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Obesity is thought to significantly impact the quality of life. In this study, we sought to evaluate the health consequences of obesity
on the risk of a broad spectrum of human diseases. The causal effects of exposing to obesity on health outcomes were inferred
using Mendelian randomization (MR) analyses using a fixed effects inverse-variance weighted model. The instrumental variables
were SNPs associated with obesity as measured by body mass index (BMI) reported by GIANT consortium. The spectrum of
outcome consisted of the phenotypes from published GWAS and the UK Biobank. The MR-Egger intercept test was applied to
estimate horizontal pleiotropic effects, along with Cochran’s Q test to assess heterogeneity among the causal effects of
instrumental variables. Our MR results confirmed many putative disease risks due to obesity, such as diabetes, dyslipidemia, sleep
disorder, gout, smoking behaviors, arthritis, myocardial infarction, and diabetes-related eye disease. The novel findings indicated
that elevated red blood cell count was inferred as a mediator of BMI-induced type 2 diabetes in our bidirectional MR analysis.
Intriguingly, the effects that higher BMI could decrease the risk of both skin and prostate cancers, reduce calorie intake, and
increase the portion size warrant further studies. Our results shed light on a novel mechanism of the disease-causing roles of
obesity.
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INTRODUCTION
Obesity is a global challenge that greatly impacts human health and
behavior. Many studies have shown that obesity, generally defined
as high body mass index (BMI), can lead to a range of physical and
mental diseases including cardiovascular diseases (CVD) [1], type 2
diabetes (T2D) [2], depression [3], and cancers [4]. Some studies have
indicated that blood traits, including high red blood cell (RBC), were
associated with increased risk of obesity [5], while our under-
standing of the direct consequences of obesity remains unclear due
to confounding factors that are not well controlled.
In the past few decades, observational studies have investigated

the effects of high BMI on the risk of disease. Although diabetes
was established to be the consequence of obesity [6], the effect of
obesity on diabetic retinopathy (DR) is still blur [7, 8]. Furthermore,
the association between BMI and blood iron status is strongly
confounded by the age of the samples [9, 10].
Mendelian randomization (MR) is a powerful statistical approach

that leverages genetic variants as instrumental variables (IVs) to
investigate the causal effect of an exposure (e.g., obesity) on an
outcome (e.g., CVD). Based on the random assignment of parental
alleles to their offspring, a well-designed MR analysis is able to
minimize the confounding effects and infer the causal effects as in
a randomized clinical trial [11, 12].

In this study, we reported the results of a phenotype-wide MR
analysis aimed at clarifying the direct causal effects of obesity on
human health. To our knowledge, this is the first study to
investigate the causal effects of high BMI on a broad spectrum of
health outcomes. Our results not only validated the known
consequences of obesity, but also identified novel obesity
complications that deserve further attention in future studies.

MATERIALS AND METHODS
Ethics statement
The current study did not involve any identifiable personal information or
intervention on the living subjects. Data sources of this study are publicly
available. Therefore, this study was exempt from review by the institutional
review board.

Data collection and genome-wide association testing
Summary statistics of the BMI GWAS were obtained from Genetic
Investigation of ANthropometric Traits (GIANT) Consortium (N= 339,224)
[13]. The summary statistics of the UK Biobank (UKB) GWAS were
calculated by Dr. Neale’s laboratory [14]. The summary statistics of the
non-UKB GWAS were available from the MR-Base website [15]. The UKB is a
large prospective cohort of above 500 thousand participants, who
provided the responses to questionnaires and blood and urine samples
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at UKB recruitment centers [14]. Genomic data of ~820,000 variants were
imputed up to a combined reference panel of 1000 Genome project and
UK10K, resulting in 13.7 million genomic variants with imputation quality
score ≥ 0.8 and MAF ≥ 0.0001. The GWAS summary statistics from
Dr. Neale’s laboratory included ~300 thousand samples of European
ancestry, aged between 40 and 69 years [16]. For each phenotype
including BMI, the association test was conducted using a linear or logistic
regression model adjusted for age, sex, square age, interaction of sex and
age, interaction of sex and square age, and the first 20 PCs.

Instrumental variables (IV) selection
The IVs should conform to the following MR principles: (1) significantly
associated with the exposure (p value ≤ 5 × 10−8); (2) not associated with
the outcome (p value > 0.05); (3) influence the outcomes only through the
exposure. However, the second and the third principles could not be
tested in practice. SNPs met above principles were pruned based on their
pair-wise linkage disequilibrium (LD r2 < 0.01). The SNP of the smallest p
value in a clump was selected as IV. The pleiotropy effect of IVs was
estimated in our MR analysis as demonstrated in the following section.
In our primary MR analysis, there were 97 SNPs significantly associated

with BMI (association p value ≤ 5 × 10−8) as reported by GIANT consortium
[13]. After clumping, 92 SNPs were available for IV quality control. A SNP
rs9641123 (hg19 chr7:g.93197732G>C) in CALCR gene was further
removed because of being palindromic and allele frequency close to
50%. The association summary statistics of the 91 IVs is shown in
Supplementary Table S1.
In UKB data (Fig. 1), we got 51,998 significant BMI SNPs at genome-wide

significant level of 5 × 10−8 with MAF ≥ 0.0001 and imputation quality
score ≥0.8. After clumping (LD r2 < 0.01), 340 SNPs remained and were
subjected to pleiotropic effect control in GWAS catalog. We further
removed IVs that associated with a phenotype other than BMI or obesity at
5 × 10−8 to reduce the pleiotropic effects [17]. Finally, we employed 67
SNPs as IVs for our secondary MR analysis (Supplementary Table S2).
We calculated the F-statistic to evaluate the instrument strength of the

IVs: F= (N�K�1
K )( R2

1�R2), where R2 is the proportion of variance explained by
IVs, N is the sample size from BMI GWAS, and K is the number of IVs.

Mendelian randomization analysis
In our primary MR analyses, we employed BMI as the exposure and 4174
phenotypes in UKB data as the outcomes, including lifestyles, physical
measurements, blood/urine assays, self-report, and diagnosed diseases.
The association effects on BMI were estimated in the largest yet GWAS of
BMI in GIANT consortium [13]. The secondary MR analysis, including 1077
outcomes from non-UKB GWAS from MR-Base, aimed to replicate the main
findings in the primary analysis. The association effects of the measured
BMI in UKB were estimated using 359,983 participants of European
ancestry. In the MR analysis of RBC, the measured RBC (N= 350,475) in the
UKB was the exposure, while the phenotypes from non-UKB GWAS were
the outcomes.
Our two-sample MR analyses were all conducted following the practices

recommended in the R package “TwoSampleMR” [15]. In brief, we first

calculated the Wald ratio estimate for each IV and combined the estimates
of all IVs by the inverse-variance weighted (IVW) method. The phenotype-
wide IVW p values were corrected by false discovery rate (FDR) as proposed
by Benjamini and Hochberg in 1995. We used MR-egger intercept and
Cochran’s Q to estimate the pleiotropic effect and heterogeneity of the MR
results, respectively. In the primary MR analyses, we report the significant
causal effects with FDR ≤ 0.05, MR-egger intercept p value > 0.05, and
Cochran’s Q p value > 0.05 [18]. In the secondary MR analyses, we sought
validations at IVW p value ≤ 0.05. Furthermore, MR-PRESSO method was
used to detect pleiotropy and bidirectional MR was performed for
validated outcomes.

RESULTS
Our study design is shown schematically in Fig. 1. The F-statistics
of IVs in the primary and secondary MR analyses are 76.55 and
23.82, respectively.

The primary analyses results unveiled novel causal effects of
obesity
The primary MR analysis investigated the causal effects of BMI on
phenotypes reported in the UKB cohort.
Overall, exposure to obesity could result in health problems in

multiple systems (Fig. 2, Table 1, and Supplementary Table S3).
First of all, higher BMI was associated with heart diseases (i.e.,
heart failure and myocardial infarction (MI)), diseases in the
circulatory system (i.e., venous thromboembolism and blood clot),
diabetes, hypertension, dyslipidemia, gout, and sleep disorders.
Obesity patients were also prone to pain experience, probably
caused by musculoskeletal problems (i.e., arthrosis in knee and
hip). The health satisfaction and overall health rating were coded
using higher scores indicating poorer health in the UKB data. Our
results showed that higher BMI could contribute a poorer
subjective health status. All these results were previously reported
by other studies and further confirmed by us.
Our novel results implicated that obesity could increase the RBC

in peripheral blood. One SD increase of BMI could result in
the elevation of 0.043 × 1012/L RBC [95% CI: 0.034–0.063, unit:
1012/L]. Intriguingly, our results suggested that higher BMI could
increase the risk of unclassified DR (IVW beta= 0.002 [0.001,
0.002], IVW p value= 4.18 × 10−5). At the same time, obesity
decreased the risks of prostate cancer and skin cancer (Fig. 3).
However, the causal effects on other types of cancers, including
lung cancer, stomach cancer, and leukemia, were not significant
(IVW p value > 0.05). It should be pointed out that the portion size
of obese people increased significantly (Fig. 3). Meanwhile, we
observed a clear trend that obesity led to the diet preference on
low fat and high fiber foods. This trend was evidenced by the

Outcomes:
phenotypes 

in UK Biobank

Exposure:
body mass index

in GIANT consortium

IV selection (n≤91)

Significant causal effects 
(IVW p-value ≤ 0·05)

a. Primary MR analyses as discovery stage b. Secondary MR analyses as validation stage

Outcomes: phenotypes
in MR base 

(excluding UK Biobank)

Exposure:
body mass index
in UK Biobank

IV selection (n≤67)

Significant causal effects 
(IVW p-value ≤ 0·05)

Fig. 1 The workflow of our primary and secondary MR analyses. The flow diagram summarized the selection of the datasets and the
instrumental variables in our primary MR analyses (a) and secondary MR analyses (b). GIANT the Genetic Investigation of ANthropo-
metric Traits, IV instrumental variable, n numbers, MR Mendelian randomization, IVW inverse-variance weighted method.
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increased preference on skimmed milk over half-skimmed or full
cream milk and wholegrain over white bread, along with
increased BMI.

Secondary MR validated a proportion of our primary findings
We were able to validate the causal effects of BMI on diabetes, MI,
arthritis, dyslipidemia, cigarettes smoked per day, and RBC (Fig. 2
and Table 1). Therein, RBC is the only validated novel finding.
In addition, the effects on sleep duration (IVW p value= 0.063, IVW
β=−0.013) and gout (IVW p value= 0.054, IVW β= 0.106) were in
the same direction as in the primary analyses, although at a
marginal significance level (Supplementary Table S4). Moreover,
obesity could increase the serum urate level, with 1 SD increase of
BMI results in 4% more urate. Due to the absence of genome-wide
summary statistics, diabetes-related eye diseases, dietary habit
traits, prostate, and skin cancers were not validated in our
secondary analysis.

RBC MR analyses result
To reveal the consequences of abnormal RBC, we estimated the
causal effect of RBC using the approach consistent to our
secondary MR analysis. This MR analysis was conducted with
RBC in UKB data as exposure and phenotypes in non-UKB GWAS
as outcomes. We finally got 438 IVs for the RBC MR analyses after
LD-based pruning (Supplementary Table S5).

In this stage, we found that higher RBC could cause higher 2-h
blood glucose level during oral glucose tolerance test (IVW β=
0.22, 95% CI: 0.06–0.37, IVW p value= 0.007) and increase the risk
of T2D (IVW β= 1.51, 95% CI: 0.23–2.69, IVW p value= 0.013).

Bidirectional Mendelian randomization analyses results
We treated RBC, smoking behavior, diabetes, urate, MI, HDL
cholesterol, rheumatoid arthritis, portion size, and low calorie as
exposures, but found no significant causal association with BMI
(Supplementary Table S6).

DISCUSSION
Studying the causal relationship between obesity and various
human diseases can help guide the decisions in health manage-
ment and disease prevention strategy. Our study validated known
clinically relevant obesity complications and uncovered novel
causal effects of high BMI. Based on our MR analyses integrated
with UKB data and published GWAS, we confirmed many
consequences that have been previously reported by observa-
tional and experimental studies (Fig. 2), such as CVD, T2D, and
dyslipidemia [1, 19–21]. As for the reverse causation between BMI
and T2D, the results vary among observational studies where the
difference in the courses of T2D usually leads to variation in
nutrition and weight loss [22, 23]. In addition, it should be noted

Fig. 2 The forest plot of traits that causally associated with BMI integration of UK Biobank and MR-Base (excluding UK Biobank). NSNP
number of IVs, β the causal effect of IVW MR analysis, 95% LCI 95% lower confidence interval, 95% UCI 95% upper confidence interval, ID
(PMID) the UK Biobank ID or the PubMed ID of the published GWAS. The primary analysis results from UKB are plotted in blue, while the
secondary analyses result from UKB data are in red.
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that the European Association for the Study of Diabetes and
European Society of Cardiology guideline recommend T2D
patients to control weight, hoping to reduces potential risk
factors [24]. Furthermore, our results further support the known
causal links between obesity and urate concentration, arthritis,
and smoking behavior that have been reported by previous MR
studies [25–29]. As for novel finding, we found that higher BMI
could increase the RBC and proportion of low-calorie foods, and
further lead to bigger portion size. Therein, the causal relationship
between BMI and RBC was validated in the replication stage.
According to our both MR analyses, the results consistently

demonstrated that genetically elevated BMI was associated with
increased RBC. This phenomenon could be attributed to hypoxia
in obese subjects. Compared with non-obese subjects, obese
subjects displayed significantly lower adipose tissue blood flow
and muscle blood flow rates [30]. A previous study indicated that
PO2 (partial pressure of oxygen) levels are lower in obese subjects
than in lean subjects, using electrode-based O2 measurement [31].
Overall, these studies strongly suggest that hypoxia is a
consequence of obesity. Human body has evolved a series of
mechanisms to balance the stress induced by hypoxia including
increasing RBC [32]. RBCs release ATP, which can stimulate
vasodilatation and increase blood flow in response to deoxygena-
tion [33]. Previous studies have suggested that RBCs are
associated with metabolic syndrome, insulin resistance, and fatty
liver disease [34]. In our MR analysis of RBC, we found a causal
association between elevated RBC and the risk of T2D. Given the
causal effects of obesity-RBC and obesity-T2D, this result
suggested that elevated RBC may be a mediator in the
pathogenesis of obesity-induced T2D, although the mechanism
may be more complicated than we have observed.
Apart from the novel finding of RBC, we also identified that

higher BMI could lead to an increased risk of MI, which was in line
with previous epidemiological studies (Fig. 2 and Table 1). It is
widely believed that obesity increases the risk of CVD [1].
However, whether BMI is a direct risk factor for MI is still under
debate [35, 36]. Several studies have suggested that higher BMI is
strongly associated with the risk of MI [35, 37]. They are supported
by our MR analysis with a significant genetic link between obesity
and MI. These results may imply that promote weight loss may be
beneficial in lowering the risk of MI.
Because of the absence of certain UKB outcomes from GWAS

catalog and the difference in phenotype definitions between the
two, not all findings in our primary MR analysis were subjected to
the secondary MR analysis. DR is the most common ophthalmic
complication of diabetes and is a leading cause of acquired
blindness [38]. In recent years, various clinical epidemiological
studies have investigated the effects of high BMI on the risk of DR.
Some studies showed that people who are overweight or obese
are less vulnerable to DR [39, 40], while other studies did not
detect a significant association between obesity and DR [41, 42].
Thus, the potential genetic links between obesity and DR require
further investigation. We demonstrated that high BMI was not
only a major risk factor for T2D that serves as a major cause of
retinopathy, but also an independent causal factor for ophthalmic
diseases. This is helpful in detangling the complicated relationship
between obesity and DR. In fact, the relationship between BMI and
DR is complicated by the course of T2D, which could induce
weight loss [22]. As a result, lower BMI in T2D patients is more
likely to be a concomitant symptom of DR after a prolonged
course of T2D, rather than a causal factor of DR. Therefore,
observational studies could be confounded by this U-shaped
curve between BMI and DR incidence [43]. We think stratified
analysis or sliding window analysis could be informative when the
individual-level data are available. However, our MR results could
be biased by the hidden pleiotropic effect from T2D of the IVs. The
complex causal relationship between BMI and DR has to be further
studied.Ta
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Fig. 3 The forest plot of the causal effects of obesity on diet preferences, oculopathy, and cancer UK Biobank. NSNP number of IVs, β the
causal effect of IVW MR analysis, 95% LCI 95% lower confidence interval, 95% UCI 95% upper confidence interval, UKB_ID the UK Biobank ID.

Fig. 4 The illustrative chart of the consequences of obesity. Obesity increased the risk of an outcome or the level of a quantitative trait
when they are connected by sharp arrow. On the contrary, obesity decreased the risk of the outcome when they are connected by
blunt arrow.
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Obesity is associated with the susceptibility to various cancers
[44]. In our study, a higher BMI reduced the risk of skin cancer and
prostate cancer (Fig. 3). The inverse correlation between obesity
and skin cancer incidence rate has been observed in a US
Caucasian cohort [45]. The authors concluded that obesity may be
the mediator between chronic sun exposure and skin cancer.
However, we observed a direct effect in our study, which indicated
that genetic-driven obesity may be protective against the aberrant
changes that result from sunlight exposure. Moreover, a large
body of literature has established the complex relationship
between obesity and prostate cancer, while the effect of obesity
on specific stages of prostate cancer varied. People with higher
BMI were less likely to have early-stage prostate cancer but were
susceptible to aggressive cancer [46–48]. In our study, the MR
analysis of obesity and prostate cancer was not stratified by
prostate cancer stages. However, the protective effect was robust,
in that the causal effect was consistent across our primary and
secondary analysis.
Our study also uncovered a relationship between obesity and

dietary preferences (Fig. 3), including an increase in the proportion
of low-calorie foods and bigger portion size. The former looks
straightforward, owing to the widespread of health education,
encouraging obese people to consume less calorie to manage
weight, while the latter can be more complex because of the
interaction of physiological and psychological factors associated
with food consumption. For instance, leptin resistance has been
reported to make it relatively harder for obese people to sense
fullness [49]; the awareness of already taking a low-calorie diet
tended to relax the vigilance about the total amount of food [50].
Meanwhile, recent studies indicated a significant association
between obesity and high BMI with eating disorder [51–53]. Zoe
et al. suggested that those with higher BMI were more likely to
suffer from binge eating or overeating [51]. Similarly, people on
dietary restraint usually fell into the illusion that they should take
more snacks to compensate for relatively low consumption,
making their actual portion size much bigger [54, 55]. The reversal
analysis implicated that the intake of low-calorie foods or the use
of a large portion size did not adequately lead to obesity. A
possible explanation might be that the food structure and the
amount of food could not determine the onset of obesity alone in
the context of modern lifestyles since obesity is a disease
determined by multiple factors. Thus, more investigations focused
on comprehensive indices should be conducted in the future.

CONCLUSION
Our comprehensive MR study robustly demonstrated that obesity
is causal of a variety of human diseases (Fig. 4). Our results
confirmed the known causal effect of obesity on human health.
Most importantly, our study discovered novel consequences (e.g.,
MI and RBC) and further supported several consequences under
debate (e.g., DR, skin cancer, and prostate cancer). Our results
could be implicative to disease prevention and future research
works on disease etiology.

URLs
UK Biobank, https://www.ukbiobank.ac.uk/
Dr Neale’s Lab, http://www.nealelab.is
GIANT consortium, http://portals.broadinstitute.org/collaborat

ion/giant/index.php
GWAS catalog, https://www.ebi.ac.uk/gwas
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