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Abstract: Graphene and graphene oxide have become the base of many advanced 
biosensors due to their exceptional characteristics. However, lack of some properties, 
such as inertness of graphene in organic solutions and non-electrical conductivity of 
graphene oxide, are their drawbacks in sensing applications. To compensate for 
these shortcomings, various methods of modifications have been developed to provide 
the appropriate properties required for biosensing. Efficient modification of graphene and 
graphene oxide facilitates the interaction of biomolecules with their surface, and the 
ultimate bioconjugate can be employed as the main sensing part of the biosensors. 
Graphene nanomaterials as transducers increase the signal response in various sensing 
applications. Their large surface area and perfect biocompatibility with lots of biomole-
cules provide the prerequisite of a stable biosensor, which is the immobilization of 
bioreceptor on transducer. Biosensor development has paramount importance in the 
field of environmental monitoring, security, defense, food safety standards, clinical sector, 
marine sector, biomedicine, and drug discovery. Biosensor applications are also prevalent 
in the plant biology sector to find the missing links required in the metabolic process. In 
this review, the importance of oxygen functional groups in functionalizing the graphene 
and graphene oxide and different types of functionalization will be explained. Moreover, 
immobilization of biomolecules (such as protein, peptide, DNA, aptamer) on graphene 
and graphene oxide and at the end, the application of these biomaterials in biosensors 
with different transducing mechanisms will be discussed.
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Introduction
Biosensors have attracted significant attention due to their potential impact on 
human life, from diagnosis and treatment of diseases to the detection of environ-
mental safety issues such as water contaminants.1 Graphene (G) (a two-dimensional 
allotrope of carbon) and its derivatives are promising candidates in designing rapid, 
accurate, and stable biosensors with high sensitivity and selectivity which provide 
low detection limits.2

Graphene is a hexagonal carbon lattice with a thickness of only one atom which 
has a variety of superior features such as large surface area, high thermal and 
electrical conductivity, and mechanical strength. The lack of defects in pure gra-
phene causes low chemical reactivity and makes graphene inert in organic solvents. 
On the other hand, fabrication of graphene at high temperatures produces defects 
but damages its structure.3 However, these structural defects are the active sites for 
electron transfer and subsequently promote electrostatic interactions.1
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Some of the special properties of graphene can only be 
accessible if it is functionalized with organic groups such as 
hydroxyl, carboxyl, or amino.4 For instance, graphene family 
materials will acquire dispersibility and colloidal stability in 
aqueous solutions when their surfaces are functionalized.5 

However, some derivatives of graphene, such as graphene 
oxide (GO) and reduced graphene oxide (rGO), have abun-
dant functional groups in their structures which help them 
interact with other molecules and disperse easily (Figure 1).

Nonetheless, in some applications, for example in 
dimethylformamide (DMF)-exfoliated graphene-based 
nicotinamide adenine dinucleotide hydrogen (NADH) 
electroanalytical sensor, the attachment of oxygen func-
tionalities to the electrode often causes fouling of NAD+. 
To solve this problem, unfunctionalized graphene which 
extensively covers the edge-plane sites and defects is 
applied and encourages the electro-oxidation of NADH 
and prevents its fouling.6

Oxygen-containing groups and sp2 domains allow gra-
phene and its derivatives to attach to the other molecules 
through covalent bonding and non-covalent bonding.7 These 
properties make graphene nanomaterials the perfect supports 
for biomolecule immobilization and improve their stability 
in numerous environments. Immobilization of enzyme (for 
instance) on functionalized graphene or its derivatives will 
enhance the catalysis performance and reusability of the 
enzyme.8 Immobilized biomolecules act as sensing elements 
in biosensors due to their interaction with the target analyte.

A biosensor detects a target analyte by transforming 
the biological reaction to detectable signals. It is com-
posed of three elements: bioreceptor, transducer, and 
output system. The signals attributed to the interaction 
between the biomolecule and the analyte are converted 
to visible signals which appear in the output system. 
The quality of a biosensor is initially determined by the 
biochemical specificity of the biomolecule as well as 

the quality of the transducer. Graphene-based nanoma-
terials play the role of transducers in biosensors 
(Figure 2).9–11

Several advantages of graphene and its derivatives are 
attributed to their ordered pore structure, high surface area 
with numerous active sites, excellent electrical conductiv-
ity and electrochemical accessible surface area, light 
weight, and perfect mechanical strength,12–14 which 
make them suitable candidates for several applications; 
some of them are mentioned below:

● Core/shell-like cobalt phosphide decorated nitrogen 
and sulphur co-doped three-dimensional graphene 
(CoP@N, S-3D-GN) hybrid electrocatalyst demon-
strated the best hydrogen evolution reaction (HER) 
catalytic activity amongst the as-synthesized electro-
catalysts due to its synergistic effect of co-doping and 
the metal phosphide contribution. This specific mor-
phology of the hybrid electrocatalyst stops the 
agglomeration and increases the pore sizes, which 
encourages the diffusion of electrons and maintains 
the structural stability during the HER process.13

● Heteroatom-doped or single/double-vacancy-modified 
graphenes have been widely studied in the electrochemi-
cal cells’ productions for energy storage because of their 
specific physicochemical properties. Karaman et al 
synthesized various graphene-like porous carbon net-
works (GPCs) with 3D hierarchically ordered “ion high-
ways” through the carbonization/activation of orange- 
peel wastes which were used as electrode material in 
high-energy supercapacitors. The unique surface mor-
phology and the well-tuned pore size distribution of the 
GPC eased diffusion of ions by reducing the ion transfer 
pathway through ion highways and accommodating 
a large number of charges, resulting in higher energy 
storage.15

Figure 1 (A) The hexagonal honeycomb structure of graphene, (B) The amorphous structure of graphene oxide, and (C) Reduced graphene oxide. Reproduced from 
Thangamuthu M, Hsieh KY, Kumar PV, Chen GY. Graphene- and graphene oxide-based nanocomposite platforms for electrochemical biosensing applications. Int J Mol Sci. 
2019;20(12):2975.8
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● Karaman et al designed a sandwich-type electroche-
mical immunosensor for aflatoxin B1 (AFB1 stimu-
lates cellular metabolism, producing large amounts of 
reactive oxygen species and free radicals) detection 
by porous graphene nanoribbon decorated with gold 
nanoparticles as a sensor platform and nanosheets of 
MoS2 incorporated with Ag nanocubes as a signal 
amplifier. The incorporation of metal nanoparticles 
promoted the sensing ability of porous graphene- 
based nanomaterials. This sensor offers a great 
method for the detection of AFB1 in wheat 
samples.16

● In a direct-methanol fuel cell (DMFC) application, 
a practical electrocatalyst containing graphene 
quantum dots and functionalized multi-walled car-
bon nanotubes (f-MWCNTs) was prepared by 
Gizem et al. Chronoamperometry (CA) analysis 
exhibited that the GQDs/f-MWCNTs/glassy carbon 
electrode (GCE) has higher current density com-
pared to the other electrocatalysts as well as 

performing an important electrochemical activity 
against methanol.17

● Graphene quantum dot as a member of the 0-dimen-
sional graphene family attracts remarkable attention 
to sensing applications due to its optoelectronic prop-
erties and high conductivity.18 A quartz crystal 
microbalance (QCM) immunosensor was developed 
based on Au-NPs decorated sulfur-doped graphene 
quantum dot and hollow ZnS-CdS nanocage for the 
detection of interleukin 6 (IL-6). IL-6 performs as 
a proinflammatory and anti-inflammatory cytokine 
and works as an important diagnostic biomarker for 
sepsis. The developed QCM immunosensor has the 
following features: i) it is very stable owing to the 
strong ester bonds; ii) no crosslinker was used; and 
iii) compared to conventional techniques like 
enzyme-linked immunosorbent assay (ELISA), the 
IL-6 analysis was done in short time. This immuno-
sensor can be employed as a substitute method for 
clinical diagnosis.19

Figure 2 Examples of biosensors and components on a graphene platform. Reproduced from Peea-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent 
advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnology. 2018;16(1):1–7.9
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Structures and Properties of 
Graphene and Graphene Oxide
Graphene, a monolayer of sp2-bonded carbon atoms 
arranged in a honeycomb lattice, was produced in 2004, 
by separation of single layers of three-dimensional struc-
ture of graphite through mechanical exfoliation.4,20,21 

Graphene possesses an extremely high surface area, high 
aspect ratio, and superior physical properties and biocom-
patibility which make it a great material for nanocompo-
sites with high-performance and biological 
applications.2,21,22 Distribution of the benzene rings in 
the graphene structure contributes to the covalent or non- 
covalent bonds with the other atoms, which generally 
results in modifications of the electrical or chemical prop-
erties of graphene.3 Oxygen functional groups distort the 
graphene structure because planar sp2 converts to sp3 

hybridization.23

The properties of GO, an oxidized form of graphene, 
include fluorescence-quenching capability, high energy 
transfer efficiency, biocompatibility, and facile chemical 
modification. The combination of these interesting proper-
ties along with simple and scalable synthesis preserves the 
potential applications of GO in many areas.24 GO is one of 
graphene’s derivatives which apart from superior proper-
ties of graphene contains oxygen functional groups on its 
surface. Hydroxyl and epoxy groups are spread in the 
shape of isolated islands on the top and bottom of GO’s 
basal plane causing a slight distortion in the lattice, while 
carboxyl groups are attached to the edges of the GO’s 
plane.23,25 One of the interesting properties of GO is 
amphiphilicity which means it has both hydrophobicity 
from pristine graphite and hydrophilicity from oxygen 
functionalities.24 Hydrophilicity and dispersion ability of 
GO in a variety of organic solvents is attributed to the 
hydrogen bonding between hydroxyl groups of GO and 
solvent interface.11,25 Due to the presence of functional 
groups, GO possesses two different regions: sp3 oxidized 
region and sp2 non-oxidized region of graphite, which has 
not been changed during GO synthesis.26

Synthesis of Graphene and 
Graphene Oxide
Synthesis of Graphene
Mechanical Exfoliation (Top-Down Approach)
Mechanical exfoliation involves weakening the van der 
Waals forces between graphite layers in order to separate 
them (top-down procedure).3,27 Technically, an adhesive 

such as a scotch-tape is employed to peel thin atomic 
layers of graphene from graphite.8

Chemical Vapor Deposition (CVD) (Bottom-Up 
Approach)
A complete CVD process is composed of three relatively 
independent stages: 1) the dissociation of carbon species 
and the formation of C atoms or small C clusters on a thin 
metal surface while a fluid (gas or liquid sprays) is decom-
posed at high temperature; 2) the nucleation of graphene 
while carbon atoms are dissolved into the metal crystalline 
surface (Ni or Cu); and 3) the lateral expansion of gra-
phene islands.20,28 The carbon precursor in CVD is usually 
methane, but other sources such as ethanol, isopropanol, 
ethylene, and acetylene are applied as well.20

Synthesis of Graphene Oxide
Chemical Exfoliation
In this process, graphite converts to GO electrochemically 
in an acidic solution.29 At first, graphite oxide is produced 
by oxidation of graphite; after that, graphite oxide is 
exfoliated easily in a solvent because of weak van der 
Waals forces between the layers of graphite oxide. 
Following the separation of individual sheets, single layers 
of graphite oxide called graphene oxide are obtained, and 
reduction of GO with reducing agents such as hydrazine 
hydrate (N2H4) at high temperature (100°C) will produce 
reduced graphene oxide (rGO) (Figure 3).8 Exfoliation 
will be accomplished successfully when several para-
meters such as sonication time, energy, and solvents are 
employed properly.30

Brodie and Staudenmaier Methods
Brodie was the first person who used a combination of 
fuming HNO3 and KClO3 as an oxidation media for pro-
ducing GO. After him, Staudenmaier added H2SO4 to the 
acid mixture in order to improve the process efficiency by 
performing the reaction in one single vessel.29,31 The 
lower carbon-to-oxygen ratio of Brodie’s method com-
pared to Staudenmaier’s method demonstrates that the 
GO produced by Brodie contains higher oxygen functional 
groups.31

Hummers Method
A mixture of concentrated H2SO4, NaNO3, and KMnO4 is 
used in the Hummers–Offeman method to obtain GO from 
graphite oxides’ stacked layers.25,32 There are three main 
stages in Hummers method: 1) intercalation of layers at 
low temperature (below 5°C); 2) oxidation of the 
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intercalated graphite layers at medium temperature 
(~35°C); and 3) hydrolysis of products at high temperature 
(98°C).29 The consumption of large amounts of oxidants 
and intercalating agents as well as the long processing 
time are some of the reasons why scientists considered 
modifying Hummers method.32

Tour’s Method
Tour’s group developed a new method in which using 
sodium nitride has been avoided while more potassium 
permanganate was used. In addition, phosphoric acid as 
a new acid was introduced to the reaction vessel, and GO 
with a higher degree of oxidation was produced. 
Substitution of nitric acid with phosphoric acid hindered 
the release of toxic gases such as NO2, N2O4, or ClO2. 
Moreover, more graphitic surfaces were offered by phos-
phoric acid, and in comparison the efficiency was much 
higher than Hummers method.33

In a similar procedure, Yu et al modified Hummers 
method by pre-oxidizing graphite to increase the interlayer 
spaces. Instead of NaNO3, the amount of KMnO4 was 
enhanced, and in the end KMnO4 was replaced by K2 

FeO4 when no NaNO3 was in the system. Removing 
NaNO3 from the system prevented release of toxic gases 
like NO2 and N2O4.32

Oxygen Functional Groups (OFGs)
Quite a lot of graphene nanomaterials properties are attrib-
uted to the presence of oxygen functional groups and their 
distribution in the structure. In addition, OFGs play a crucial 
role in the functionalization of graphene-based materials and 
their interaction with other molecules (immobilization of 
molecules on graphene), which makes the final compound 
an appropriate candidate for several applications (Figure 3).

Distribution of OFGs
Among different OFGs, hydroxyl and epoxy groups are 
spread on the surface of GO and other oxidized graphene 
materials. Therefore, the geometry of hydroxyl and epoxide 
distribution as isolated areas or evenly spread, or other pos-
sible forms, impacts the properties of graphene nanomater-
ials. To investigate the distribution of OFGs, Shin et al 
deposited titanium oxide on oxygen groups of GO by atomic 
deposition layer method (ADL) at various temperatures. 
They claimed that epoxy and hydroxyl groups could sit in 
three different areas: the center of hexagons (hollow-site), 
C-C bonds (bridge-site), and directly above C atoms (top- 
site). Epoxide groups prefer to sit in bridge-site, while hydro-
xyl groups prefer top-site as their stable adsorption site.23

Attachment of functional groups on both sides of the GO 
layer is more favorable than one side because structural 

Figure 3 (A) Schematic chemical structures of graphene, graphene oxide, and reduced graphene oxide. (B) Route of graphite to reduced graphene oxide. Reproduced from 
Jimenez-Cervantes E, Lopez Barroso J, Martínez–Hernández A, Velasco–Santos C. Graphene–based materials functionalization with natural polymeric biomolecules. Recent 
Adv Graphene Res. 2016;1:257–298.7
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vertical distortion is removed. Uniform (evenly distributed 
with similar distances from each other) and island structures 
(the highly oxidized domain-like distribution) are two 
selected patterns to define two-sided hydroxyl and epoxide 
groups. Both epoxy and hydroxyl groups tend to accommo-
date themselves on graphene in domain-like distribution 
rather than uniform because of their binding energy (Eb) 
(change in the energy when GO is formed from its compo-
nents [ie graphene and functional groups]). Hydroxyl groups 
show more attraction towards graphene; therefore, instead of 
distinct epoxide units, epoxide-hydroxyl compounds appear 
in the structure (Figures 4 and 5).8,23

Liu et al proposed a new structural model analyzed by IR 
mapping and discovered that disorders in GO structure are 
preferable sites for OFGs attachment. Chemical composition 
inspection revealed that the C-O bonds were mostly from 
hydroxyl, epoxy, and some ether groups, while the C=O 
bonds came from carboxyl and ketone compounds. There 
were a few lactones and anhydrides in the structure, which 
could be because of the combination of ketone and ether. 
C-O and C=O bonds are spread on the planes; however, 
C=O mostly prefers to sit on the edges and folds (that have 
vacancy defects). Lactone and anhydride can 
accommodate at the edges of the GO sheet.34 Ketone and 
quinone are mainly found at defects; however, other func-
tional groups might be created, relating to the defect size.35

Liu et al continued their discoveries on spatial distribution 
of OFGs by applying a novel AFM-IR (atomic force micro-
scopy–infrared radiation) technique to distinguish ketone and 
carboxyl groups in the overlapping regions of GO multilayers. 
They found that ketone and carboxyl are more stable at the 

edges and folded areas, whereas ketone groups show inhomo-
geneous distribution on the plane. Carbonyl groups prefer to 
accommodate themselves mostly on the edges and less on the 
folded areas and distinct regions of the basal planes. 
C-O functional groups spread homogeneously on the surface 
and exhibit an almost uniform distribution.36

Effect of pH, Temperature, and Reaction 
Time on OFGs
pH
Hui et al discovered that the carboxyl groups located at the 
edges of GO sheets will protonate in acidic 
environments and if pH value drops under 2, high protona-
tion of the -COO- groups occurs. On the contrary, higher pH 
in basic media causes detachment of several functional 
groups.37 X-ray photoelectron spectroscopy (XPS) analysis 
shows, in acidic environment (pH between 3 and 7), the C/O 
ratio enhances a little, which could be related to the size of 
GO nanosheets, because the edges of small sheets accom-
modate more functional groups fraction. Conversely, the 
ratio of C/O increases significantly in an alkaline environ-
ment (pH between 9 and 12) because of considerable detach-
ment of the OFGs. At pH values between 5 and 9, in contrast 
to the C-O groups, the amount of -C=O and -O-C=O groups 
reduces. All attached functional groups will leave the sur-
face when pH value is adjusted to 12.37

Aliyev et al exhibited that OFGs can be categorized to 
acidic and basic where acidic ones prefer to attach to the 
edges of graphene layers, while basal planes are more 
favorable for basic groups. Carboxylic, lactonic, and phe-
nolic -OH groups are among the possible acidic oxides.35

Figure 4 Dominant functional groups present in GO and rGO along with close-ups of various other functional groups and defects in rGO. Reproduced from Thangamuthu 
M, Hsieh KY, Kumar PV, Chen GY. Graphene- and graphene oxide-based nanocomposite platforms for electrochemical biosensing applications. Int J Mol Sci. 2019;20 
(12):2975.8
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Temperature
Luo et al investigated the preparation of graphite oxide 
containing different OFGs and sensitivity of ammonia gas. 
At 0°C while the oxidation has not been completed, the 
total number of hydroxyl and carboxyl groups was low. 
The oxidation of graphite progressed slowly as tempera-
ture elevated, and the number of hydroxyl groups at the 
edge and surface of graphite increased while the number 
of carboxyl groups decreased.38 At 100°C, due to the 
further oxidation of graphite, hydroxyl groups detached 
from the surface, and at 150°C they decomposed to sepa-
rate water molecules from oxygen atoms which then com-
bined with graphene to form epoxide.23,38 Table 1 
demonstrates the content of OFGs at different 

temperatures.39 With increasing reaction temperature, at 
first, the ratio of C/O and content of C=C decreased and 
then increased. The reason lies in the fact that, by decreas-
ing the content of C=C in graphite, the content of OFGs 
gradually increased, therefore the amount of oxygen 
increased, which caused a decrease in the C/O ratio.38 At 
the same time, by increment in the reaction temperature, at 
first, the content of C-OH increased and then decreased. 
This is because, at low reaction temperatures, C-OH pre-
fers to accommodate itself on the graphite surface, and by 
increment in the reaction temperature, the content of 
C-OH gradually increased. At 100°C, graphite oxide initi-
ally lost a part of its C-OH.38,40 The amount of C-O-C and 
O-C=O increased slowly with increase in reaction 

Figure 5 Top and side views of the optimized atomic structures for uniform- and island-type distribution of (A) epoxy groups and (B) hydroxyl groups. Red and blue 
spheres denote the oxygen and hydrogen atoms, respectively. Eb versus the number of (C) epoxide and (D) hydroxyl species for two configurations. Reproduced from Shin 
DS, Kim HG, Ahn HS, et al. Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide. RSC Adv. 
2017;7(23):13979–13984.23
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temperature, pointing out that the higher reaction tempera-
ture during the high temperature stage is beneficial for the 
formation of C-O-C and O-C=O. However, the amount of 
O-C=O increased slowly with the increment in the reaction 
temperature; the rate of increase was way less than the rate 
of decrease of C-OH, which indicates that graphite oxide 
at 100°C has a lower amount of water and a bigger contact 
angle compared to at 50°C.38 Raising the temperature up 
to 300°C causes the length of the C-O bond in epoxide to 
increase, which thereby assists in the removal of functional 
groups from graphene.39

Reaction Time
Nazri et al examined the effect of reaction time on 
OFGs of GO produced by modified Hummers method. 
In their study, the structure of GO has been analyzed by 
various characterization methods at different process 
times of 24, 48, 72, and 96 hours. They discovered 
that a minimum of 72 hours is the necessary time for 
oxidizing graphite to GO with Hummers method. X-ray 
diffraction (XRD) results demonstrated that the interca-
lation between GO layers and attachment of OFGs to 
the edges and surface of GO during chemical reaction 
causes an increase in the layer distance. Scanning elec-
tron microscopy (SEM) results showed the plate-like 
surface, wavy-wrinkled, and layered-flakes (crumpled 
structure) on GO after 24, 72, and 96 hours, 
respectively.41 In longer reaction times, a higher amount 
of GO was produced because of longer exposure to the 
oxidants.41

Functionalization of Graphene and 
Graphene Oxide
Despite several unique properties of pure graphene, the 
lack of band gap, chemical reactivity and poor water dis-
persibility and agglomeration during the reduction process 
are some drawbacks in its application.7 This problem can 
be solved by modifying graphene-based nanomaterials 
through different methods, some of which are exerted 
during the synthesis and some of which are implemented 
by adding polymers, metal nanoparticles, or 
biomolecules.11,42 Modifying graphene family nanomater-
ials by functional groups preserves their perfect properties, 
as well as adding the characterization of functional groups 
to them.43

Functionalization of Graphene
Interactions contributed to the functionalization of gra-
phene are divided into covalent and non-covalent bindings. 
Each of these bonds are applied when a special type of 
graphene properties is needed.

Non-Covalent Functionalization of Graphene
Non-covalent attachments are not disruptive and save gra-
phene’s initial properties like their electrical conductivity 
and large surface area.30,44 Physical mixing, in situ poly-
merization, and solvent and melt processing are the pri-
mary procedures that use van der Waals interactions for 
production of graphene–polymer composites.44 The planar 
groups of the material and the carbon atoms of graphene 
are attached to each other via van der Waals forces; how-
ever, the effects of these physicochemical interactions are 
weak.42 Electrostatic interaction is an easy mechanism for 
self-assembly of graphene to other materials.44 Gue et al 
developed paraffin-graphene microcapsules for thermal 
energy storage due to the electrostatic interaction between 
the paraffin particles and graphene sheets. This interaction 
promotes paraffin entrapment in the shell and prevents its 
leakage during phase transformation.45 A simple hydrogen 
bond is not strong enough for supporting the attachment, 
whereas several hydrogen bonds provide enough strength 
as seen in DNA hybridization with graphene.44 π–π stack-
ing occurs when π orbitals of two rather big non-polar 
aromatic rings overlap. These bonds are as strong as 
covalent bonds but compared to them, no conjugations of 
graphene sheets are disrupted, thus the electronic proper-
ties of graphene are saved.44

Table 1 Content of Each Functional Group of Graphite Oxide 
Prepared at Different Reaction Temperature

Sample Relative Percentage Content % C/ 
O

C=C C-OH Epoxy 
Groups

O-C=O

GO (0°C) 53.75 23.08 18.03 5.14 2.09

GO (30°C) 43.80 28.77 19.95 7.48 1.90

GO (50°C) 42.58 30.01 19.72 7.69 1.85
GO (60°C) 42.23 27.92 21.33 8.52 1.86

GO (70°C) 44.78 25.27 21.40 8.54 1.89

GO (80°C) 45.42 21.33 22.93 10.31 2.06
GO (100°C) 45.83 20.18 22.96 11.03 2.23

Note: Table adjusted and reproduced from Luo L, Peng T, Yuan M, Sun H, Dai S, 
Wang L. Preparation of graphite oxide containing different oxygen-containing func-
tional groups and the study of ammonia gas sensitivity. Sensors (Basel, Switzerland). 
2018;18(11):3745. 38
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Covalent Functionalization of Graphene
Mechanical properties and stability of graphene are 
improved through covalent interactions; however, they 
disrupt the graphene structure.44 Direct doping can modify 
the band structure of graphene.44 Annealing heat treat-
ment, ion bombardment, and arc discharge are some tech-
niques that embody different elements (nitrogen, 
phosphorus, boron, …) into graphene defects (substitu-
tional, vacancy) without disturbing the 2D structure of 
graphene.43,46,47 If graphene is synthesized through reduc-
tion of GO, some functional groups remain in the structure 
which are accessible for covalent interactions.44 Molecules 
of aryl diazonium salt can modify carbon materials 
through C-C covalent attachments. Simple agitation and 
electrochemical reduction adsorption are two strategies 
involved in aryl diazonium salts attachment to graphene, 
while N2 is released as the procedure moves forward.44 

The aryl radical is extracted from diazonium salt through 
the single electron transfer (SET) process and addition of 
graphene sheet. Reaction between the radical species due 
to addition of aryl radicals is a route to proper functiona-
lization of graphene.48

Functionalization of Graphene Oxide
Compared to graphene, a broad range of chemical 
mechanisms are available for absorption of functional 
groups to the GO surface.25 Surface polarity, hydrophili-
city, and easy exfoliation in aqueous media are some of the 
properties obtained due to the functionalization of GO.35

Covalent Functionalization of Graphene Oxide
Co-precipitation or hydrothermal methods are used for cova-
lent functionalization of GO which increase the activity, 
selectivity, and stability of it.30 Covalent functionalization 
is carried out through three steps: 1) ring opening reaction of 
epoxy groups to create amine groups; 2) diazonium reactions 
or cycloaddition of rGO; and 3) nucleophilic reaction of 
carboxylic groups by hydroxyl or amine groups.26,30,44

Click Chemistry
In this technique, small organic units are joined rapidly to 
the surface of GO and facilitate the attachment of nano-
materials. For instance, through a cycloaddition reaction 
between an azide and alkyne group which is catalyzed by 
Cu, GO can be functionalized effectively (the azide-alkyne 
click chemistry).7,49

Linker Reaction
Denaturation of some biomolecules (like proteins) in 
direct contact with GO and lack of affinity of some mate-
rials towards GO could be solved by application of small 
functional molecules that work as linkage or bridge for 
covalent attachment.7 For example, in cryo-electron 
microscopy for analyzing the protein structure, protein 
needs to attach to a GO-coated gold grid. Protein bonds 
covalently to its cognate catcher which is connected to the 
grid by a polyethylene glycol (PEG) spacer. PEG is used 
to protect the protein from contacting with the surface of 
GO and the air and water interface. In addition, it prevents 
the protein from denaturation and aggregation.50

Direct Chemical Attachment
The functional groups of GO are chemically adsorbed to 
the other molecules by assistance of a catalyst or without 
it. Stability and reproducibility are the advantages of 
direct chemical attachment.7 Niyogi et al investigated 
the amide bond of octadecyl amine (ODA) with car-
boxylic groups of GO. Initially, by the aid of thionyl 
chloride, carboxylic groups of GO are converted into 
acyl chlorides. After that, the acyl chloride and the alky-
lamine of GO react directly, and an amide bond is 
created.51,52 Zhang et al applied a diazonium reaction 
on GO to increase its carboxyl groups. The large surface 
area and enhanced electrocatalytic activity of the functio-
nalized GO provided a low anodic oxidation potential.53 

Li et al modified GO by further oxidation in the mixture 
of H2SO4/HNO3 to obtain functionalized graphene oxide 
(GO-COOH). They immobilized lipase on GO-COOH 
through the interaction between carboxyl groups of func-
tionalized GO and amino groups of lipase.54 In another 
study, Li et al modified the carboxyl groups of GO by 
epoxy chloropropane (GO-EC) which facilitated the 
immobilization of (+) γ-lactamase on GO. The enzyme 
was immobilized on the carrier directly via chemical 
covalent bond between the amino groups of the enzyme 
and the epoxy groups of GO.55

In covalent bonding between GO and other chemicals, 
usually more than one functional group is involved, which 
improves the activity and loading ability of GO. The 
properties and applications of functionalized G and GO 
are illustrated in Table 2.43

Non-Covalent Functionalization of GO
Non-covalent functionalization of GO can be carried out 
through hydrogen bonding, π–π stacking, van der Waals 
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interactions, electrostatic interactions, and cation-π 
interactions.43 Aromatic rings of GO are the place where 
π orbitals stack and cause the attachment. Moreover, these 
bonds stabilize the aromatic systems.7 Most polymers, 
surfactant “tails”, quantum dots, and mainly hydrophobic 
polypeptides do not have aromatic rings or charged groups 
in their structure. They bond to GO by van der Waals 
forces and hydrophobic interactions.7 Hydroxyl and 
epoxy groups on GO’s surface absorb polar molecules 
via hydrogen bonding, whereas carbonyl and carboxyl 
groups attract charged molecules through electrostatic 
interactions.1 The materials with amine or hydroxyl groups 
in their structure interact with GO through hydrogen 
bonding.7

The simultaneous functionalization and reduction of 
GO and metal nanoparticles through the natural agent 
tannic acid (TA) has been employed in glucose biosensors. 
TA reduces both GO and metal ions to rGO and metal 
NPs. Electron transfer is enhanced owing to the oxidation 
of TA to quinone, which is easily reducible at negative 
potentials. The deposition of metal NPs improved the 
electrical conductivity and biocompatibility of rGO. The 
π–π interactions between benzene rings of rGO and the 
phenolic groups of TA caused the deposition of TA on 
rGO. Covalent assisted hydrogen bonds attract glucose 
oxidase (GOx) on TA-coated rGO, which practically 
occurs through submerging the rGO-(Pt/Au) NPs-GOx 
/GCE in the enzyme solution.56,57

Table 2 Properties and Applications of Functionalized Graphene and Graphene Oxide

Modification 
Type

Modifying 
Group

Modification Agent Interaction 
Type

Property Application

Covalent 

functionalization

-C=C- 4-Propargyloxy-diazobenzenetetra- 

fluoroburate

Diazotization Water soluble Biosensors

-OH 2-Bromoisobutyryl bromide, NaN3, 

HC≡C-PS

Esterification Good solubility Polymer 

composites

-COOH SOCl2 Esterification Conductive Conducted 

membrane

-OH N2H4, DNA Addition 

esterification

Good solubility Biosensors

Non-covalent 

functionalization

Carbon six- 

membered

Sulfonated styrene-ethylene 

/butylene-styrene copolymer

Copolymerization Conductive Nanocomposites

Carbon six- 

membered ring

Tetrapyrene derivative π-π stacking Stable and dispersed, 

conductive

Sensors

-OH DNA Hydrogen bonding 

interaction

Stable and dispersed, 

good solubility

Biomedicine

-OH DXR Hydrogen bonding 

interaction

Stable and dispersed, 

good solubility

Drug carriers

-COOH Amine-terminated polymers Ion interaction Stable and dispersed, 

good solubility

-

-COOH SDBS Ion interaction Stably dispersed, 

conductive

Packaging

-COO- Hydrazine Electrostatic 

interaction

Stably dispersed -

Element doping -C- B, P, and N - Band structure change Electronic 

devices

Note: Table adjusted and reproduced from Yu W, Sisi L, Haiyan Y, Jie L. Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv. 2020;10 
(26):15328–15345.43
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Modification of Graphene-Based 
Nanomaterials with Different 
Materials
Polymers
Modifying GO with polymers such as chitosan and dextran 
provides more functional groups for binding with other 
molecules and prevents the aggregation of GO sheets 
because of electrostatic charges.42 Mao et al fabricated 
a label-free amperometric electrochemical immunosensor 
to detect prostate-specific antigen (PSA) by employing 
graphene sheet–methylene blue–chitosan nanocomposite 
(GS-MB-CS) as electrode. This film demonstrated high 
binding affinity towards the electrode and was used for 
immobilization of PSA antibody. The principle of this 
biosensor relies on the response of peak current to captur-
ing PSA due to the reactions between antigen and 
antibody.8,58

Metal and Metal Oxide Nanoparticles
The bonding energies of the adatom determine three sites 
with high symmetry for adsorbing metal adatoms: the 
center of hexagons (the hollow site), C-C bonds (the 
bridge site), and directly above C atoms (the top site). 
The adsorption, which is dependent on the adatom’s bond-
ing energies, may occur via chemisorption or 
physisorption.59 Metal and metal oxide nanoparticles 
(Cu, Co, Ti, Au, Ag, Pd, Pt, Fe3O4, ZrO2, Co3O4) bond 
to graphene nanoparticles to supply a hydrophilic micro-
environment for supporting the activities of immobilized 
biomolecules.42,60 Metal nanoparticles can improve the 
electrical communications of interlayers and fast conduc-
tivity of graphene and present lowest detection limits in 
biosensors.9

Decoration of the GO structure with gold nanoparticles 
showed synergistic effect and good biocompatibility, which 
were applied by Song et al to produce a disposable biosensor 
with a fast amperometric response and good storage stability 
for sensing catechol. They designed a screen-printed elec-
trode (SPE) by covalent bonding of 1-pyrenebutanoic acid, 
succinimidyl ester (PASE) adsorbed on GO sheets and 
amines of tyrosinase-protected gold nanoparticles (Tyr-Au) 
(immobilization of Tyr-Au).61

Graphene derivatives play a major role in photoelectro-
chemical systems as they are excellent photogenerated elec-
tron carrier materials. The OFGs in their structure enhance 
the electron transfer.62 Cakiroglu et al designed 
a photoelectrochemical (PEC) glucose sensor by utilizing 

Cu2O/rGO-coated TiO2 nanotubes (NTs)-arrayed titanium 
foil. Cu2O NPs accommodated themselves evenly on rGO 
for the photoelectrochemical glucose determination without 
using an enzyme. The perfect increased photocurrent can be 
related to the p-n heterojunction created between Cu2O NPs 
and TiO2 NTs, as well as perfect conductivity of rGO, which 
can increase the charge separation efficiency and at the same 
time promote electron transfer. rGO has been significantly 
utilized to intensify the separation of the photogenerated 
electron–hole pairs and decrease the recombination, due to 
its electron-capturing ability.62

Biomolecules
Modifying the layers of G and GO with biomolecules makes 
them a perfect substrate for immobilizing macromolecules.42 

The modification principle of GO by biomolecules lies in the 
attaching of nitrogen atom of an amine functional group to 
the carboxylic acid of GO via a condensation reaction which 
produces a stable amide bond. In this process, epoxide 
groups are substituted by nucleophiles, and an amine and 
hydroxyl are produced accompanied by the ring opening.7

Laaksonen et al demonstrated a method for both exfo-
liation and functionalization of graphene by hydrophobins 
(HFBI). The surface energies of graphene and the hydro-
phobic side of HFBI are similar and different from the 
hydrophilic side of HFBI and solvent. These differences 
are smaller than an uncoated system; therefore, attachment 
of HFBI to graphene results in a stable dispersion of 
graphene.42,63 Zhang et al functionalized graphene oxide 
by adding abundant carboxyl groups through a diazonium 
reaction. After that, Nα, Nα-bis(carboxymethyl)-L-lysine 
hydrate (NTA-NH2), and Ni+2 were fastened to GO. 
Histidine (His)-tagged acetylcholinesterase (AChE) was 
captured by functionalized GO due to the specific interac-
tion between His-tag and Ni-NTA. This bioelectrode was 
used for fabrication of paraoxon biosensors.53

Immobilization of Biomolecules on 
Graphene and Graphene Oxide
Immobilization Methods
During the immobilization procedure, the aim is to keep 
active sites accessible for targets as well as preserving 
conformational stability and bioactivity. The size, shape, 
and polarity of the biomolecule, working area, storage 
conditions, and presence of functional groups are all 
important parameters in immobilization that must be 
taken into account.11 Immobilization methods can be 
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classified into reversible and irreversible due to the detach-
ment ability of biomolecules from their substrates.

Irreversible Immobilization
Irreversible immobilization is a covalent bonding of bio-
molecules to the support which is a strong chemisorption 
that prevents the leakage of biomolecule. Crosslinking 
(free ends of crosslinkers such as glutaraldehyde, glyoxal, 
or hexamethylenediamine can hold biomolecules on the 
transducer surface by forming covalent bonds)64,65 and 
entrapment in a polymeric gel network (this gel traps the 
enzyme but substrate and product can exit the system) are 
examples of this method.11 In irreversible immobilization, 
OFGs present in the GO structure provide several reaction 
sites for interaction with small molecules, polymers, bio-
macromolecules, and inorganic nanoparticles with no need 
of adding crosslinkers or even functionalization of GO.66 

Srivastava et al employed functionalized graphene sheets 
and glutaraldehyde (crosslinker) to covalently immobilize 
fenugreek β-amylase. They discovered that non-toxicity of 
the functionalized graphene and high thermal stability of 
immobilized enzymes can be utilized for production of 
maltose in food and pharmaceutical industries.67 Loo 
et al investigated the covalent attachment of the thrombin 
aptamer II (NH2-THR-APT) to disposable electrical 
printed (DEP) electrodes which were modified with GO. 
To activate carboxylic acid groups, 1-ethyl-3-(3-dimethy-
laminopropyl) carbodiimide hydrochloride (EDC) and 
N-hydroxysuccinimide (NHS) were deposited onto GO- 
modified electrodes in phosphate buffer solution (PBS). 
To remove non-bonded EDS and NHS, the electrodes were 
washed with PBS. After that, NH2-THR-APT with 
a suitable concentration in PBS was developed on the 
electrodes.68

Reversible Immobilization
Physical attachment (hydrogen binding, van der Waals 
forces, electron transition complexes, storage conditions) 
and affinity binding (activated substrate interacts non- 
covalently with a specific group of the protein sequence) 
are types of this method.11 In reversible immobilization of 
enzymes on graphene, the hexagonal lattice, hydrophobic, 
and hydrophilic domains of graphene and its derivatives 
contribute to the efficient immobilization. Hexagonal lat-
tice of graphene composed of carbon aromatic rings can 
attach to aromatic residues of an enzyme via π–π stacking. 
Hydrophobic domains in the structure of biomolecules like 
enzymes interact non-covalently with the hydrophobic 

surface of graphene family members. Charged residues 
of enzymes interact electrostatically with negative func-
tional groups of graphene derivatives.20

Immobilization of Biomolecules
Peptide
The binding affinity of different amino acids and their 
position in the peptide sequence are the factors that con-
tribute to the non-covalent bonding of peptide to G and 
GO.69 A GO nanosheet can incubate peptides due to π–π 
interaction; in addition, charged and polar residues of 
peptides interact electrostatically with ionizable edges of 
GO.53,70 The strength of bonds between some residues and 
GO follows this order: Arg > His > Lys > Trp > Tyr > Phe. 
Among these amino acids, His interacts with GO by both 
electrostatic and π–π interactions.71 Woo et al investigated 
the molecular interaction between GO and Tyr and Trp and 
found that GO strongly quenches the fluorescence of Tyr 
and Trp because of several non-covalent intermolecular 
interactions like π–π interactions and hydrogen bonding 
between GO and these amino acids.72

Zuo et al applied sum frequency generation (SFG) 
vibrational spectroscopy and molecular dynamics (MD) 
simulation to investigate the interactions between two 
peptides (cecropin P1 and MSI-78(C1)) and graphene in 
real-time and in situ. It was found that both planar and 
hydrophilic residues in the peptide are responsible for the 
interaction with graphene.69 That end of peptide with 
enough planar side chains attaches strongly to the gra-
phene surface, whereas the other end with hydrophilic 
residues abandons the graphene surface and is accessible 
for reaction in the aqueous solution. Either hydrophilic 
residues or π–π stacking help peptides to orient in the 
appropriate direction for interaction.69 Wang and Lin 
designed a glassy carbon electrode modified by GO–pep-
tide–AgNPs nanohybrids to produce a non-enzymatic elec-
trochemical hydrogen peroxide (H2O2) sensor. The π–π 
interaction between peptide and GO builds a compact net-
work-like structure of peptide on both sides of GO.73

Protein/Enzyme
Immobilization of protein can be done through methods 
like mixing, sonication, ultrasound, and cyclic voltamme-
try to provide suitable conditions for adsorption via cova-
lent bonding, non-covalent bonding, physical entrapment, 
and functionalization via EDC/NHS chemistry.9

Non-covalent attachments between protein and matrix 
happen through various forces such as intermolecular, 
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dipole–dipole, and forces between similar surface residues 
and opposing surface charges.20 In addition, the surface 
density of the functional groups is affected by preparation 
technique and storage conditions. These factors influence the 
loading and stability of the proteins that interact with GO 
electrostatically.66 Aromatic residues of protein and back-
bone of graphene can bond by π–π stacking. The hydropho-
bic aromatic structure of graphene is in favor of hydrophobic 
interaction with protein, as protein molecules prefer to 
agglomerate on a hydrophobic surface.74 The polar groups 
such as hydroxyls, epoxides, and carboxyl groups promote 
adsorption of proteins mainly through electrostatic interac-
tions. As an instance, at human physiological pH, the hex-
agonal aromatic structure of GO and the negatively charged 
functional groups can provide non-covalent interactions and 
high loading of serum protein on the surface of GO.70

Covalent immobilization of proteins on GO is achieved 
through chemical reactions between OFGs of GO and free 
amine groups of protein.49,66 For example, amidation reac-
tion between GO’s carboxyl groups and amine groups of 
bovine serum albumin (BSA) helps their covalent 
bonding.66 The crosslinker molecule from one side attaches 
to graphene oxide non-covalently through hydrophobic 
interaction or π–π stacking, and from the other side bonds 

covalently to the biomolecule due to an amide bond.49 

Glutaraldehyde for instance, works as a crosslinker for 
covalent attachment of alkaline protease to GO sheets.66 In 
another experiment, accomplished by Kodali et al, the aro-
matic pyrenyl group in 1-pyrenebutyric acid N-hydroxy 
succinimide ester (PYR-NHS) interacted strongly with the 
basal plane of graphene via π–π stacking, without perturbing 
the sp2 bond structure or the π band which is responsible for 
electronic properties of graphene. From the other side, the 
PYR-NHS reaction with lysine residues facilitates the 
immobilization of protein on graphene.75

Functionalization of the graphene family with peptides or 
crosslinking agents assists enzyme attachment through their 
C-terminal or side chains, whereas epoxide groups attach 
covalently to the enzyme through their N-terminal. Although 
covalent bonding is very stable and prevents leaching, it 
affects enzyme structure, activity, and reusability (Figure 6).20

Oxidoreductase, hydrolase, and transferase are some types 
of enzymes that are widely used in graphene-based biosensors 
due to the kind of reactions they catalyze (Table 3).

DNA
Biocompatibility, renewability, flexibility, and high specificity 
of DNA because of the unique sequences of its nucleotides 

Figure 6 Illustration of enzyme immobilization methods onto graphene nanosheets. Reproduced from Karimi. Republished with permission of Royal Society of Chemistry 
(Great Britain), Karimi A, Othman A, Uzunoglu A, Stanciu L, Andreescu S. Graphene based enzymatic bioelectrodes and biofuel cells. Nanoscale. 2015;7(16):6909–6923. 
Permission conveyed through Copyright Clearance Center, Inc.111
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make it an ideal candidate for biosensing purposes.9 DNA 
attachment to graphene is mostly done through non-covalent 
bindings such as hydrogen bonding, π–π stacking, and electro-
static interaction. Positively charged functionalized graphene 
interacts electrostatically with negatively charged nucleotide of 
DNA. Edges of graphene and functional groups of GO are 
involved in the covalent interaction with DNA.9,74

Bo et al immobilized DNA on a bioelectrode for 
designing an electrochemical DNA biosensor. They mod-
ified the glassy carbon electrode by layers of oxidized 
graphene and polyaniline nanowires (PANIw) with the 
aid of their specific synergetic effect. The immobilization 
is done through the phosphonamidite bonds between the 
phosphate group of oligonucleotides and the amino group 
of polyanilines. The ssDNA/PANIw/graphene/GCE bioe-
lectrode exhibited high sensitivity and selectivity towards 
complementary DNA sequence.76,77

Aptamer
Short, single-stranded DNA or RNA (ssDNA or ssRNA) are 
called aptamers that can attach selectively to a specific target 

such as proteins. Graphene adsorbs unfolded flexible aptamer 
non-covalently but repulses the folded aptamer which has 
a rigid 3D structure.78 Pyramidic and puric bases of aptamers 
attach to the graphene lattice via π–π stacking interactions 
which is known as a plain immobilization technique for gra-
phene-based aptasensors.9,78 Dye-labeled ssDNA attaches to 
GO by π–π stacking interaction, and GO quenches the fluor-
escence of the dye which is used in fluorescent biosensors.1

Negatively charged aptamers are adsorbed to positively 
charged graphene materials via electrostatic interaction in 
neutral buffers. This property is used for development of 
label-free electrochemical aptasensors in which graphene 
is functionalized with charged materials such as Fe2O3 and 
poly sodium 4-styrenesulfonate.78 Synthesis of graphene 
by oxidation methods or reduction of GO causes some 
carbonyl and carboxyl groups to remain in the structure 
which assists in the covalent interaction of graphene with 
amine groups of biomolecules.78

Loo et al examined three thrombin aptasensors with differ-
ent immobilization techniques to detect thrombin (THR). They 

Table 3 Different Types of Enzyme Immobilization on GO and Their Applications

Enzyme Enzyme Type Interaction Type Application Reference

Bilirubin oxidase Oxidoreductase Electrostatic interaction BOD-based biocathode for 
biosensors, biofuel cells

Filip et al 201699

Covalent interaction with 
functionalized GO by 2-hydroxy- 

4-amino-azobenzene (AZO-1)

Photoelectrochemical catalysis of 
oxygen reduction reaction (BOD- 

based electrode)

Chu 2020100

Horseradish 

peroxidase (HRP)

Oxidoreductase pH: 4.8–7.2, Electrostatic interaction Biosensor Zhang et al 2010101

pH: 7.2–8.8, Hydrogen bonding Besharati et al 2017102

Laccase Oxidoreductase Electrostatic adsorption Bioelectrode for Catechol 
detection (biosensor)

Nazari et al 20192

Covalent interaction with GO 
functionalized by Fe3O4

Biodegradation of phenolic 
compounds

Rouhani et al 2021103

Protease Hydrolase Covalent via GLU crosslinker Electrochemical sensor and 
biosensor

Adeel et al 201826

Lipase Hydrolase Hydrophobic Electrochemical DNA biosensor Hermanov et al 201531

Lysozyme Hydrolase Electrostatic interaction Biosensor Zhang et al 2010101

α-Amylase Hydrolase Covalent interaction with carboxyl/ 

amino functionalized GO via 

glutaraldehyde as crosslinker

Biocatalyst Han et al 2020104

Acetylcholinesterase 

(ACHE)

Transferase HIS tagged -ACHE Paraoxon biosensor for detection 

of harmful pesticide residues in 
food and water

Zhang et al 201453

Covalently bonds with NTA-NH2 

Functionalized GO
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discovered that the aptasensor based on a physical attachment 
of aptamer is remarkably selective towards THR compared to 
targets like BSA, IgG (immunoglobulin G), and avidin. In 
comparison with physical immobilization, covalent immobili-
zation exhibits similar selectivity towards analyte. In contrast, 
affinity immobilization does not show any considerable influ-
ence on selectivity of THR.68

Graphene and Graphene 
Oxide-Based Biosensors
Biosensors can be categorized into different types due to 
their transducing mechanisms. The most common types 
are: i) electrochemical; ii) field effect transistor (FET); iii) 

plasmonic resonance; iv) optical; and v) fluorescent bio-
sensors. Some examples of these biosensors and their 
applications are exhibited in Table 4.

Electrochemical Biosensors
Electrochemical sensors measure the resistance, current, or 
potential. The change in the electrical signal due to the 
interactions is detected by the transducer electrode.9,79 

Defects in graphene structure are the active sites for transfer-
ring electrons to biomolecules, and sp2-like planes increase 
carbon materials’ activities towards oxidation or reduction of 
small biomolecules such as NADH, dopamine, and H2O2.80

Hydrophilicity of GO enables it to assemble with quantum 
dots, semiconducting nanoparticles, polymers, and metals 

Table 4 Types of Graphene and Graphene Oxide Biosensors and Their Applications

Bioreceptor Immobilization 
Method

Target Biosensor 
Type

Detection 
Limit

Reference

Peptide-AgNPs-GO 

Glassy carbon electrode

π–π interaction H2O2 Electrochemical 0.13 µM Wang and Lin 

201773

ssDNA/GO-CHI/ITO bioelectrode Chitosan as 

crosslinker

Typhoid Electrochemical 10 fM to 50 

nM

Singh et al 

2013105

Graphene- aptamer/fragment antibody Electrostatic Antibody/ 

antigen

FET Sensitivity 

~10 pM

Matsumoto et al 

201484

Graphene nanoribbons Physisorption Protein 

monolayers

Plasmonic - Rodrigo et al 

201586

GO-peptide EDC-NHS as 

crosslinker

TNT Optical ~4.40×10−12 

mM

Zhang et al 

201594

GO-aptamer Carbodiimide (as 

crosslinker)

Hg2+ Fluorescent 0.92 nM Li et al 201393

GO-aptamer π–π interaction Cancer 

biomarkers

Fluorescent - Sekhon et al 

2021106

GO-aptamer π–π interaction 25(OH)D3 Fluorescent 0.15 μg/mL Gupta et al 

2021107

NiO NPs-CGR (carboxylic graphene)-NF (nafion) Hydrogen bonding 

(by deacetylation)

Pesticides Electrochemical 5×10−14 M Yang et al 

2013108

DNA/GO/CoFe2O4/ZnAl-LDH (layered double 

hydroxide modified)/FTO electrode

Electrostatic Etoposide Electrochemical 0.0010 μM Vajedi and 

Dehghani 
2020109

ssDNA/PANIw/G/GCE Phosphoramidate 
bonds

DNA Electrochemical 3.25×10−13 

mol L−1

Bo et al 201076

ssDNA/GO/GCE Covalent via divinyl 
sulfone (DVS)

DNA Electrochemical 0.076 µM Moshari et al 
2021110
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(nanoparticles and oxides) to promote the performance of 
electrochemical biosensors by enhancing the electron transfer 
between the bioreceptor and transducer, which is an advan-
tage for electrochemical sensors with high sensitivity.8,9

Figure 7 illustrates the principle of an electrochemical 
cholesterol biosensor. At first, cholesterol esterase (CHER) 

and cholesterol oxidase (CHOD) interact with GO via an 
amide bond by applying EDC/NHS as a crosslinker 
(Figure 7A). Then, gold nanoparticles electrodeposit on 
SPE. After that, the mixture of GO, CHOD, and CHER 
electrostatically attaches to the surface of the electrode. 
CHER and CHOD catalyze the oxidation of cholesterol 

Figure 7 Principle of the electrochemical detection of cholesterol based on GO and AuNPs co-mediated enzymatic Ag deposition: (A) Attachment of CHOD/CHER to GO 
via EDC/NHS chemistry; (B) The stages to electrochemically detection of glucose by measuring LSV. Reprinted from Biosens Bioelectron, 102, Huang Y, Tan J, Cui L, et al. 
Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol, 560–567, Copyright (2018), with permission 
from Elsevier.81

Figure 8 The general schematic of the probe-modified G-FET biosensor: (A) linker/antibody-functionalized G-FET for E. coli detection; (B) general structure of the G-FET 
biosensor; (C) aptamer-functionalized G-FET for E. coli detection. Reproduced from Wu G, Meyyappan M, Lai KWC. Simulation of graphene field-effect transistor 
biosensors for bacterial detection. Sensors. 2018;18(6):1715.82
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into cholest-4-en-3-one and H2O2. Due to the oxidation of 
cholesterol, Ag+ is reduced to Ag and deposits on the mod-
ified electrode which produces a stripping anodic signal, 
determined by linear sweep voltammetry (LSV). The current 
of LSV is directly proportional to the concentration of H2O2. 
Therefore, detection of cholesterol with high sensitivity can 
be achieved by measuring the current of LSV (Figure 7B).81

Field Effect Transistor (FET) Biosensors
Bare graphene-FET shows only the charge of the biomo-
lecule and has no detection ability; therefore, the surface 
of graphene must be modified with biomolecules. An 
illustration of a probe-modified G-FET biosensor with an 
Ag/AgCl reference probe is depicted in Figure 8. 
A solution-gated G-FET (Figure 8B) has typically three 
electrodes: source, drain, and gate. Possible leakage of 
current is prevented by insulating source and drain elec-
trodes. In these G-FET biosensors (Figure 8A and C), 
antibody and aptamer work as bioreceptors for detecting 
E. coli (Escherichia coli).82 The charge and discharge 
status of the graphene layer changes by regulating the 
gate voltage, which transfers the Fermi levels of the nano-
materials. Therefore, the applied gate voltage can modify 
the conductance of the channel material.83 Matsumoto et al 
designed a FET biosensor in which the graphene surface 
was modified by aptamer for detection of antibody and 
immobilized fragment antibody on the graphene surface 
for detection of antigen. They used aptamer and fragment 
antibody as detection probes because their lengths are 

shorter than the Debye length (the required distance to 
screen the surplus charge by carriers).84,85

Mid-Infrared Plasmonic Biosensors
The massive light capture ability of graphene provides 
high overlaps with biomolecules and subsequently exhi-
bits exceptional detection of vibrational fingerprints and 
refractive index of biomolecules.86 Figure 9 illustrates 
a graphene-based surface plasmon resonance (SPR) bio-
sensor in which dielectric top layers are graphene. The 
sensing region is composed of a four-layer Fresnel 
structure (prism, Au, graphene, and PBS). A graphene 
monolayer as an effective light absorption medium is 
inserted between the sensing dielectric and the gold 
film. The immobilized DNA probes on the graphene 
surface receive and transduce signals which in turn 
increase the refractive index (RI) of graphene for sen-
sing medium inter surface. For the next cycle of appli-
cation, the surface of the graphene is cleaned by 
a suitable chemical to repel the target DNA samples 
without affecting the immobilized DNA probe.87–91

Singh et al employed the superior optical properties 
of graphene monolayer to boost the SPR signals for immuno-
sensing cholera as a disease model. The functional groups of 
nitrilotriacetic acid (NTA) attached to graphene via electropo-
lymerization of a polypyrrole film or π–π interactions of pyrene 
derivatives, which were additionally secured by electropoly-
merization. NTA anchors the biotinylated bioreceptor cholera 
toxin and controls its immobilization.92

Figure 9 Illustration of the four-layered model for fiber optic SPR biosensor: prism, Au (50 nm), graphene (0.34nm × £ (£ is the total of graphene coating)), and phosphate 
buffer solution (PBS) contains p-DNA (probe) and complementary target mr-DNA (mutated type) or wt-DNA (wild type) samples. Reproduced from Hossain MB, Akib 
TBA, Abdulrazak LF, Rana MM. Numerical modeling of graphene-coated fiber optic surface plasmon resonance biosensor for BRCA1 and BRCA2 genetic breast cancer 
detection. Optic Eng. 2019;58(03):1.87
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Optical Biosensors
The bandgap of GO can be modified by adjusting the 
sp2/sp3 ratio of carbon atoms which causes the enhance-
ment of GO’s conductivity and absorption peak, and, 

consequently, the photoluminescence of GO alters.93,94 

Zhang et al discovered that the specific sensitivity of 
peptides combined with optoelectronic properties of GO 
can sense TNT through high-throughput absorption 

Figure 10 Schematic of reduced graphene oxide (rGO)-based optical sensor. Reproduced from Li Z, Zhang W, Xing F. Graphene optical biosensors. Int J Mol Sci. 2019;20 
(10):2461.95

Figure 11 (A) Scheme of the ssDNA target-induced fluorescence change of the DNA probe-FAM-GO complex. Reprinted from Lu CH, Yang HH, Zhu CL, Chen X, Chen 
GN, Graphene A. Platform for sensing biomolecules. Angewandte Chemie Int. 2009;48(26):4785–4787, Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim.97 reproduced with permission from Wiley Online Library, (B) Scheme of the direct detection of dsDNA using peptide nucleic acid (PNA) and GO. Reprinted 
from Biosens Bioelectron, 62, Lee J, Park I-S, Jung E, Lee Y, Min D-H. Direct, sequence-specific detection of dsDNA based on peptide nucleic acid and graphene oxide 
without requiring denaturation. 140–144, Copyright (2014), with permission from Elsevier.112
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spectra.94 A rGO-based optical biosensor is demon-
strated in Figure 10 in which immobilized antigens on 
the surface of graphene detect antibodies in the solution. 
The polarized light reflects at the interface and splits 
into two polarized TE (transverse electric) and TM 
(transverse magnetic) waves. TE is more favorable for 
graphene than TM. The power difference of the sepa-
rated light can be registered by a balanced photodetec-
tor. The inset of Figure 10 exhibits the attachment of 
antigen–antibody to the surface of rGO.95

Fluorescence Biosensors
Tagged targets absorb external light and can release fluor-
escent light. This is a mechanism for sensing molecules in 
biological systems. Graphene and its derivatives have high 
distance-dependent fluorescence-quenching ability based 
on fluorescence resonance energy transfer (FRET) which 
enables them to quench various adsorbed quantum dots, 
fluorophores, and fluorescent metal nanoclusters, then 
transduce them to fluorescent biosensors.9,96

Lu et al for the first time in 2009 established GO- 
based fluorescent sensors for selective and sensitive 
detection of DNA and protein.97 A natural DNA probe 
can detect its complementary target in fluorescent bio-
sensors; however, high affinity of other biomolecules to 
GO causes desorption of DNA with the noise or high 
background signal.24 In comparison to ssDNA, the 

nucleotide bases of dsDNA are buried in the helical 
structure, which impacts the interaction between dsDNA 
and GO (Figure 11).1

Chung et al designed a fluorescent biosensor for recogni-
tion of dsDNA by employing a GO–organic dye ionic com-
plex. The detection principle relies on the exchange of ions 
adsorbed to the carboxyl groups which are placed at the GO 
edges. Li et al claimed that detecting label-free Hg+2 by 
quenching the fluorescence emission of aptamer- 
functionalized GO is possible. Without Hg2+, the aptamer 
molecules rest on the surface of GO, while Hg2+ is added, 
a stiff hairpin-shape dsDNA structure is composed because of 
the arrangement of the thymine–Hg2+–thymine complex, 
which quenches the GO fluorescence.93 Figure 12 shows 
a label-free fluorescent Cu(II) biosensor composed of 
a graphene/DNAzyme complex in which the fluorophore 
(weak fluorescent GelRed) is inserted into the folded structure 
of DNAzyme. Graphene self assembles to DNAzyme through 
π–π stacking, which increases the quenching of fluorescence. 
After adding Cu(II), DNAzyme splits, and quenched fluoro-
phore is released.98

Future Research Prospects
The exceptional properties of graphene family materials 
such as large surface area and high conductivity are the 
requirements of a suitable support for biomolecule immo-
bilization. However, these characteristics need to be suita-
bly tailored for effective immobilization and graphene- 

Figure 12 Schematic illustration of label-free fluorescent Cu(II) biosensor based on graphene-quenched DNAzymes. Reproduced from Liu M, Zhao H, Chen S, Yu H, Zhang 
Y, Quan X. Label-free fluorescent detection of Cu(ii) ions based on DNA cleavage-dependent graphene-quenched DNAzymes. Chem Commun. 2011;47(27):7749–7751.98
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biomolecule conjugate for biosensing. Nevertheless, there 
are also challenges in this task.

Although methods for synthesis of G and GO are con-
tinuously improving, there are still challenges such as in 
achieving precision with respect to the position and number 
of defects and distribution of OFGs. Designing synthesis 
strategies to obtain an even spread of functional groups on 
the surface with defined edges is an aspect that has received 
limited research attention.3,23,33 Furthermore, there is a need 
to develop a more comprehensive understanding of the influ-
ence of various synthesis parameters such as reaction time, 
pH, and temperature on the morphology and properties of the 
functional groups. Regarding successful attachment of bio-
macromolecules such as proteins to the substrate (G or GO), 
the influence of distribution, charge, and geometry of func-
tional groups needs to be understood. For example, Asal et al 
encountered some fundamental issues such as choice of 
suitable support material, proper immobilization of biomole-
cule, and their stability after interacting with graphene.11

The variety of amino acid sequences and their folding 
create an extensive number of proteins with complex 
structures that perform distinct functions. The unique struc-
ture and characteristics of each protein, together with the 
influence of the environment, can profoundly affect their 
interaction with G and GO. In addition, there are still lots 
of biomolecules whose applications in graphene-based bio-
sensing have not been explored. These numerous factors 
open opportunities for the development of a new generation 
of biosensors. These possibilities can trigger further research 
in biomedical science, recognition and treatment of diseases, 
drug delivery, imaging, and a lot more.

A few of the prospects for biosensing investigations are 
described below:

● Developing new functionalization methods that can 
preserve the usability and functionality of the biomo-
lecule, while providing a strong bond with the sub-
strate (G or GO).

● Designing procedures for controlling the amount, 
location, and geometry of the oxygen functional 
groups which play major roles in interaction with 
other biomolecules and their immobilization on the 
surface of substrate.

● Diagnosing the immobilization process of the biomo-
lecule on the support surface (G or GO).

● Determining the preferred attachment site and posi-
tion of the biomolecule on the substrate and avail-
ability of the active interaction sites for analyte.
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