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Abstract

The gut microbiota appears to play a central role in health, and alterations in the gut microbiota 
are observed in both forms of inflammatory bowel disease [IBD], namely Crohn’s disease and 
ulcerative colitis. Yet, the mechanisms behind host-microbiota interactions in IBD, especially at the 
intestinal epithelial cell level, are not yet fully understood. Dissecting the role of host-microbiota 
interactions in disease onset and progression is pivotal, and requires representative models 
mimicking the gastrointestinal ecosystem, including the intestinal epithelium, the gut microbiota, 
and immune cells. New advancements in organoid microfluidics technology are facilitating the 
study of IBD-related microbial-epithelial cross-talk, and the discovery of novel microbial therapies. 
Here, we review different organoid-based ex vivo models that are currently available, and 
benchmark their suitability and limitations for specific research questions. Organoid applications, 
such as patient-derived organoid biobanks for microbial screening and ’omics technologies, are 
discussed, highlighting their potential to gain better mechanistic insights into disease mechanisms 
and eventually allow personalised medicine.

Key Words: Inflammatory bowel disease; microbiota; organoids; in vitro models

Introduction

Both forms of inflammatory bowel disease [IBD], Crohn’s disease 
[CD] and ulcerative colitis [UC], are thought to be driven by envir-
onmental factors in genetically susceptible individuals, resulting in 
an exacerbated immune response towards components of the gut 
microbiota.1 However, the underlying mechanisms are not yet com-
pletely understood. In particular, whether the loss of tolerance to-
wards the microbiota is a cause or consequence of the disease, and 
what the exact effect is of the interactions between intestinal epithe-
lial cells and the dysbiotic microbiota, remain unclear.

Growing evidence suggests that the cross-talk between the lu-
minal microbiota and the intestinal epithelium plays a key role in the 
onset of IBD.2 The intestinal microbiota interacts with the epithelium 
of the gut through metabolites or other released factors,3–5 and con-
tributes to the intestinal barrier functions and integrity,3,4 modulates 
the host immune system,6 and prevents colonisation of pathobionts.6 
Microbial metabolites such as short chain fatty acids [SCFAs], pro-
duced by microbial fermentation of dietary fibre in the gut, also serve 
as an energy source7 and as immunomodulators.8

Alterations in microbiota composition and homeostasis 
[‘dysbiosis’] have been observed in both forms of IBD,9–11 overall 
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with a decrease in gut microbial diversity and a shift in the balance 
between commensal and pathobionts.12 For example, a reduction in 
the Firmicutes phylum and an increase in Proteobacteria has repeat-
edly been observed.13 This change in microbiota is also associated 
with a shift in fermentations products, such as SCFAs.14 For instance, 
a decrease in butyrate-producing species has been observed in UC.15

In addition, the intestinal epithelium plays a key role in IBD.16–18 
This is illustrated by the presence of several IBD-associated genetic 
defects associated with bacterial sensing [NOD2], inflammation 
[IL-23R], autophagy [ATG16L1], endoplasmic reticulum stress, and 
epithelial barrier [HNF4α, CDH1, MEP1A, CARD15, ATG16L1] 
functions in epithelial cells.19,20 In IBD, intestinal epithelial cell dys-
function promotes increased epithelial barrier dysfunction and per-
meability.21–23 In a healthy condition, the presence of a single mucus 
layer in the small intestine and bi-layered mucus structure in the 
colon—with an impermeable inner layer and a permeable outer 
layer—prevents intestinal epithelial cells from being in direct contact 
with commensal bacteria and potential pathogens.24 In IBD, changes 
in the integrity of the inner layer due to defects in mucus produc-
tion result in intestinal barrier dysfunction.25 As a consequence, 
increased bacterial and metabolite translocation are observed,26,27 
overall resulting in immune cell activation and inflammation.28 Pro-
inflammatory factors released in the intestinal mucosa during ac-
tive disease progressively damage the epithelial layer.26,27 Despite the 
importance of dysfunctional epithelial-microbial cross-talk in both 
types of IBD, the exact cause and mechanism of these interactions 
are yet not completely understood.

Strong evidence supports a causal role for the gut microbiota 
in IBD development.29 Using mouse colonic inflammation models, 
it was observed that only conventionally raised mice developed in-
flammation, whereas germ-free mice [with no microbiota] did not.30 
Furthermore, transferring the gut microbiota from a colitis mouse 
model to a wild-type mouse resulted in the induction of inflamma-
tion.31 In addition, recurrence of CD in patients who had undergone 
an [ileocolonic] resection could be prevented in the absence of faecal 
stream [and thus microbiota],32 and triggered in the presence of in-
testinal fluids.32,33

Because of the strong relationship between dysbiosis and IBD, 
probiotics formulations,34,35 SCFAs,8,36 and faecal microbiota trans-
plantation [FMT]37,38 have been explored for their ability to restore 
the microbiota composition and inflammatory status associated with 
IBD.39 However, understanding of the effectiveness and mechanisms 
is still lacking.40,41 It remains unclear which bacteria [single, or com-
plex mixtures] are required to induce and maintain remission in 
IBD patients. Moreover, given the heterogeneous nature of IBD, it is 
likely that a microbial intervention will need to be tailored for each 
individual to reduce dysbiosis and promote immune tolerance and 
homeostasis in IBD.

Understanding the complex interactions between the micro-
biota and the intestinal epithelium, and how they impact on the 
individual’s disease onset and progression, is essential. To achieve 
this, specific in vitro systems mimicking the intestinal epithelium in 
a representative model are needed. The development of intestinal 
organoids—three-dimensional [3D] in vitro models of the human 
intestinal epithelium—has represented a major advancement in the 
field [Figure 1A]. The use of organoids to study host-microbe inter-
actions has been previously reviewed.42 However, novel exciting 
organoid systems have brought many new possibilities especially 
relevant for IBD research.

In this review, we present the evolution of the organoid [derived] 
models available [Figure 2A], from basic 3D organoid models and 

their 2D counterparts, to more complex microfluidic-based systems 
[Figure 1B-C]. The suitability of these systems will be benchmarked 
for their ability to model the complex interactions happening in IBD, 
specifically host-microbiota interactions, for specific research ques-
tions [Table 1]. Finally, we present the main applications and future 
trends [Figure 2B].

2.  Patient-derived Organoids to Investigate 
Host-microbiota Interactions

The study of the host-microbiota cross-talk in vivo is limited by the 
relative inaccessibility of the human digestive tract. Faecal samples 
can be easily obtained, but intestinal aspirates and biopsies are less 
accessible in adequate numbers.43 Manipulation and precise con-
trol over experimental variables in human studies, including host 
and microbial genetics, also remains a difficult task. The effects of 
the microbiota are location [eg, sites of inflammation] and time de-
pendent,11 and in situ spatio-temporal measurements of microbiota 
and host responses at sufficient resolution are not currently possible 
in humans.

Microbiota studies have been generally carried out in mice,44 
thanks to their similar gastrointestinal architecture, and because they 
allow an easier sample collection and better control over both diet 
and genetics.45 However, mouse models are unable to fully represent 
the physiological conditions of the human gut,46 nor can they per-
fectly recapitulate human disease.47 Alternatively, colonic cell lines 
such as Caco-2, T84, and HT-29 have also been employed.48–50 Yet, 
cell lines do not reflect tissue heterogeneity or location-specific char-
acteristics [duodenum, colon, etc].51

Patient-derived intestinal organoids represent a unique tool to 
study host-microbiota cross-talk, overcoming some of the disadvan-
tages associated with human studies, mouse models, and cell lines. 
Furthermore, organoids allow repeated experiments and maintain 
organ, disease, and patient characteristics.52,53

2.1.  Patient-derived intestinal organoids
Intestinal organoids are 3D in vitro epithelial structures derived from 
primary tissue, capable of self-renewal and self-organisation, recap-
itulating the architecture and function of the human gastrointestinal 
tract.54 Intestinal organoids can be derived either from adult human 
intestinal stem cells [hASCs], hASCs containing crypts,55 or human 
induced pluripotent stem cells [iPSCs].56 Stem cells are embedded 
in a cell culture matrix, mimicking the extracellular matrix [ECM], 
which allows the self-assembly of a crypt-villi structure including 
the luminal surface of epithelium projected towards the centre of 
the organoid and the basolateral side in contact with the ECM and 
surrounding medium [Figure 1A].

Whereas ASC-derived organoids can be differentiated into the 
different intestinal epithelial cell types,55 iPSC-derived organoids 
also contain the intestinal mesenchyme.56 Furthermore, iPSC-derived 
organoids have a low grade of maturation and therefore resemble 
more fetal tissue compared with ASC-derived organoids—so they 
are less favourable to model adult tissue biology. Organoids derived 
from human biopsies maintain the crypt-villi structure of the in-
testine, and retain the genetic background and transcriptional and 
epigenetic characteristics of the intestinal segment [duodenum, je-
junum, ileum] they were derived from.57–60 Organoids from IBD pa-
tients maintain disease-specific characteristics,61 including altered 
gene expression profiles associated with absorptive and secretory 
functions.62 The acute transcriptional inflammatory phenotype is 
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lost during organoid culture but can be re-induced after inflamma-
tory stimulation,57 and an accumulation of somatic mutations in in-
flamed UC mucosa has been associated with disease duration.63

Contrary to intestinal cell lines, differentiated intestinal 
organoids contain all the epithelial cell lineages populating the intes-
tinal crypt,55 including rare cells [enteroendocrine, tuft, or M cells]64–

66 or cells that could not be previously cultured in vitro [eg, Paneth 
cells].67 By manipulating the culture conditions, organoids can also 
be maintained in a non-differentiated status, containing mainly in-
testinal stem cells and progenitor cells.52 In this way, IBD organoids 
represent a unique tool to investigate the cell-type specificity of host-
microbial interactions in a patient-specific manner.

Below, we will introduce the different organoid models that en-
able us to investigate the interactions between intestinal epithelial 
cells and the microbiota. The limitations and advantages of each 
model are summarised in Table  2. Some of these models have al-
ready demonstrated the ability to grow organoid-derived cells within 
the epithelial chamber, and others can accommodate them but with 
some optimisation required.

2.2.  Microinjection of 3D organoids
3D organoids have closed structures, with the apical side of the epi-
thelium, where most microbiota-epithelial interactions take place, 

projected inwards and therefore not very easily accessible. Different 
techniques can be employed to expose organoids to the microbiota, 
which include addition of metabolites, selected species of bacteria, or 
mixtures of complete patient-derived [filtered] faecal samples either 
by microinjection techniques or addition to the media.

Microinjection of microorganisms directly into the lumen of the 
differentiated 3D organoids has been employed in several labora-
tories, representing a useful technique to access the apical side of the 
epithelium.68–70 The lumen of organoids is characterised by hypoxic 
conditions.42 This facilitates the introduction of facultative or obli-
gate anaerobic bacteria [Figure 1B], such as Clostridium difficile,70 
Escherichia [E] coli,71 E.coli ECOR2,72 and faecal matter containing 
complex microbiota.73

The microinjection technique presents some limitations: a 
stable co-culture with obligate anaerobic bacteria cannot be sus-
tained for a long period of time, due to the presence of small 
amounts of oxygen in the organoid lumen; it requires a very 
specialised set-up and training73; and leakage of injected bacteria 
towards the basolateral side can influence the readout. However, 
microinjection represents a very useful approach when studying 
facultative anaerobes and for high-throughput applications, es-
pecially when an automated set-up and appropriate training are 
available.73
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Figure 1. [A] The intestinal epithelium and the organoid model. [B] 3D organoids and organoid-derived models. [C] Microfluidics models.
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2.3.  3D organoids with reversed polarity
Recently, the ability to grow reversed polarity [‘apical-out’] organoids 
has made the apical side of the epithelium easily accessible, making 
it possible to evaluate epithelial-microbe interactions by adding the 
microbes directly in the culturing medium,74 which is technically 

more convenient than microinjection [Figure 1B]. By understanding 
how matrix proteins control the epithelial [and thus organoid] po-
larity, researchers digested the matrix ‘bubble’, by using the chelator 
EDTA to disrupt divalent cation-dependent polymerisation of the 
ECM protein laminin. Upon continuation of the organoid culture in 
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Table 1. Benchmarking the different organoid models for host-microbiota studies in IBD.

Model complexity In the Gut-Chip, peristalsis allows higher epithelial differentiation resulting in better mucus production. In HuMiX, this is 
achieved with an artificial mucus layer. The introduction of organoids [possible in all models], and other cell types [anaerobe 
Transwell, HuMiX, anaerobic Gut-Chip] can make the model more complete 

Type of inoculum The anaerobic Gut-Chip, HuMiX, and microinjection are preferred when co-culturing complex microbiota, whereas other 
models are more suitable for single bacteria or metabolites

Anaerobiosis Strict anaerobes can be introduced within HuMiX, the anaerobic Gut-Chip [longer assays], or 3D organoids and the anaerobe 
Transwell [shorter assays]. Conversely, apical-out organoids and Transwells can only sustain the growth of facultative  
anaerobes for short-term assays

Nature of the  
interaction

Transwells and apical-out organoids provide a direct microbial-epithelial [villus] interface, which is relevant in IBD where the 
mucus barrier is often disrupted. Instead, because HuMIX presents a physical separation between microbes and epithelial cells, 
it is more suitable to study metabolites

Co-culture time Static systems such as Transwells, microinjection, apical-out organoids, can sustain co-cultures for short times [<24 h], whereas 
the constant medium flow within the anaerobic Gut-Chip allows co-cultures for up to 5 days. HuMiX has been used for 24 h 
only, but could accommodate longer assays

Outcome measures 3D organoids and Transwells allow high-throughput experiments, and can be used to evaluate transcriptional gene  
expression. In contrast, microfluidics systems such as the anaerobic Gut-Chip and HuMiX allow selected conditions to be 
studied in depth, for long-term transcriptional and metabolic profiling

Availability/cost Apical-out organoids, microinjection, and Transwells models allow low-cost and widely replicable assays. Conversely, the  
anaerobic Transwell model, HuMiX, and the anaerobic Gut-Chip are less accessible, and their associated cost is higher

IBD, inflammatory bowel disease.

Table 2. Criteria to evaluate for selection of the appropriate organoid models to study the host-microbiota cross-talk in IBD

Model Micro-injection Apical-out organoids Anaerobe Transwell Anaerobic  
Gut-on-Chip

HuMiX

Epithelial layer: organoids? Yes Yes Yes Yes No, but feasible
Differentiation Crypt-villi Crypt-villi Monolayer Crypt-villi N/A
Mucus layer Goblet cells [low  

expression]
Goblet cells [low  
expression]

Goblet cells [low  
expression]

Goblet cells [high 
expression]

Artificially added

Peristalsis No No No Yes No
Type of inoculum  
[Single bacteria, complex  
community, metabolites]

Single, metabolites, 
complex [short term]

Single, metabolites Single, metabolites, 
complex [short term]

Single, metabolite, 
complex

Single, metabolites, 
complex

Strict anaerobiosis feasible? No No Yes Yes Yes
Direct contact between  
microbiota and epithelial cells?

Yes Yes Yes Yes No [separated by 
nonporous  
membrane]

Duration of the co-culture <4 days 1 h 24 h 5 days 24 h
Possibility to add other cell 
types [eg, immune cells]

No No Short term in lower 
compartment

PBMCs,  
endothelial cells 

CD4 + T cells 

Outcome measures
Integrity of the barrier FITC-dextrans FITC-dextrans Transepithelial 

electrical resistance, 
FITC-dextrans

Cascade blue  
tracing

FITC-dextrans

Microbiota profiling [16S 
rRNA sequencing, proteomics..]

No Yes Yes Yes Yes

Sampling microbiota during 
co-culture

No No No Yes Yes

Organoid profiling [qPCR, 
RNA sequencing, western blot, 
microscopy, cytokine  
production]

Yes Yes Yes Yes Yes

Microscopy of the epithelium 
during co-culture

Yes Yes Yes Yes No

High-throughput? Yes, provided 
specialised equipment

Yes Yes No No

Availability and cost of the 
equipment used?

Low cost, wide  
availability

Low cost, wide  
availability

Low cost, medium 
availability

High cost, low 
availability

High cost, low 
availability

IBD, inflammatory bowel disease; FITC, fluorescein isothiocyanate; PBMC, peripheral blood mononucleat cells; NA,not available.
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suspension using low-attachment plates, an inversion of the organoid 
polarity with the apical side on the ‘outside’ could be observed after 
only 3 days. These early ‘apical-out’ organoids continued to mature, 
including the different polarised differentiated cell types.74

This model has been used to study infection by invasive 
enteropathogens [Salmonella enterica serovar Typhimurium and 
Listeria monocytogenes], but could possibly be applied to study 
interactions with commensal microbes.74 The use of apical-out 
organoids represents an easily applicable option to investigate inter-
actions with aerobic bacteria or bacterial metabolites, allowing mul-
tiple conditions to be easily tested in a high-throughput set-up. Yet, 
further validation is needed to assess the reliability of the readouts, 
as this technique does not guarantee a complete polarity reversion, 
making it difficult to distinguish between apical and basolateral 
interactions. Compared with basal-out organoids, the composition 
of apical-out organoids is skewed towards absorptive enterocytes. 
In the future, a thorough characterisation of how polarity reversion 
affects apical-out organoids phenotype, metabolism, and response to 
microbial challenge will be needed to understand critical similarities 
and differences between this model and self-organised and polarised 
organoids.74

2.4.  Organoid-derived epithelial monolayers on 
Transwells
To make the apical side more accessible, another advance has 
been made by the linearisation of 3D organoids into 2D systems 
[Figure  1B]. Human small intestinal75,76 or colonic77 organoids 
created from patient biopsies can be cultured using the standard 
protocols,52 fragmented into small clumps of cells/single cells, and 
subsequently plated onto a extracellular matrix-coated dish-well 
or Transwell insert, to create an organoid-derived monolayer.76,78,79 
Differentiation towards the different epithelial cell lineages occurs 
during the time period [± 7 days] of linearisation of the cells towards 
a strong, intact monolayer. Upon differentiation, the production of 
mucus by goblet cells is observed.78

In this model, the introduction of microorganisms is executed via 
addition to the culture media [Figure 2A].78,80,81 This model enables 
co-culture of organoids with aerobic bacteria and microbial-derived 
metabolites for several hours [<24 h for bacteria, <48 h for metab-
olites]78,79,82,83 in an easily applicable set-up, and enables comparison 
of several conditions in one experiment. However, co-culture with 
strictly anaerobic bacteria is not feasible in this particular model as 
the system is kept in aerobic conditions to guarantee the organoid 
survival.

2.5.  The anaerobic Transwell model
Recently, various strategies have been developed to overcome this 
limitation by maintaining the apical chamber of a Transwell insert in 
an anaerobic environment, while keeping the basolateral chamber in 
aerobic conditions.84–86

In one model, the enteroid anaerobe co-culture [EACC] system, 
human jejunal organoid-derived monolayers grown on Transwell 
inserts were placed onto modified gaskets sealed in place using 
double-sided adhesive tape on a gas-permeable plate. When keeping 
the entire system in an anaerobic chamber, co-culture with the ob-
ligate anaerobic bacteria Bacteroides thetaiotaomicron and Blautia 
sp. could be sustained for at least 24 h.84 This cost-effective model 
has the advantages of enabling co-culture with anaerobic species for 
a limited time period [due to its static nature], and the possibility 
to employ in high-throughput experiments. However, it is not yet 

commercially available, and reproduction of the model could be 
time-consuming and would require optimisation.

In another model, the intestinal hemi-anaerobic co-culture 
system [iHACS], human colonic-derived epithelial monolayers are 
grown on Transwell inserts whose upper compartment is sealed off 
by a plug, enabling the co-culture with obligate anaerobe bacteria 
Bifidobacterium adolescentis and Akkermansia muciniphila for 
24 h. Upon availability of the plug, the model can be implemented in 
every laboratory, although co-culture is also limited to 24 h.85

Finally, an alternative model has been developed where human 
colonic-derived epithelial monolayers are seeded within a micro-
fabricated insert with tailored oxygen permeability properties, al-
lowing the creation of an oxygen gradient between the luminal and 
basal compartments [0.8 ± 0.1% O2; 11.1 ± 0.5% O2]. Within this 
device, epithelial cells grown in the basolateral compartment polarise 
and remain viable during co-culture with facultative and obligate an-
aerobes Lactobacillus rhamnosus, Bifidobacterium adolescentis, and 
Clostridium difficile within the luminal compartment up to 24 h.86 
The disadvantage of this model is that the culture area is relatively 
large [equivalent to a 12-well Transwell insert], thus requiring a sub-
stantial amount of starting material for the epithelial compartment.

3.  Towards More Physiologically Relevant 
Organoid Models

Organoids are composed of epithelial cell types only.87 Depending on 
the proposed research question, this can be advantageous as it elimin-
ates the confounding factor given by the presence of other cell types. 
This aspect is very important for IBD, in which defects in several epi-
thelial cell type functions have been observed.18 However, for other 
questions, more ‘complex’ in vitro research models must include 
other cell types known to be essential in intestinal physiology and 
pathophysiology,54,88 including a functional immune system, enteric 
nerves, or nutrients providing the mesenchymal niche.89 Co-culture 
with immune cells [macrophages,83 neutrophils,71 T lymphocytes,90 
and intraepithelial lymphocytes,91] as well as fibroblasts,92 adipo-
cytes,93 and enteric nervous system cells,94 have been key to gain 
knowledge on the role of these cell types in host-microbial inter-
actions in IBD.95

Maintaining the gut microbiota and host cells in a co-culture 
system is currently challenging. Host cells require an aerobic envir-
onment, whereas most members of the microbiota are facultative 
or obligate anaerobes, requiring an environment which is [virtually] 
oxygen-free. In addition, both host and bacterial cells require a spe-
cific medium supporting their growth and metabolism, resulting in a 
significant challenge to properly model microbiota host-interactions 
in the gastrointestinal tract.53

Furthermore, the static nature of culture conditions of organoids 
results in microbial overgrowth and potential damage to epithelial 
host cells due to nutrients and oxygen depletion, and accumulation 
of organic waste [eg, acetate or lactate]. So far, this issue has been 
tackled by keeping the microbial and epithelial culture compartments 
separate,96 or by using a short co-culture time [from half an hour to 
several hours], followed by bacterial elimination using bacteriostatic 
antibiotics.97 However, to properly mimic host-microbiome inter-
actions in vitro, viable and functional intestinal tissue and microbial 
cells must be kept within the same confined space for a longer period 
of time.98,99 The introduction of fluid flows facilitating nutrient and 
oxygen uptake, and fluid shear stresses providing physiologically 
relevant mechanical signals to organoid cells, has represented a pos-
sible solution to tackle this problem.100
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Organoids also lack peristalsis-like motion, which is important 
to stimulate in vitro intestinal differentiation, providing an improved 
in vitro model of the intestinal epithelium.101,102 Finally, organoid-
derived monolayers lack the crypt-villus structure to properly mimic 
the host-microbial interactions in the gut; however, recent studies 
show that this organisation is an attainable goal.103 Another chal-
lenge is the replication of the mucus layer,24 including the small intes-
tinal single layer and the colonic double layer composed of inner and 
outer mucus layers associated with different densities and distinct 
microbial communities.104

3D human intestinal organoids are able to recapitulate mucus 
production as observed in vivo. However, this is enclosed in the cen-
tral lumen, making it difficult to investigate its role in host-microbiota 
interactions during IBD.105 Conversely, ileal and duodenal organoid-
derived monolayers cultured on a Transwell only show the produc-
tion of a thin mucus layer [<36 µm thick].78,79 Hence, these models 
are currently unable to reproduce the physiologically important bi-
layer structure seen in human colonic mucus.105

4.  Microfluidic-based and 
Organoid-on-chip Models

The development of microfluidic devices incorporating organoid-
derived cells has overcome some of these limitations, providing a 
more representative and physiologically relevant model to investi-
gate host-microbiota interactions. Within these models, cells are 
cultured with organ-relevant spatiotemporal chemical gradients 
and dynamic mechanical cues, to reconstitute the structural tissue 
arrangements and functional complexity of the living organism in 
vitro.106 The use of these in vitro models to study host-microbe inter-
actions has been previously reviewed.107

4.1.  Gut-on-chip
Several ‘gut-on-chip’ devices have been developed.99,108–110 A gut-on-
chip device consists of two channels simulating the gut lumen and 
a blood vessel, separated by an ECM-coated membrane and Caco-2 
cells99 [Figure 1C]. In contrast to static cell monolayers or organoids, 
fluid flow and peristalsis-like deformations applied to the epithelial 
layer stimulate Caco-2 cells to differentiate into the four different 
types of intestinal epithelial cells, and to organise in villus-like struc-
tures.111 Endothelial cells and blood peripheral mononuclear cells 
can also be introduced in the lower channel, to obtain a more ad-
vanced system.101

However, gut-on-chip devices have some limitations, including 
the use of Caco-2 cells [as these cells are easier to introduce to the 
system and give rise to a confluent monolayer faster than organoids], 
and the ability to sustain the growth of multiple bacteria within the 
system only in a few cases101

4.2.  Organoid-on-chip
Recently, 2D human-derived intestinal organoids have been intro-
duced into gut-on-chip systems,109 combining the advantage of 
organoids [tissue differentiation] with those of gut-on-chip [con-
trollable flow, mechanical cues, and tissue-tissue interaction]. In the 
microfluidic primary human intestine chip model [‘organoid-on-
chip’], fragments from human duodenal organoids are plated onto 
an ECM-coated porous membrane, and primary human intestinal 
microvascular endothelial cells are seeded on the opposite side of 
the same membrane within a parallel channel. Similarly to the gut-
on-chip model, fluid flow and peristalsis-like deformations promote 

epithelial multilineage differentiation and crypt-villi formation,109 
with the final organoid monolayer mimicking epithelial functions 
[proliferation and response to infection] better than the original 3D 
organoid.

One drawback of gut-on-chip and organoid-on-chip devices 
is the presence of an aerobic environment within the epithelial 
chamber, which prevents the introduction of strictly anaerobic bac-
teria,99,101 thus failing to represent bacterial species that play a major 
role in the gut.107,112

This limitation has been addressed thanks to the development 
of a novel microfluidic device with a transluminal hypoxia gra-
dient, which allows study of the effect of a complex living human 
gut microbiome [including obligate anaerobes] on the epithelium.113 
This anaerobic human gut-chip was used to successfully co-culture 
a fresh gut microbiome isolated from human infant stool samples 
with a human ileal organoid monolayer. The presence of a hyp-
oxia gradient within this system helped to sustain a physiologically 
relevant level of microbial diversity, with ratios of Firmicutes and 
Bacteroidetes similar to those observed in human faeces, and an ex-
tended co-culture time [up to 5 days]. Collectively, this allows better 
modelling of the physiological interactions between the intestinal 
epithelium and the anaerobic gut microbiota.113

Another adaptation of the human gut-on-a-chip model is repre-
sented by the anoxic-oxic interface-on-a-chip [AOI Chip]. This de-
vice contains a controlled gradient of oxygen thanks to the flow of 
both oxic and anoxic media in the chip, and allows the co-culture 
of Caco-2 epithelial cells and the anaerobic Bifidobacterium 
adolescentis and Eubacterium hallii, for up to 1 week.114

Overall, organoid-on-chip systems have the advantage of 
enabling long co-cultures of a complex microbiota culture in direct 
contact with organoid-derived cells. In addition, these models sup-
port spontaneous goblet cell differentiation and accumulation of a 
mucus bilayer structure with impenetrable and penetrable layers, 
and a thickness similar to that observed in the human colon, while 
maintaining a subpopulation of proliferative epithelial cells.115 
However, these models are expensive, require specific training to use, 
and do not allow for high-throughput experiments. In addition, the 
anaerobic human gut-on-chips are not commercially available yet in 
the set-up used.

4.3.  The human-microbial cross-talk module
Within the human-microbial cross-talk module [HuMiX], anaerobic 
bacteria can be maintained in an [almost] anoxic compartment116 
[Figure 1C]. This device is composed of three parallel microfluidic 
chambers [microbial, epithelial, and perfusion chamber] separ-
ated by semipermeable membranes, including specific controllable 
inlets for each chamber.107,116,117 Currently, experiments have been 
performed with Caco-2 cells, but the implementation of organoids 
in the model is feasible without any further adaptations. Caco-2 
cells are cultured for 7 days under continuous basal perfusion, fol-
lowed by bacterial inoculation into the microbial chamber for 24 h 
co-culture in anaerobic sheer-free conditions. Following co-culture, 
the modular design of HuMiX allows easy disassembly and cell col-
lection for detailed downstream analyses.116

Using this system, Caco-2 cells have been successfully co-cultured 
with the anaerobic bacteria B.caccae and L.rhamnosus,116 as well as 
immune cells [CD4 + T cells].116 In the future, this system will be 
further developed to become the so-called ‘immuno-HuMiX’, which 
will allow the coexistence of patient-derived microbiota, epithe-
lial cells, and immune cells (eg, peripheral blood mononuclear cells 
[PBMCs]).
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In HuMiX, the mucus-coated membrane separating the mi-
crobial and epithelial compartments enables the study of host-
metabolite interactions but prevents the direct host-microbe contact. 
In addition, gut peristalsis and differentiation of the epithelium 
into various cell types is not present.109,118 As mentioned above, the 
introduction of organoids is feasible but would require a significant 
amount of starting material, given the large seeding surface [8 cm2], 
which would limit high-throughput experiments. As an advan-
tage, multiple readouts [RNA sequencing/qPCR, immunostaining, 
western blot] are feasible within one device. Finally, the current ‘mi-
crobial microchamber’ is not completely devoid of oxygen, making 
this model less physiologically relevant and hindering the co-culture 
of strict anaerobes.116

5.  Limitations of Current Organoid Models 
for Host-microbiota Studies and Future 
Challenges

Organoid technology is constantly evolving, and many challenges 
associated with these models need to be addressed in the near future. 
The economic burden of high-throughput experiments and required 
[commercially available] equipment for the different devices are still 
limiting factors.

The polymeric material [PDMS] used in gut-on-chips can often 
limit the applicability to drug studies by absorbing small molecules, 
due to its hydrophobic nature.119,120 Alternative materials or surface-
coating techniques are being investigated to tackle these issues in the 
future.121–124 The 3D nature and structural complexity of organoids 
and organoids-on-chip also present clear challenges to microscopy 
imaging and image analysis. Methods to enable precise positioning 
and confinement of organoids,125 tissue-clearing methods during 
staining protocols,126 or the use of advanced 3D imaging tech-
niques,127 are being developed to tackle these issues.

To reduce the overall variability of organoid experiments and 
related read-outs, standardisation of organoid culturing methods, 
including the used expansion and differentiation media, is para-
mount. Intestinal organoid culture medium is commercially available 
[IntestiCult™ Organoid Growth Medium, Stemcell Technologies], 
but due to its relatively high cost, the majority of the research la-
boratories are producing growth factors themselves [Wnt3A, 
Noggin, R-Spondin], which may cause batch-to-batch variation and 
differences in the cultivation and differentiation state of organoids. 
In addition, enrichment for a particular or rare cell type should be 
attainable in a standardised way.128–130 The Transwell model enables 
differentiation into the different lineages but maintains a linearised 
structure of the epithelium while microfluidic flow drives the cells 
into more physiological crypt-villi structures.78,109

Recreating the optimal co-culture conditions to keep the bacterial 
community representative of the starting composition and stable 
over time, while maintaining epithelial or immune cells viability, still 
remains a challenge. Even without co-culture with epithelial cells, 
the long-term culture of microbiota supporting both the metabolism 
and the composition of this complex community is currently challen-
ging. The targeted culturing of selected species is feasible but, when 
culturing complete microbiota, the selection of a specific medium 
and culture conditions will inevitably favour the growth of certain 
phyla.131 In addition, bacterial media often contain components that 
damage mammalian cells,132 leading to necessary compromises in 
terms of the best medium to be used during the co-culture.

Furthermore, although IBD organoids derived from inflamed re-
gions maintain disease- and patient-specific characteristics, they lose 

their acute inflammatory phenotype during organoid culture.133,134 
Previous studies have shown a differential response of epithelial cells 
to butyrate in the presence/absence of inflammation,82 showing the 
need to unravel host-microbiota interactions with and without an 
acute inflammatory state, reflecting active and quiescent disease, re-
spectively. Interestingly, a recent study has shown that exposure of 
organoids to a defined inflammatory mix is able to re-induce the in-
flammatory phenotype while maintaining patient specificity.134

6.  Future Directions

6.1.  The next generation co-culture model
Currently available models to study host-microbiota interactions 
in IBD are still not optimal and require compromising between 
models supporting high-throughput experiments, or those better 
representing the in vivo situation but limited in throughput and con-
venient handlings [Table 1]. To be able to study interactions with the 
microbiota, there is great need to develop a model that enables an 
aerobe-anaerobe interface in a commercially available setting, and 
can support high-throughput applications at the same time.

This would first of all require the presence of aerobe and an-
aerobe compartments, in which the direct interactions between a 
complex microbiota community and epithelial cells can be evaluated 
during long-term co-culture experiments. This can either be done by 
creating two separate compartments and performing co-cultures in 
an anaerobe environment, or by providing each compartment with 
the desired aerobic/anaerobic source.

Simultaneously, the presence of a representative mucus layer, 
with small intestinal organoids composed of single layer and colonic 
organoids composed of inner and outer mucus layers with different 
densities, would be essential to correctly mimic the in vivo situ-
ation.24,104 In addition to mucin-like formulations, hydrogel-based 
materials135 with enhanced functionalities [ie, spatial-temporal con-
trol of characteristics] will be more frequently used in future versions 
of organoid-on-chip systems, as they can be tailored to match some 
of the relevant properties and functions of intestinal mucin for spe-
cific applications.136

Furthermore, the presence of an oxygen gradient will be im-
portant to allow the establishment of separate microbial commu-
nities of mucosal and luminal microbiota along the direction of the 
oxygen gradient, which would reflect conditions closer to the in vivo 
situation.

Beyond the correct oxygen gradient and mucus layer, studies 
have highlighted the crucial importance of the in vivo-like intes-
tinal tissue microenvironment in shaping the composition of the 
microbial community, as demonstrated by the mucus degrading-
genus Akkermansia, which is found in great abundance within 
anaerobic gut-on-chips, but not in liquid cultures under the same 
oxygen and mucus conditions.113 Growing organoids on struc-
tured surfaces such as polymeric microscaffolds will be key to 
better mimicking the native in vivo-like microenvironment of the 
gastrointestinal tract, including the crypt-villi architecture.137 In 
this regard, the development of finly tuneable biomaterials, such 
as [functionalised] hydrogels, will be paramount in providing a 
better simulation of the extracellular matrix and the mechanics 
of soft tissues while supporting cell adhesion and protein seques-
tration,138,139 also addressing the issues related to poorly defined 
compositions and batch-to-batch variability of organoid matrices 
used so far.140–142

Real-time evaluation of cell organisation and structure to 
monitor monolayer integrity and cell viability during organoid 
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differentiation and exposure to the microbiota, in addition to ad-hoc 
fine tuning of flow speed and oxygen concentrations, will also be 
key. To reduce the costs of the model [culturing of organoid cells, 
required media, and other components] the seeding surface should 
be limited, but enough to enable continuous sampling of the me-
dium and allow several read-outs [RNA sequencing, proteomics, 
metabolomics, immunohistochemistry,..] of both microbial and host 
cells in each device.

The inclusion of several microsensors that can precisely monitor 
alterations over the complete time course of the experiment [oxygen 
concentrations, barrier integrity measurements, temperature, oxygen, 
pH, integrity, flow] are of major interest, together with regular, easily 
accessible sampling of the different compartments [epithelial cells, 
microbiota].143

To complement the model, co-culture with other cell types 
including separate medium compartments should be optimised. In 
combination with patient-specific epithelial cells and microbiota, the 
addition of immune cells brings these co-culture models to the next 
level for evaluation of patient-specific responses or preclinical testing 
of new compounds.

The implementation of advanced [microfluidics] organoid-based 
models not only requires specialised knowledge and training, but 
also involves substantial implementation costs. To this end, the devel-
opment of automated systems capable of performing several stand-
ardised read-outs will be key to achieving the successful introduction 
of these systems in daily laboratory practice. In addition, this will 
also help reduce the experimental variability and allow comparison 
of experimental results among different groups, especially when it 
comes to preclinical testing of compounds or microbiota mixtures.

6.2.  Applications
Organoids and organoid-derived models are amenable to various 
applications [Figure 2B]. These can be combined to understand the 
role of host-microbiota interactions in IBD pathogenesis, and aid in 
finding microbial interventions tailored to the single individual, re-
sulting in better prevention strategies and treatment success.

6.2.1.  ’Omics and single-cell approaches
The different models reviewed are amenable to ’omics data gener-
ation, which can be helpful to interrogate the role of the epithelial 
genetic [patient-derived or engineered] or epigenetic background 
[acquired from the persistent exposure to pro-inflammatory sig-
nals].58,144 3D organoid models and organoid monolayers on 
Transwells are more suited for generating a single type of ’omics 
readout in many different samples, whereas microfluidics systems 
such as HuMIX allow multiple ’omics readouts to be produced from 
the same sample in a selected number of conditions.

Gut microbes and their metabolites affect each intestinal epithe-
lial subtype differently. To evaluate cell-specific responses, organoid 
differentiation can be skewed towards a specific lineage [eg, Paneth 
cells or goblet cells] before exposure to the bacterial mixture.128 
Alternatively, techniques such as fluorescense activated cell sorting 
[FACS]145 or mass cytometry146 may allow the isolation of cells from 
organoids after exposure to microbiota, similarly to what has been 
achieved for mouse intestinal tissue.147

Recently, single-cell ’omics approaches have been applied to 
characterise individual cells in mouse organoids,148 or organoids de-
rived from active CD lesions,149 and to investigate the differential 
response of intestinal cell types to bacterial infection.150 In the future, 
a similar approach could be applied to provide new insights into 
the mechanisms by which the microbiota or specific probiotics may 

influence the function of specific subpopulations of cells in the gut 
in relation to IBD.

6.2.2.  Personalised disease models
CRISPR/Cas9 genome editing technology has been employed to 
develop genetically defined cultures from organoids.151–154 The ma-
nipulation of specific genes linked to genetic susceptibility could help 
gain a better understanding of disease mechanisms, also in relation 
to microbial exposure [eg, GATM, NOD2, HNF4A, ATG16L1,… 
]].155 Such models could be employed to dissect the role of epithelium 
in early-onset IBD, where a specific genetic mutation of the intestinal 
epithelium causes a defect in barrier function156 and no inflammation 
has developed yet. Organoids enriched for a specific cell type157 can 
further help elucidate the role of specific epithelial subpopulations in 
modulating the adhesion of IBD-associated bacterial strains, such as 
the recently discovered sentinel goblet cells.158

Co-culturing IBD-derived and matched healthy organoids in 
parallel, followed by addition of patient-derived microbiota and im-
mune cells, could also throw some light onto whether the loss of 
tolerance towards the microbiota is a cause or consequence of the 
disease, a fundamental question in IBD research.

6.2.3.  Drug/microbial screening
Organoid biobanks can be established from patient-derived 
organoids. One example is the recently established biobank con-
taining IBD-derived organoids from various parts of the gastrointes-
tinal tract.159 By employing high-throughput approaches,160,161 these 
can be used to screen microbial species or their metabolites.78,162–164 
Because the screening is performed in subpopulations of organoids, 
such approaches are key when studying heterogeneous diseases such 
as IBD,165–167 as they reduce the variability and allow precision medi-
cine approaches. By doing so, patient treatments could be optimised 
before application, reducing treatment failure. The introduction of 
patient-derived or engineered organoids within microfluidics de-
vices also helps re-create a better in vivo–like disease phenotype,168 
thereby facilitating the development of robust disease models for 
improved personalised drug screening and matching.169,170 Overall, 
organoids are useful for target identification and validation in the 
early stages of drug discovery, thanks to their similarity with actual 
organs. Instead, organs-on-a-chip are more suited for subsequent ef-
ficacy and safety screening, as they provide a more reproducible and 
controllable environment.171

6.2.4.  Personalised medicine and microbial therapies
Microfluidics devices can be employed to couple patient-derived in-
testinal organoids with host-specific isolated immune cells, PBMCs, 
or microbiota [faecal inocula or individual-specific isolates], allowing 
the establishment of models amenable to personalised medicine ap-
proaches.172 For instance, these models could be exploited to define 
how different commensal microorganisms within a patient-specific 
microbiota community contribute to IBD pathophysiology.173 On 
the one hand, these systems could help gain a better understanding 
of the causal relationship between the abundance of each individual 
genus of bacteria and the distinct functions of the co-cultured human 
intestinal epithelium. On the other hand, these systems could be 
used to unravel how a dysfunctional IBD-derived epithelial layer 
could impact on the diversity and composition of the microbiota, 
favouring the growth of specific pathogenic bacteria [eg, patho-
genic E. coli], while reducing beneficial ones [eg, Faecalibacterium 
prausnitzii]. Overall, the integration of these approaches could result 
in the development of personalised microbial therapies, including 
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microbiome-based therapeutics such as genetically engineered com-
mensal bacteria,174 or to assess the efficacy of FMT in a patient-
specific manner.113

7.  Concluding remarks

In recent years, the fundamental role played by host-microbiota 
interactions in IBD has begun to be unravelled. However, further 
research needs to be carried out to understand whether it will be 
possible to resolve dysbiosis, and which elements of the microbiota 
and species are essential to do this. Moreover, it is likely that each 
microbial therapy will need to be tailored for each individual.

Intestinal organoids, alone or within a microfluidics system, have 
shown the potential to become the gold standard in the study of 
host-microbiota interactions in IBD in a patient-specific manner. 
However, so far studies that analytically compare organoid-based 
systems and benchmark them for their suitability to look at host-
microbiota interactions in IBD have been lacking. In this review, 
we have presented a variety of models, from 3D organoids and 2D 
organoid-derived monolayers to organoid-on-chip systems, and dis-
cussed their advantages, limitations, and suitability for different re-
search questions and applications.

In the future, the use of organoid models, in combination with 
the patient’s specific microbiota composition and immune cells, will 
help to provide a better understanding of disease onset mechan-
isms and to identify the key bacterial species required for resolving 
dysbiosis. This understanding could lead to more targeted microbial 
therapies, which either alone or in combination with traditional ap-
proaches have the potential to revolutionise IBD management and 
ultimately improve patient outcomes.
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