Additionally, FUNDC1 regulates mitophagy-mediated 
mitochondrial quality control through interacting with fission 
and fusion machinery components. For example, under hypoxic 
conditions, phosphoglycerate  mutase 5, a mitochondrial Ser/
Thr protein phosphatase, can dephosphorylate FUNDC1 and 
subsequently impair the interaction of FUNDC1 with mitochondrial 
fusion protein OPA1 to suppress mitochondrial fusion. Under 
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normoxic conditions, bits of FUNDC1 have been identified in the 
endoplasmic reticulum–mitochondria contact sites. Surprisingly, in 
response to hypoxic stress, FUNDC1 substantially interacts with the 
endoplasmic reticulum resident protein calnexin and further recruits 
mitochondrial fission protein DRP1 to activate mitochondrial fission 
(Palikaras et al., 2018). Moreover, under hypoxic conditions, ULK1 
(UNC-51 like kinase 1), a pivotal component of autophagy initiation 
complex, can phosphorylate Ser-17 in LIR motif of FUNDC1 to 
promote the interaction between FUNDC1 and LC3 to induce 
mitophagy (Springer and Macleod, 2016). Similar to FUNDC1, 
hypoxia-induced mitophagy is also regulated by BNIP3 and NIX. 
Under hypoxic conditions, hypoxia inducible factor 1 can increase 
the expression of BNIP3 and NIX to enhance mitophagy (Palikaras 
et al., 2018). Notwithstanding the crosstalk among FUNDC1, 
BNIP3, and NIX is still confusing, their coordinated action is pivotal 
for mitophagy-based mitochondrial quality control.

Recent study has shown that BNIP3-, NIX-, and FUNDC1-
mediated mitophagy plays a critical role in the treatment of lipid 
metabolism, hepatocellular carcinoma, hepatic insulin resistance, 
alcoholic liver disease, hepatic steatosis, and liver injury (Danielle 
et al., 2012; Williams and Ding, 2015; Chao et al., 2018; Liu et al., 
2018; Li et al., 2019; Yu et al., 2019b). Nevertheless, research of 
mitophagy on liver diseases is still in its infancy, and its role and 
molecular mechanism involved in liver diseases are still needed 
to be confirmed by extensive experiments. Given the central role 
of mitochondrial quality control on energy homeostasis and 
adaptive response, pursuit of the role and molecular mechanism 
of mitophagy on liver diseases should be a field full of surprises, 
which may provide a novel perspective for the prevention and 
treatment of insulin resistance and metabolic syndrome.

MITOPHAGY PREVENTS HEPATIC FATTY 
ACID ACCUMULATION

Mitochondrial fatty acid oxidation is an important physiological 
process for fatty acid degradation and ATP production. 
Human body can absorb abundant fatty acids from diets and 
store them in adipose tissue. In the fasting state, these fatty 
acids are released from adipose tissue and further transported 
into the mitochondria of hepatocytes and skeletal muscle cells, 
in which fatty acids are oxidized for ATP production (Zhang 
et al., 2012). Therefore, normal mitochondrial function plays 
a pivotal role in regulating lipid metabolism and cellular 
energy supply. It is worth noting that healthy mitochondria 
can suppress fatty acid accumulation in liver and muscle tissue 
through accelerating fatty acid β-oxidation (Rambold et al., 
2015; Sharma et al., 2018).

Accumulating evidence has shown that defective hepatic 
mitochondrial respiration characterized by damaged mitochondria 
accumulation can impair mitochondrial fatty acid β-oxidation, 
which sequentially causes various adverse consequences, such 
as excessive ROS, reduced ATP production, and hepatic fatty 
acid accumulation (Serviddio et al., 2010; Chistiakov et al., 2014; 
Crescenzo et al., 2016). There is a consensus that mitophagy, one 
of the prominent approaches for mitochondrial quality control, can 
remove damaged mitochondria to restore mitochondrial quality 

and mitochondrial function (Chakraborty et al., 2018; Saxena 
et al., 2019). The positive role of mitophagy on the scavenging of 
ectopic fatty acid accumulation has been clearly demonstrated. 
In an animal model of alcoholic fatty liver, Eid et al. (2016) have 
demonstrated that Parkin-mediated mitophagy can selectively 
clear damaged mitochondria to maintain mitochondrial quality, 
which is pivotal to the inhibition of hepatic lipid accumulation. In 
line with Eid and colleagues’ standpoint, Williams et al. (2015) have 
found that Parkin knockout mice are more susceptible to alcohol-
induced liver steatosis than wild-type mice. They have speculated 
that Parkin-mediated mitophagy plays a pivotal role in maintaining 
mitochondrial function, which can accelerate fatty acid oxidation 
and sequentially suppress fatty acid accumulation in liver tissue 
(Williams et al., 2015). In an animal model of high-fat diet–induced 
nonalcoholic fatty liver, the results have indicated that impaired 
PINK1/Parkin-dependent mitophagy may be responsible for hepatic 
fatty acid accumulation (Liu et al., 2018). As expected, quercetin, 
a common flavonoid, can activate PINK1/Parkin-mediated 
mitophagy to accelerate mitochondrial fatty acid oxidation and 
inhibit hepatic fatty acid accumulation in an animal model of high-
fat diet–induced nonalcoholic fatty liver. Additionally, quercetin also 
activates PINK1/Parkin-dependent mitophagy to prevent oleic acid/
palmitic acid–induced lipid accumulation in HepG2 cells (Liu et al., 
2018). Moreover, linseed oil, exenatide, melatonin, akebia saponin 
D, and sirtuin 3 have also been shown to suppress hepatic lipid 
accumulation through activating mitophagy (Table 1).

Moreover, recent study has shown that macrophage can infiltrate 
into white adipose tissue to promote lipolysis and then release fatty 
acids into the bloodstream. These fatty acids may be transported to 
liver tissue and then promote lipid synthesis by esterification. Fatty 
acids can promote the activation of PKC to impair insulin signal 
pathway, subsequently causing hepatic insulin resistance (Samuel 
and Shulman, 2016). Wu et al. (2019) have found that impaired 
mitophagy can accelerate macrophage infiltration in white adipose 
tissue in high-fat diet–fed mice with FUNDC1 knockout. They 
have also demonstrated that impaired mitophagy can promote 
macrophage infiltration to activate MAPK signal pathway and 
inflammatory response to impair mitochondrial quality control, 
subsequently causing insulin resistance and hepatic steatosis 
(Wu et al., 2019). Collectively, these evidences have suggested 
that mitophagy can suppress macrophage-induced inflammatory 
response and improve mitochondrial quality control to suppress 
hepatic insulin resistance and steatosis.

In a word, mitophagy can prevent hepatic fatty acid 
accumulation via maintaining mitochondrial function and 
accelerating mitochondrial fatty acid oxidation. However, the 
study of mitophagy on liver diseases is still in its infancy, and 
its role and molecular mechanism are also still needed to be 
confirmed by extensive experiments.

MITOPHAGY AS THERAPEUTIC 
INTERVENTION IN HEPATIC 
INSULIN RESISTANCE

Mitochondrion is the major site of aerobic respiration and the main 
energy production center. Glucose, fatty acids and amino acids are 
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substrates for mitochondrial energy production. Mitochondria 
play central roles in substrate oxidation, tricarboxylic acid cycle, 
oxidative phosphorylation, cell proliferation, cell metabolism, and 
programmed cell death (Montgomery and Turner, 2015). There 
are plenteous methods for the determination of mitochondrial 
function, including the protein and mRNA expressions of 
mitochondrial-encoded genes CYTB and COX1; respiratory 
chain complexes I, II, and III; nuclear-encoded genes PGC1α; 
mitochondrial enzyme activity; mitochondrial size and shape; 
mitochondrial quantity; and ROS production (Montgomery 
and Turner, 2015; O’brien et al., 2017; Trotta and Chipuk, 2017; 
Lima et al., 2018; Lv et al., 2019). However, there is no recognized 
method available for the detection of mitochondrial respiratory 
chain function. Therefore, it is urgent to develop a recognized 
method for mitochondrial respiratory chain function evaluation.

Given the central role of mitochondria in cellular energy 
metabolism, mitochondrial dysfunction is predominantly 
referred to as defective mitochondrial oxidative phosphorylation, 
which is characterized by impaired substrate oxidation and 
damaged mitochondria accumulation (Crescenzo et al., 2016). 
In general, damaged mitochondria accumulation can cause 
excessive ROS production, which will destroy mitochondrial 
oxidative phosphorylation and substrate oxidation, thereby 
inhibiting fatty acid oxidative degradation and accelerating fatty 
acid accumulation (Finck and Hall, 2015; Crescenzo et al., 2016; 
Horst et al., 2017). As a result, fatty acids especially diacylglycerol 
and ceramide may excessively accumulate in liver tissue. 
Previous report has shown that diacylglycerol can activate PKC 
to impair insulin signal pathway (Ditte et al., 2016; Ter Horst 
et al., 2017). Moreover, ceramide also activates PKCζ to suppress 
protein kinase AKT and further inhibits insulin signal pathway 
(Montgomery and Turner, 2015; Sajan et al., 2015; Chen et al., 
2017b). In conclusion, mitochondrial dysfunction gives rise to 
hepatic fatty acid accumulation, which ultimately impairs insulin 
signal pathway and causes hepatic insulin resistance.

Insulin plays a central role in lipid and glucose metabolism 
and also promotes mitochondrial function characterized  by 

enhanced mitochondrial oxidative metabolism and ATP 
production in hepatocytes (Kim et al., 2015; Ruegsegger et al., 
2019). However, insulin resistance also leads to mitochondrial 
dysfunction. Previous evidence has demonstrated that hepatic 
insulin resistance exacerbates lipid deposition, oxidative stress, 
lipid peroxidation, and mitochondrial dysfunction in liver 
tissues (Goodpaster, 2013). Therefore, a vicious circle between 
dysfunctional mitochondrial respiration and hepatic insulin 
resistance is established.

Growing evidence has shown that mitophagy may be a 
promising therapeutic target for hepatic insulin resistance. 
Marycz et al. (2018) have speculated that mitophagy is a repair 
mechanism responsible for cellular energy homeostasis and 
cell survival in insulin resistance hepatocytes and adipose 
cells. Qi et al. (2016) have also found that impaired mitophagy 
dramatically exacerbates high-fat diet–induced insulin 
resistance. Fortunately, enhanced mitophagy remarkably 
protects mice from high-fat diet–induced insulin resistance. 
Therefore, they consider that mitophagy should be considered 
as a protective response to high-fat diet–induced insulin 
resistance (Qi et al., 2016).

Currently, mitochondrial dysfunction is recognized as 
a pivotal risk factor for insulin resistance and metabolic 
syndrome (Crescenzo et al., 2016; Sarparanta et al., 2017). 
Autophagy is responsible for eliminating misfolded proteins 
and dysfunctional organelles such as aged or dysfunctional 
mitochondria and endoplasmic reticulum (Che et al., 2018). 
Therefore, as a selective autophagy, impaired mitophagy may 
fail to eliminate damaged mitochondria in time, which further 
causes excessive accumulation of damaged mitochondria in 
hepatocytes and triggers mitochondrial dysfunction (Crescenzo 
et al., 2016). Therefore, researchers have suggested two 
therapeutic strategies for improving mitochondrial dysfunction: 
One is to increase the quantity of mitochondria by enhancing 
its biosynthesis. The other is to remove damaged mitochondria 
by mitophagy. Considering that clearance of dysfunctional 
mitochondria is more important for mitochondrial homeostasis 

TABLE 1 | The role and molecular mechanisms of natural or synthesized compounds-induced mitophagy on liver diseases.

Compound Disease model Mechanism Protein Reference

Quercetin Mice with nonalcoholic fatty liver 
disease (NAFLD) and free fatty 
acid–treated HepG2 cells

Activating mitophagy to improve hepatic steatosis PINK1 ↑, Parkin ↑, Beclin-1↑, 
LC3-II/I ↑, and p62 ↓ 

(Liu et al., 2018)

Linseed oil Obese mice Activating mitophagy to improve hepatic insulin 
resistance, hepatic mitochondrial biogenesis, hepatic 
lipid accumulation

Parkin ↑, FUNDC1 ↑, LC3-II/I 
↑, and p62 ↓

(Yu et al., 2019b)

Exenatide Mice with NAFLD Activating mitophagy to reduce oxidative stress and 
NLRP3 inflammasome in liver tissue

LC3-II/I ↑, Beclin-1 ↑, Parkin 
↑, BNIP3 ↑, NLRP3↓, and 
IL-1β ↓

(Shao et al., 2018)

Melatonin Mice with NAFLD and palmitic 
acid (PA)–treated primary 
hepatocytes

Promoting Drp1-mediated mitochondrial fission 
and BNIP3-dependent mitophagy to rescues 
mitochondrial respiratory function

Drp1 ↑, Atg5 ↑, Beclin-1 ↑, 
mito-LC3II ↑, and BNIP3 ↑

(Zhou et al., 2018)

Akebia saponin 
D

Oleic acid–treated BRL cells Alleviating hepatic steatosis through promoting 
BNIP3-mediated mitophagy

mTOR ↓, LC3II ↑, and 
BNIP3 ↑

(Gong et al., 2018)

Sirtuin 3 Mice with NAFLD and PA 
-treated primary hepatocytes

Alleviating hepatic steatosis through promoting 
BNIP3-mediated mitophagy

Mito-LC3II ↑, Atg5 ↑, 
Beclin-1 ↑, and BNIP3 ↑.

(Li et al., 2018b)
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including mitochondrial function and biosynthesis, more 
attention has been focused on the removal mechanism of 
dysfunctional mitochondria in insulin-resistant conditions 
(Gonzalez-Franquesa and Patti, 2017; Kalavalapalli et al., 
2018; Marycz et al., 2018). There is no doubt that mitophagy-
mediated removal of dysfunctional mitochondria should be 
the center of attention. Growing evidence has also shown that 
mitophagy may be a potential therapeutic target for hepatic 
insulin resistance (Mottillo et al., 2016; Zhang et al., 2017). Very 
recently, a limited number of researches have reported that 
mitophagy may improve mitochondrial quality and accelerate 
fatty acid oxidative degradation to suppress hepatic insulin 
resistance and lipid accumulation. However, the cause–effect 
relationship between hepatic insulin resistance and mitophagy 
is also still needed to be confirmed by substantial experiments 
(Pickrell et al., 2013; Chen et al., 2017a).

CONCLUSION

This review focuses on the complex relationship among hepatic 
insulin resistance, hepatic fatty acid accumulation, mitochondrial 
dysfunction, and mitophagy. Mitochondria play pivotal roles 
in the regulation of fatty acid metabolism. Extensive studies 

have indicated that mitochondrial dysfunction plays a central 
role in hepatic fatty acid–induced hepatic insulin resistance 
(Montgomery and Turner, 2015; Wang et al., 2017b). Interestingly, 
mitophagy contributes to mitochondrial quality control and the 
maintenance of mitochondrial function by selectively degrading 
defective mitochondria. At present, the protective mechanism 
of mitophagy on hepatic insulin resistance still needs further 
experimental confirmation. In this review, we summarize some 
evidences: (1) Influx of fatty acids into liver tissue can cause 
mitochondrial dysfunction; (2) mitochondrial dysfunction 
can further obstruct the timely elimination of fatty acids and 
induce hepatic fatty acid accumulation; (3) hepatic fatty acid 
accumulation is responsible for the pathogenesis of lipotoxicity 
and inflammation; (4)  lipotoxicity and inflammation can 
interfere with insulin signaling pathway to cause hepatic insulin 
resistance; (5) interestingly, enhanced mitophagy can selectively 
remove damaged mitochondria to improve mitochondrial 
dysfunction and restore mitochondrial function, which is 
beneficial to the elimination of hepatic fatty acids; (6) mitophagy-
mediated recovery of mitochondrial function can reverse hepatic 
fatty acid accumulation–induced hepatic insulin resistance. The 
association between mitophagy and hepatic insulin resistance is 
still not completely understood, in part due to various methods 
for detecting mitochondrial function (Chow and From, 2010; 

FIGURE 2 | Diagram illustrates the possible protective mechanism of mitophagy on hepatic fatty acid–induced hepatic insulin resistance. Enhanced mitophagy can 
degrade damaged mitochondria to restore mitochondrial function and accelerate mitochondrial fatty acid oxidation, which is beneficial to the reversion of hepatic 
fatty acid accumulation and the improvement of hepatic insulin resistance.
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Montgomery and Turner, 2015). Therefore, given the confirmed 
relationship between hepatic fatty acid–induced mitochondrial 
dysfunction and hepatic insulin resistance, we hypothesize 
that mitophagy can remove damaged mitochondria to restore 
mitochondrial function and promote the oxidative degradation 
of fatty acids (Figure 2). This physiological process is conducive 
to the inhibition of hepatic fatty acid accumulation and hepatic 
insulin resistance (Figure 2). A limited number of studies have 
proved that enhanced mitophagy can inhibit hepatic lipid 
accumulation to improve hepatic insulin resistance. However, 
the definite relationship between mitophagy and hepatic insulin 
resistance still needs further experimental confirmation (Yang 
et al., 2014; Seillier et al., 2015; Corsa et al., 2019). Moreover, 
energy metabolism and organismal homeostasis attribute to tight 
coordination between mitochondrial biogenesis and degradation. 
Certainly, pursuit of natural or synthesized compounds 
possessing mitochondrial biogenic and mitophagic activities 
may provide novel insights into the therapeutic interventions for 
mitochondria-related diseases such as hepatic insulin resistance 
and metabolic syndrome.
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