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Abstract

Next-generation sequencing (NGS) technologies are providing genomic information for an

increasing number of healthy individuals and patient populations. In the context of the large

amount of generated genomic data that is being generated, understanding the effect of dis-

ease-related mutations at molecular level can contribute to close the gap between genotype

and phenotype and thus improve prevention, diagnosis or treatment of a pathological condi-

tion. In order to fully characterize the effect of a pathological mutation and have useful infor-

mation for prediction purposes, it is important first to identify whether the mutation is located

at a protein-binding interface, and second to understand the effect on the binding affinity of

the affected interaction/s. Computational methods, such as protein docking are currently

used to complement experimental efforts and could help to build the human structural inter-

actome. Here we have extended the original pyDockNIP method to predict the location of

disease-associated nsSNPs at protein-protein interfaces, when there is no available struc-

ture for the protein-protein complex. We have applied this approach to the pathological inter-

action networks of six diseases with low structural data on PPIs. This approach can almost

double the number of nsSNPs that can be characterized and identify edgetic effects in many

nsSNPs that were previously unknown. This can help to annotate and interpret genomic

data from large-scale population studies, and to achieve a better understanding of disease

at molecular level.

Introduction

Next-generation sequencing (NGS) technologies have dramatically lowered gene sequencing

costs, and are providing genomic information for an increasing number of healthy individuals

and patient populations. To make the most of all these increasingly available genomic data, we

need to understand better the link between the genetic information and the phenotype it pro-

duces [1]. In this context, the identification and characterization of genetic variants that can be

PLOS ONE | https://doi.org/10.1371/journal.pone.0183643 August 25, 2017 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Barradas-Bautista D, Fernández-Recio J

(2017) Docking-based modeling of protein-protein

interfaces for extensive structural and functional

characterization of missense mutations. PLoS ONE

12(8): e0183643. https://doi.org/10.1371/journal.

pone.0183643

Editor: Attila Gursoy, Koc Universitesi, TURKEY

Received: January 3, 2017

Accepted: August 8, 2017

Published: August 25, 2017

Copyright: © 2017 Barradas-Bautista, Fernández-

Recio. This is an open access article distributed

under the terms of the Creative Commons

Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium,

provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was funded by grants number

BIO2013-48213-R and BIO2016-79930-R from the

Spanish Ministry of Economy and

Competitiveness, and grant number EFA086/15

from Interreg POCTEFA. D. Barradas-Bautista was

supported by a CONACyT predoctoral fellowship

from the Mexican Government. The funders had no

role in study design, data collection and analysis,

https://doi.org/10.1371/journal.pone.0183643
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183643&domain=pdf&date_stamp=2017-08-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183643&domain=pdf&date_stamp=2017-08-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183643&domain=pdf&date_stamp=2017-08-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183643&domain=pdf&date_stamp=2017-08-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183643&domain=pdf&date_stamp=2017-08-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183643&domain=pdf&date_stamp=2017-08-25
https://doi.org/10.1371/journal.pone.0183643
https://doi.org/10.1371/journal.pone.0183643
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


associated to a given disease is the first step in the pursuit of personalized medicine.

Approaches like genomic-wide association studies (GWAS) are generating large datasets of

genetic variants associated with disorders, which are being deposited in public databases, such

as Online Mendelian Inheritance in Man (OMIM) [2], and the database of Genotypes and

Phenotypes (dbGaP) [3].

Among the different possible genetic variants found in human populations, non-synony-

mous single nucleotide polymorphisms (nsSNPs) are small changes in the DNA of an individ-

ual that result in a single aminoacid mutation at protein level. Understanding the effect of

disease-related mutations at molecular level can contribute to close the gap between genotype

and phenotype and thus improve prevention, diagnosis or treatment of a pathological condi-

tion. In a first approach, the impact of a mutation in the functional activity of a protein (e.g. an

enzyme) can be described in structural terms, because it produces a change in protein folding

and stability [4] or it affects a known active or allosteric site. Many structural and biophysical

studies have analyzed the effect of a mutation in protein stability, and this effect can be esti-

mated based on computational modeling and calculations [5]. However, in the majority of the

cases, proteins are not acting alone, but are forming specific interactions with other biomole-

cules and are thus part of intricate interaction networks (metabolic pathways, functional com-

plexes, signaling networks, etc.). Large-scale studies at proteomic level have become widely

accessible to the community [6–8] and are generating a diverse and increasing amount of data,

including protein binding and pathway information [9–11]. This has allowed the computa-

tional construction of genome-wide networks, or "interactomes" [12], in which the biological

system can be ideally described as a PPI network, where the nodes are proteins and the edges

represent interactions between proteins [13].

In this scenario, it will be important to consider the impact of a given mutation in such net-

works. By gaining a system-wide perspective of protein functions, we can further study which

subsets of PPIs are essential in regulating a particular biological process and how genetic vari-

ants such as non-synonymous single nucleotide polymorphisms (nsSNPs) affect these PPIs

[13,14]. For instance, if a mutation affects the folding or stability of the protein, it will affect

and even disrupt all interactions of the mutated protein. On the other hand, if a mutation is

located at a specific protein-binding interface, it could affect only some of the interactions of

the mutated protein or "edges" in a particular network, which could have functional conse-

quences for such network (so called edgetic effect) [15]. Indeed, alterations on the edges of the

interactome are the underlying cause of many disorders [15–17]. Large-scale structural studies

show that pathological mutations are enriched on the domains that are involved in protein-

protein interactions [18] and confirm that many disease-related mutations are physically

located at protein-protein interfaces [17,19,20]. A different study found that OMIM nsSNPs

cause small changes in the binding energy of protein interactions [21]. The integration of avail-

able 3D structures of proteins complexes with the interaction network analysis can improve

our understanding of the functional mechanisms of disease-related mutations [22]. For exam-

ple, a study combining interaction network analysis, structural data and energetic calculations,

found that a significant percentage of the known pathological mutations in the RAS/MAPK

pathways affected the binding affinity of some of the interactions in such network [22–24],

which provided a general explanation for some of the differences in phenotype.

In addition to improving our knowledge of disease at molecular level, understanding the

role of pathological mutations in protein-protein interactions is also of paramount importance

for predicting purposes. The functional prediction of nsSNPs that cause amino acid changes in

proteins is difficult because they can modify the cellular behavior through different mecha-

nisms, for instance by affecting protein stability, function, or interactions with other proteins

and biomolecules [25], as we mentioned above. Thus, for a given mutation found in a patient
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screening or in population genomic analyses, it would be important to characterize their

potential involvement in protein interactions, in order to improve their annotation and/or

predict their pathological character by complementing general predictive methods like Poly-

Phen-2 [26,27], or SIFT [28].

Thus, in order to fully characterize the effect of a pathological mutation at molecular level

and have useful information for prediction purposes, it is important first to identify whether

the mutation is located at a protein-binding interface, and second to understand the effect on

the binding affinity of the affected interaction/s. However, the limited structural data on PPIs

make all the above mentioned studies incomplete. The number of protein-protein complexes

with their 3D structure deposited in the Protein Data Bank (PDB) [29] is very small. Weak or

transient complex structures are particularly difficult to determine by crystallography or

NMR, due to technical limitations. There is a growing gap between the number of protein

complexes with available experimental structure and the number of interactions that are being

discovered. So far the scientific community has available structural data for around half of the

non-redundant proteins in human, but only for less than 7% of the estimated human interac-

tome [30]. Computational methods, such as protein docking [31,32] or post-docking analysis

[33,34] are currently used to complement existing experimental efforts and could help to build

the human structural interactome [35]. However, the main problem for interactomics applica-

tion is that, for many cases, accurate prediction of a protein-protein structure by docking is

still very challenging. Fortunately, the identification of interface residues, based on sequence

conservation or physicochemical properties, is more accurate and can be applied at larger

scale. Of special importance is the identification of hotspots residues, which are the ones that

contribute the most to the binding energy [36]. We previously showed that it is possible to

identify interface hot-spots from docking calculations, without needing prior information of

the complex structure [37]. Here we have extended the original pyDockNIP method to predict

the location of disease-associated nsSNPs at protein-protein interfaces, when there is no avail-

able structure for the protein-protein complex. We have applied this approach to the patholog-

ical interaction networks of six diseases with low structural data on PPIs. Our method finds

51% of the known interface disease-associated nsSNPs with 62% precision, and predicts a

significant number of additional disease-associated nsSNPs (1.5 times the number of known

disease nsSNPs based only on the structures) that could be involved in protein-protein

interactions.

Results

Structural analysis of pathological mutations on protein interaction

networks

The general aim of this work is to show how docking-based computational approaches can

help characterizing disease-related mutations in PPIs at interactomic scale, where the majority

of protein-protein interfaces have no structural data. For this purpose, we focused our analysis

on the protein-protein interaction networks of six disease phenotypes for which there was

detailed structural information for most of the individual proteins within the network, but low

structural coverage of the protein-protein interfaces (see Methods). Table 1 shows the number

of proteins associated to each disease according to OMIM that have available structure or a

reliable homology-based model (see Methods), as well as the number of proteins and com-

plexes forming the first-layer interaction network and their structural coverage.

We first analyzed the distribution of nsSNPs within the protein interaction networks of the

six analyzed diseases (see Methods), considering only those protein-protein interactions that

had available structure (or a reliable homology model). This structural dataset was formed by

Docking-based characterization of missense mutations
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462 protein-protein complexes that had available structure (or a reliable homology-based

model), and involved 353 proteins with available structure (experimental or modelled). We

found that 258 of these proteins had at least one annotated nsSNP (Table 2). The entire set

comprised a total of 1,624 nsSNPs that could be structurally characterized using the complex

structures, of which 832 were related to a disease (not necessarily any of the originally analyzed

six diseases), 499 were classified as polymorphisms, and 293 were unclassified. Among the

structurally mapped disease nsSNPs, 48% are buried, 22% are located at a protein-protein

interface, and 30% are found at a non-interacting surface (Fig 1A). We can compare these

numbers with the values expected by chance for buried, interface and non-interface residues

(29%, 31% and 40%, respectively), as estimated from the residue composition of the studied

proteins (see Methods). Thus, the observed/expected (O/E) ratios for buried, interface and

non-interface disease nsSNPs are 1.68, 0.70 and 0.75, respectively. The disease nsSNPs are

located in buried positions clearly more often than expected by random, which has already

been observed in previous studies [17,19]. However, the O/E value for the interface disease

nsSNPs obtained here (0.70) is clearly below that reported in previous studies on a large inter-

action data set (0.96 [17]; an earlier studied found this value to be 1.20, but in that case inter-

face residues were defined exclusively based on distance criteria and could include some

buried residues [19]). More interesting is to analyze the preference of a disease nsSNP for

being at a protein-protein interface rather that at a non-interacting surface, computed as an

odds ratio (OR) (see Methods). Here, we found that disease nsSNPs had similar probability of

occurring at protein interfaces than at non-interacting surfaces (OR 0.94) (S1 Table). Again,

this value is lower than that previously reported on a large interaction dataset, in which they

found a clear preference of disease nsSNPs to be at interface regions rather than non-interact-

ing surfaces (OR 1.35 [17]). The lower preferences found here for the disease nsSNPs to be

located at protein-protein interfaces can be explained by the low structural coverage of the pro-

tein interactions in the six diseases studied here (which were indeed selected because they had

high structural coverage for the individual proteins but low structural coverage on the protein-

protein complexes). This shows that the lack of structural data on protein-protein complexes

might underestimate the role of many disease nsSNPs involved in protein interactions and can

lead to poor characterization of the effect of these mutations in the network topology.

Table 1. Structural coverage of the disease-related protein interaction networks analyzed in this work.

Phenotype OMIM code Associated proteinsa Protein interaction networks

Proteinsb Interactionsc

HIGM5 608106 2 (2, 0) 17 (6, 11) 21 (5, 0)

LHON 535000 6 (0, 6) 23 (11, 10) 34 (9, 1)

CRC 114500 10 (4, 6) 270 (142, 81) 691 (102, 43)

MCI 608446 11 (8, 3) 193 (102, 61) 582 (101, 57)

HIV-1 609423 25 (13, 12) 91 (63, 21) 142 (59, 13)

CMH 192600 7 (3, 4) 198 (84, 80) 531 (66, 43)

All six diseasesd 61 (30, 31) 729 (361, 249) 1934 (311, 151)

a Number of proteins associated with each disease according to the OMIM database, with available structure or a reliable homology-based model (see

Methods). In brackets, the number of proteins with available structure and those with homology-based model, separated by comma (#structures, #models).
b Number of proteins forming the 1st-layer interaction networks of the disease-associated proteins (see Methods). In brackets, number of proteins with

available structure or homology-based model, separated by comma.
c Number of interactions in the interaction networks of the proteins associated to each disease. In brackets, protein-protein complexes with available

structure or homology-based model, separated by comma.
d Global data for all the selected six diseases, after removing redundant data (union of the different data for the individual diseases).

https://doi.org/10.1371/journal.pone.0183643.t001
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Thus, it remains to be seen whether having more structural data on the protein interactions

for these six diseases analyzed here could improve the structural and functional characteriza-

tion of known disease-related nsSNPs. The following section will explore computational ways

to extend the structural characterization of protein interaction networks.

Prediction of interface residues by docking

The main goal of this work is to explore computational ways of characterizing pathological

mutations possibly involved in protein-protein interactions for which there is no available

structural data. We previously found that energy-based protein docking can be efficiently

applied to identify interface and hot-spot residues in protein-protein complexes [37]. Basically,

from the resulting docking poses, we obtained a normalized interface propensity (NIP) per res-

idue, which describes how often a given residue is involved in the 100 lowest-energy docking

interfaces (see Methods). This approach was implemented in the pyDockNIP module within

our docking protocol pyDock [33]. We have evaluated the predictive capabilities of this

method at different NIP cutoff values, on the protein-protein docking benchmark 4.0, and the

Table 2. Detailed analysis of the location of nsSNPs in the disease-related protein interaction networks, based on complex structures and mod-

elled interactions.

Structural data Docking-based models Structural data & docking-based models

Total number of proteins 353 583 603

Proteins with known nsSNP 258 411 424

Total residues

Number of residues 76168 189629 199846

Core residues 21710 53849 54936

Interface residues 23779 55031 68768

Non-interacting surface residues 30679 80749 76142

Hot-spot residues 5918 11839 16449

Hot-spot residues at interface 3673 11839 14459

Total nsSNPs

Number of nsSNPs 1624 2615 2786

Disease 832 1363 1438

Polymorphism 499 851 899

Unclassified 293 401 449

Non-interacting surface nsSNPs

Disease 250 384 343

Polymorphism 188 399 340

Unclassified 118 126 125

Core nsSNPs

Disease 399 609 629

Polymorphism 118 231 228

Unclassified 102 130 146

Interface nsSNPs

Disease 183 370 466

Polymorphism 193 221 331

Unclassified 73 145 178

Interface hot-spot nsSNPs

Disease 33 74 109

Polymorphism 46 35 76

Unclassified 17 47 61

https://doi.org/10.1371/journal.pone.0183643.t002
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results (Fig 2A) confirm that this method can predict interface residues with high precision

(65–70%), but very low sensitivity (less than 10%). This sensitivity level is too low for its appli-

cability at large protein interaction networks, given that the majority of pathological mutations

involved in protein interfaces would not be detected. In order to improve its applicability, we

have extended the predicted interface patches by including residues in the vicinity of the origi-

nally predicted ones (see Methods). This strategy showed a better trade-off between precision

and sensitivity, with improved sensitivity up to 28%, at the expense of precision (Fig 2A).

As an additional test, we applied the extended interface predictions to the structural interac-

tion networks of six selected diseases, as above mentioned, containing 462 protein-protein

interactions for which the complex structure is available or can be modelled based on a homol-

ogous template, which involved 353 proteins with available structure (or a reliable homology-

based model). Some of the proteins in this dataset had more than one binding partner, so we

considered as interface residues those that are involved in any of the possible interactions. As

a consequence, 44% of the surface protein residues were observed to be located at a protein-

protein interface (Table 2). Then computational docking was run on the separated complex

components of the 449 protein-protein complexes, being them either x-ray structures or

homology-based models, and the extended interface predictions were compared to the

real interface residues. The predictions yielded a precision of 64%, with a sensitivity of 50%

Fig 1. Distribution of nsSNPs in the protein interaction networks of six selected diseases. Distribution of nsSNPs (detailed for

disease, polymorphism and unclassified) in the protein interaction networks from the six selected diseases, as classified in core, interface

and surface non-interface, with expected distributions as calculated from residue composition, and odds ratios (OR) for the different residue

locations and types of nsSNPs, based on (A) structural data; (B) modelled interactions; and (C) combined structural data and modelled

interactions. Only significant OR values (P < 0.05) are shown.

https://doi.org/10.1371/journal.pone.0183643.g001
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(Fig 2B). This improvement in the predictive success rates with respect to the results in the

protein-protein docking benchmark might be due to the fact that many of the proteins in the

disease-associated interaction networks showed several binding partners, and thus the

observed proportion of interface residues in that set (44%) was larger than in the docking

benchmark (23%). To estimate the random accuracy, we randomly selected 44% of the surface

residues as random interface predictions (to keep the same proportion as in the real inter-

faces), and this approach showed 43% precision and 36% sensitivity for the prediction of

Fig 2. Prediction of interface residues and nsSNPs. (A) Prediction success (sensitivity and precision) of interface

residues using pyDockNIP (alone or extended with neighbor residues) on the proteins of the protein-protein docking

benchmark 4.0, according to NIP cutoff value. (B) Interface and nsSNPs predictions using the extended pyDockNIP

predictions on the proteins of the structural interaction networks from the six selected diseases. The nsSNPs predictions

are detailed for interface disease-related, polymorphism and unclassified nsSNPs.

https://doi.org/10.1371/journal.pone.0183643.g002
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interface residues in the structural interaction networks. As an additional test, we selected a

small set of 28 proteins that had only one known interacting partner in the structural interac-

tion networks (i.e. we disregarded proteins with multiple interactions), and we docked all

these proteins with randomly chosen proteins that were different from their known partners.

Using these random docking pairs, our extended interface predictions showed 46% precision,

and 23% sensitivity for the prediction of interface residues. This shows that the docking-based

interface predictions proposed in this work achieves predictive success rates well above ran-

dom, for which using the specific partner/s in docking is critical.

Docking-based interface prediction can help to improve nsSNP

characterization

We then tested the docking-based extended interface predictions on all the nsSNPs found in

the structural interaction networks of the six selected diseases. We applied this methodology to

the identification of interface nsSNPs, and the predictive success rates were similar to those of

the interface predictions (Fig 2B). As an additional test, we focused on the disease-related

nsSNPs within the same structural interaction networks. Thus, we applied our docking-based

method to the 832 disease-related nsSNPs in our structural dataset in order to predict whether

they were located at interfaces. When compared with the 183 disease-related nsSNPs that were

actually located at interfaces in our structural dataset, the predictions showed very similar

numbers in precision (62%) and sensitivity (51%) to those for the interface predictions (Fig

2B). When applied to other types of nsSNPs, the prediction success rates were also similar,

except for the "unclassified" nsSNPs, for which sensitivity is slightly lower (Fig 2B). In general,

the above results show that docking-based predictions can identify with reasonable precision

when a given nsSNP is located at a protein-protein interface, independently on whether such

nsSNP is associated to a disease or no. This provides a valuable resource to characterize

nsSNPs in cases with no structural information on the potential protein-protein interactions.

Identification of interface nsSNPs in complexes with no available

structure

The above described protein interaction networks for the six selected diseases contained 1,472

interactions for which there is no available structure. They involved as many as 3,323 nsSNPs

that could not be structurally mapped in such interactions. Some of these nsSNPs might have

been considered in the previous analysis of the structural interaction network dataset, simply

because they were involved in other complexes with available structure, but they still lacked

information for all the other interactions with no available structure. In 1,055 of these interac-

tions, the interacting subunits had available structure or could be easily modelled by homol-

ogy, which made them suitable for docking calculations. In total, there were 583 proteins with

structure or easily modelled by homology (Table 2). We ran docking simulations on these

interactions to predict interface residues, and then used this information to identify nsSNPs

located at protein-protein interfaces. Some of the interacting proteins have different PDB

structures corresponding to different parts of the protein, in which case we used all of these

structures independently in docking. For instance, in the interaction between the oncogene

RAF1 and the heat shock protein HSP90AA1, there are five different PDB structures associated

to RAF1, covering different zones of the protein, and two different PDB structures associated

to HSP90AA1. Such discontinuous structural coverage for these proteins makes that the

modeling of this interaction alone needs 10 independent docking simulations. As a conse-

quence, we run a total of 8,920 docking simulations, and as many of 2,615 nsSNPs could be

characterized in 1,055 modelled protein-protein complexes. Within these nsSNPs, we found

Docking-based characterization of missense mutations
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1,363 disease-related, 851 polymorphisms, and 401 unclassified. Among the docking-based

characterized disease nsSNPs, 45% were buried, 27% were located at a protein-protein inter-

face, and 28% at a non-interacting region (Fig 1B). According to the residue composition of

the studied proteins in the docking predictions, the values expected by chance for buried,

interface and non-interface nsSNPs are 28%, 29%, and 43%, respectively. Incidentally, these

interface/non-interface residue composition values in the docking predictions show that the

predicted interfaces in these interaction networks are similar in size to the real ones. This is an

additional advantage of the extended interface predictions over the original NIP-based

method, which provided much smaller interfaces. Thus, the O/E ratios for buried, interface

and non-interface disease nsSNPs are 1.57, 0.94 and 0.66, respectively. These numbers are vir-

tually the same as those found in previous studies on larger interaction sets (1.58, 0.96, and

0.71, respectively [17]). Based on the modelled interactions, disease nsSNPs have clear prefer-

ence for being at protein-protein interfaces as compared with non-interacting surfaces (OR

1.42), also in line with previous studies (OR 1.35 [17]). This shows that modeling interaction

networks by docking has the capability of extending the characterization of nsSNPs in cases

with no available structural data.

Integrated experimental and computational characterization of protein

interaction networks

Then, we combined the results of the structural dataset with the modelled interactions for the

protein interaction networks of the six selected diseases. In this way, we had structural or mod-

elled data for 1,517 protein-protein interactions, involving proteins that harbored a total of

2,786 nsSNPs. They contained 1,438 disease-related, 899 polymorphisms and 449 unclassified

nsSNPs. Among the characterized disease-related nsSNPs, 44% were buried, 32% were located

at interfaces, and 24% at non-interacting regions (Fig 1C). According to the residue composi-

tion of the structurally characterized and modelled proteins, the values expected by chance for

buried, interface and non-interface residues are 27%, 34%, and 38%, respectively. Thus, the O/

E ratios for buried, interface and non-interface disease nsSNPs are 1.59, 0.94 and 0.63, respec-

tively (similar to previous studies [17]). This indicates an even clearer preference of the disease

nsSNPs for being at interfaces rather than at non-interacting regions (OR 1.51), a preference

that could not be detected before using only structural data due to the limited number of avail-

able complex structures for these selected diseases. Indeed, based only on the available struc-

tural data, 183 disease nsSNPs were found at protein interfaces, while 250 were found at non-

interacting surfaces. When data from docking was included, as many as 112 of these 250

nsSNPs (45%) were actually found at protein-protein interfaces. This clearly shows that the

combination of experimental and computational information can help to improve the struc-

tural characterization of protein interaction networks and the identification of nsSNPs involved

in interactions, which could not be previously found due to the lack of structural data.

Interestingly, the disease-related nsSNPs that are estimated to be interacting hot-spots

according to the docking-based predictions (interface residues with NIP> 0.2) show an O/E

ratio of 1.05, and a clear preference over the non-interacting regions (OR 1.68), similar to that

previously reported for interface core disease nsSNPs vs. non-interacting regions (OR 1.72 [17]).

For the interaction networks of the six selected diseases, on top of the 183 disease-related

nsSNPs that could be structurally mapped at protein-protein interfaces, we found 283 addi-

tional disease-related nsSNPs that were predicted to be at an interface based on the docking

models. We should note that some of the nsSNPs residues predicted as interface from the

docking models could have been already defined as interface from the complex structures,

because they were involved in other interactions for which there was available structure, and

Docking-based characterization of missense mutations
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this is why last column in Table 2 is not simply the sum of the two previous columns. Consid-

ering all the available structural and docking-based data, we found a total of 109 interface dis-

ease-related nsSNPs that were also characterized as hot-spots, and which are likely to have a

significant edgetic effect (see Discussion).

Docking-based characterization of pathological mutations in the RAS/

MAPK pathway

We used our interface prediction method to extend the characterization of nsSNPs in other

protein interaction networks. A recent comprehensive study on pathological mutations

involved in cancer and RASopathies in proteins of the RAS/MAPK pathway showed that

around 20% of the structurally-mapped pathological mutations were predicted to have a direct

effect on protein-protein or domain-domain interfaces [24]. However, for over 30% of the

mutations that could be mapped at a protein structure, they could not find any structural or

energetic reason that might explain their pathological character. The majority of these muta-

tions were located at the protein surface, and the authors proposed that they might be involved

in protein interactions for which there is no sufficient structural data. Some of the mutations

could be located at a known protein-protein interface but perhaps do not have any impact on

the binding affinity [21], while they could actually affect other protein-protein interactions

with no available structural data [38,39]. Therefore, we aimed to complete the interface struc-

tural and energetics data of this protein interaction network with our computational approach,

to explore whether this can help characterizing some of these "unexplained" mutations. We

used the first-degree neighbors from Interactome3D server [30] to construct the network for

the 15 proteins analyzed in the mentioned study [24].

The complete interaction network involved a total of 236 proteins, 234 of them with avail-

able structure, and 482 protein-protein interactions (300 of them without structural informa-

tion). We performed 1,893 docking calculations on those protein interactions with no

available structure, in order to identify the interface and hot-spot residues. From the 208 path-

ological mutations that were unexplained in the mentioned study [24], we found 95 mutations

(in 59 residues of 11 proteins) that were predicted to be at a protein-protein interface based on

the docking calculations. That is, interface predictions based on docking calculations helped to

rationalize almost half of the unexplained mutations. Among them, we found 44 pathological

mutations (in 29 residues of 9 proteins) that were predicted to be located at a protein-protein

binding hot-spot residue (Fig 3). These nine proteins play a significant role in the RAS path-

way, and are found to interact with several other signaling proteins. Cross pathway connectiv-

ity among signaling proteins is a network property that is related to the robustness or fragility

of cell functions [39]. Therefore, mutations located at protein-protein interfaces in these

nine proteins could not only affect the RAS pathway but also other pathways. Fig 4 shows the

pathways involving proteins whose interaction is affected by the pathological mutations pre-

dicted to be located at a binding hot-spot. We found the most affected pathways are related to

the vascular system formation and activation of immune cells. The VEGF, PDGF, FGF and

interleukin signaling pathways are closely involved in cell proliferation, differentiation and

angiogenesis, all of them highly relevant in the development of cancer.

Discussion

Linking structural information to phenotypes

Structural characterization of nsSNPs and their involvement in protein-protein interfaces is a

starting point to understand complex diseases, for which databases like dSysMap [20] are
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Fig 3. Structurally unexplained pathological mutations of the RAS/MAPK pathway that are predicted

to be involved at protein-protein interfaces. Proteins of the RAS/MAPK pathway are represented as

circles, showing pathological mutations that were not previously characterized due to the lack of structural

data, but that have been predicted here to be binding hot-spots when docking with specific protein partners

from this pathway (circles) or from the first-degree interaction network (in cyan squares). These docking

partners thus represent proteins whose interaction is predicted to be affected by the mutation to which they

are linked. Thus, all edges here correspond to interface predictions from docking.

https://doi.org/10.1371/journal.pone.0183643.g003

Fig 4. Pathways affected by pathological mutations in RAS/MAPK proteins predicted to be at binding

hot-spots. Proteins of the RAS/MAPK pathway are shown as colored circles, showing pathological mutations

that were not previously characterized due to the lack of structural data, but that have been predicted here to

be binding hot-spots for docking partner proteins involved in other pathways (linked to the corresponding

mutation). Pathways shown in red are those that could not have been found using only available structural

data.

https://doi.org/10.1371/journal.pone.0183643.g004

Docking-based characterization of missense mutations

PLOS ONE | https://doi.org/10.1371/journal.pone.0183643 August 25, 2017 11 / 20

https://doi.org/10.1371/journal.pone.0183643.g003
https://doi.org/10.1371/journal.pone.0183643.g004
https://doi.org/10.1371/journal.pone.0183643


valuable resources. However, a major problem is the limited structural data available for pro-

tein-protein complexes, and as a consequence, only a fraction of all possible nsSNPs can be

accurately located at the interfaces. In this work, we have used docking models to characterize

nsSNPs that are likely to be involved in protein-protein interactions. To test this approach, we

have selected six complex diseases in which their associated proteins are involved in protein-

protein interactions for which there is little structural data.

The first difficulty we encountered in this analysis was the availability of data. The task of

finding all the coding protein genes to construct the protein interaction network of a complex

disorder is not trivial, as there are different sources of data for nsSNPs (e.g. humsavar) and dis-

order genes (e.g. OMIM) that are not always fully consistent. Indeed, the gene map file used

here from OMIM had 3,012 disease phenotypes, while the version of humsavar used in this

work has 2,727 phenotypes with assigned nsSNPs. This means that there could be protein cod-

ing genes associated to a disease phenotype, which do not have any described nsSNP. An

example of this was the phenotype MCI (susceptibility to myocardial infarction) [MIM:

608446]. This phenotype is not considered in databases like dSySmap, because all coding pro-

tein genes that have been reportedly associated to the disease harbor mutations for other dis-

eases, and thus no nsSNPs can be found associated with this MIM code in humsavar (Table 1).

Therefore, a specific analysis of this phenotype using only the nsSNPs annotated in humsavar
is not realistic. When we analyzed the interaction network of the proteins associated to this

disease, including all nsSNPs associated to any other diseases, we found a strong preference

of these nsSNPs to be at an interface rather than in non-interacting regions (OR 1.52, P-

value< 0.005). The involvement of different nsSNPs causing other diseases in the protein-pro-

tein interfaces of this interaction network is indicative of a complex genotype-to-phenotype

relationship, which is probably masking the nsSNPs linked to this specific MCI phenotype.

Due to the limited availability of structural data, in phenotypes like the Leber hereditary

optic neuropathy (LHON) [MIM:535000], a rare mitochondrial disease, not a single LHON

nsSNP could be structurally mapped at a protein-protein interface, since there were no avail-

able structures for the protein-protein interactions associated to this disease (except for the

self-interactions, i.e. homocomplexes). Fortunately, we were able to model most of the protein

complexes of the LHON interaction network by means of computational docking. In this way,

we identified 4 LHON disease-related nsSNPs at protein-protein interfaces, involving 3 pro-

teins (MT_CO3, MT-ND1, and MT-ND5) that are part of the respiratory chain (Fig 5). One of

the proteins, MT_CO3 (UniProt P00414), is part of the complex IV assembly of the cyto-

chrome oxidase c, which is the terminal member of the respiratory chain of the mitochondria.

The other two affected proteins are components of the NADH-ubiquinone oxidoreductase

complex, which is key to the catalytic function of the respiratory chain. We could only analyze

part of the chain 1 (MT-ND1, UniProt P03886) and chain 5 (MT-ND5, UniProt P03915).

We could also characterize additional nsSNPs in the LHON interaction network related to

other diseases like Alzheimer and Breast-ovarian cancer (Fig 5). For instance, MT-ND1 and

MT-ND2 harbor additional nsSNPs at the interface that are also linked to other diseases, such

as Alzheimer’s disease (MIM 502500) and MELAS syndrome (MIM 540000). MT-ND1 and,

especially, MT-ND5 proteins are involved in the recognition of BCRT domains. The nsSNPs

that we found located in the interface might be very specific for this LHON disorder, probably

altering the recognition of such domains. We also found other elements of the respiratory

chain affected by nsSNPs at an interface zone, which were described to cause other mitochon-

drial related disorders. For example, the protein ELANE (P08246), a mitochondrial elastase, is

involved in two different diseases, cyclic hematopoiesis (CH; MIM 162800) and severe congen-

ital neutropenia 1 (SCN1; MIM 202700). Interestingly, the nsSNP I104N, which is known to

play a role in causing CH, is predicted here to be located at a protein-protein interface.
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Prediction of edgetic effects of SNPs affecting specific pathways

Crosstalk in cellular pathways provides the cell with a robust network of interactions to

respond to stimulus. The description of these pathway crosstalk events at molecular level and

the mutations that may affect them would open multiple applications in biomedicine, from

understanding the homeostatic response of a given drug in a particular population to discover-

ing new personalized scenarios for drug repurposing [40]. A recently reported interaction per-

turbation profiling of missense mutations across a broad spectrum of human disorders

suggests that around one third of disease mutations have edgetic effects [41]. The same study

shows that different mutations in the same gene may produce different interaction profiles

and, as a consequence, distinct disease phenotypes [41]. However, understanding the possible

edgetic effect of hundreds of thousands of mutations arising from genome-wide association

studies and gene sequencing efforts is being hampered by our currently limited structural

knowledge of protein interactions. The structural characterization of missense mutations by

combining complex structures and docking predictions, as shown in this work, can be essen-

tial to achieve this understanding at interactomic level. As an example, structural analysis of

the TNNC1 interaction network in MHC phenotype (Fig 6) shows that different nsSNPs could

affect the interaction with different proteins. Indeed, mutations affecting TNNT1 binding are

in different region than those affecting TNNI1 and TNNI2. Docking-based predictions can

help to understand the structural role of additional nsSNPs that are involved in interactions

for which there is no available structural data. For instance, based on the docking models,

CDK1 binding has been found to be affected by TNNC1 nsSNPs D145E, G159R and E134D;

UBE2C binding is found to be affected by E134D; and RBM15B binding is found to be affected

by G159R and E134D (Fig 6).

Fig 5. LHON interaction network with disease-related nsSNPs located at modeled protein-protein

interfaces. Proteins associated with LHON pathology (circles) and their modeled interactions (edges) with

other proteins of the network (squares), showing the disease nsSNPs (for LHON and other pathologies) that

are located at the modelled protein-protein interfaces. The homology-modeled structures for selected proteins

are shown in ribbon, with disease nsSNPs in CPK representation, and all residues colored according to their

NIP value (in red NIP > 0.2; in blue NIP < 0.0).

https://doi.org/10.1371/journal.pone.0183643.g005
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In the case of RASopathies, where several of the network nodes are important interaction

hubs, a given disease-associated nsSNP at the interface region might have an edgetic effect by

affecting certain specific pathways but not others. We found that many of the disease-related

nsSNPs that could not be explained in a previous study [24] were located at the docking

extended interfaces, thus affecting around 50 protein partners that were involved in 38 differ-

ent pathways. Moreover, some of these disease-related nsSNPs were located at hot-spot resi-

dues, which were found to affect 26 different pathways (Fig 4). As much as 25 of these

pathways are mediated by interaction partners of BRAF and HRAS. The remaining one, the

nicotinic acetylcholine receptor signaling pathway, was affected by a pathological mutation in

CBL. In total, there are 8 pathways affected by the mutations at the predicted hot-spots that

would have not been identified based only on the available structural data (Fig 4). According

to our hotspot prediction, the pathways that are involving a larger number of proteins whose

interaction was predicted to be affected by pathological mutations are the RAS pathway, VEGF

signaling pathway, T cell activation and angiogenesis. All of these pathways involve interaction

partners of both BRAF and HRAS proteins.

Conclusions and future perspectives

We have presented here a procedure to improve the characterization of genomic variants

involved in protein-protein interactions, especially in cases with low or limited structural

information on the binding complexes. The application of interface and hotspot predictions

based on docking simulations can extend the structural knowledge of protein-protein inter-

faces and estimate the role of nsSNPs regarding the interaction with other proteins. We have

applied this to selected protein interaction networks for disease in which little structural data

for the protein complexes were available. This approach can almost double the number of

Fig 6. Effect of nsSNPs in TNNC1 interaction network based on complex structures and modelled

interactions. Analysis of TNNC1 interaction network by combining structural data and docking models can

identify different nsSNPs that could affect the interaction with different proteins. Protein-protein interactions

with available structure are represented as red edges. Modelled interactions are represented as cyan edges.

Selected protein-protein complex structures are shown, with residue color coding for the predicted NIP values

as in Fig 5.

https://doi.org/10.1371/journal.pone.0183643.g006
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nsSNPs that can be characterized and identify edgetic effect of many nsSNPs that were previ-

ously unknown. In summary, this procedure overcome current limitations of complex struc-

tures and can help to understand the structural and functional role of genomic variants

involved in protein-protein interactions, and their edgetic effect on specific protein interaction

networks within a given disease. Future research will focus on improvement the structural

modeling of protein interfaces by novel scoring methodologies, integration with template-

based docking, or optimized flexibility treatment. The will help to annotate and interpret geno-

mic data from large-scale population studies, and to achieve a better understanding of disease

at molecular level.

Methods

Disease-associated proteins and interaction networks

Genes associated with different diseases were obtained from the OMIM database [2]. Thus,

2,394 distinct proteins (based on UniProt ID) were found to be associated to a total of 3,012

disease phenotypes (based on OMIM ID) (S2 Table). From this, pathological interaction net-

works were built by selecting the first layer interaction partners for proteins associated to each

disease using the Interactome3D server [30], which contains only protein-protein interactions

for which there is reliable evidence that they are binary. Only disease-associated proteins with

available structure (or reliable homology-based model in Interactome3D [30]) were used as

seeds to build the interaction networks, in order to be able to map known nsSNPs variants on

them (see below). Structural data (experimental or modeled) for the proteins and complexes in

each interaction network were also retrieved from Interactome3D [30]. When several struc-

tures or models were found for a given case, we selected the ones with the highest coverage

and/or sequence identity from the proteins.dat file of the database. In some cases, we found

different structures for the same protein (UniProt code), corresponding to different parts of

the protein, so they were independently used for the different analyses in this work.

Statistical analysis of nsSNPs on disease-associated protein interaction

networks

In this work, we selected six disease phenotypes for which there were detailed structural infor-

mation for most of the individual proteins within the network, but low structural coverage of

the protein-protein interfaces (Table 1): Hyper-IgM syndrome 5 (HIGM5); Leber hereditary

optic neuropathy (LHON); Colorectal cancer (CRC); Susceptibility to myocardial infarction

(MCI); Susceptibility to HIV type 1 (HIV-1); and CardioMyopathy Hypertrophic variants 1 to

15 (CMH). S3 Table shows the proteins associated to these six selected diseases (based on the

OMIM database). S4 Table shows the proteins contained in the first layer interaction networks

of the six selected diseases, and their structural coverage (based on Interactome3D). S5 Table

shows the complexes forming the first-layer interaction network of the six selected diseases,

and their structural coverage (based on Interactome3D).

The nsSNPs variants for each gene in the protein structural interaction networks associated

to the six selected disease phenotypes were obtained from the humsavar.txt file (release

2014_06 of June 11th, 2014; downloaded from www.uniprot.org) and mapped to the corre-

sponding protein structure (S6 Table). For this, the human sequences with all the variants

were downloaded in a FASTA format from the UniProt web page [42]. Then, the sequence

and numbering of the PDB files in our dataset were extracted and aligned with the correspond-

ing FASTA sequence when the numbering was incorrect or shifted. The nsSNPs were classi-

fied, according to the humsavar.txt file, as: i) disease-associated, when the mutation is known
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to cause a disorder; ii) polymorphism, when the mutation is believed to be a neutral mutation;

and iii) unclassified, when the mutation is detected in one or few patients, but showed low sta-

tistical significance due the limited size of the sample.

Residues in the protein structures were classified as core, interface and non-interacting sur-

face according to the available structural data on the known protein-protein complexes (S6

Table). Core residues were those with relative ASA < 0.1 (relative ASA is the ASA value for a

given residue over the ASA reference value of the corresponding residue type). Then, exposed

residues (relative ASA > 0.1) were classified as interface residues if any of their atoms are

found within 10 Å from another atom from a partner protein. The remaining residues are clas-

sified as non-interface surface. When multiple structures exist for a single protein, to avoid

ambiguous classifications for the same residue we used for classification the average of relative

ASA (rASA) for the residue in each of the structures. In a few cases, the same residue could be

defined as core based on the complex structures and as exposed based on the docking predic-

tions (in those interactions with no complex structure, see next section), or vice versa, depend-

ing on which structures are used in each case for the average rASA calculations.

The observed/expected (O/E) ratios for the distribution of nsSNPs in the above mentioned

protein regions (core, interface and non-interacting surface) were calculated as the observed

fraction of nsSNPs found in each protein region over the fraction of nsSNPs expected by

chance in each protein region. The latter was estimated from the fraction of total residues

found in each protein region in all analyzed proteins.

The preference of a nsSNP for being in a given protein region i rather that in a region j was

computed as an odds ratio (OR), as previously described [19]:

ORij ¼
Pi=ð1 � PiÞ

Pj=ð1 � PjÞ
ð1Þ

where Pi is the probability of observing a nsSNP of a given type in protein region i, and is com-

puted as:

Pi ¼
ni

Ni
ð2Þ

where ni is the number of nsSNPs of a given type observed in protein region i, and Ni is the

total number of residues in protein region i in all the analyzed proteins. The statistical signifi-

cance of the OR values were estimated by a two-tailed P-value, as previously described [19],

using the statistical packages in R (version 3.1.1).

Prediction of extended interface patches by pyDockNIP

We have developed a new version of the pyDockNIP method for predicting interface residues

in a given protein-protein complex, as follows. Docking simulations were run with FTDock

[43] to generate 10,000 rigid-body docking poses, which were rescored by pyDock [33]

energy-based function composed of van der Waals, electrostatics and solvation energy terms.

From the docking results, normalized interface propensity (NIP) values per residue were cal-

culated with the built-in pyDockNIP module [37]. Basically, for each residue, the averaged

buried surface (ABS) was calculated as the relative difference between its accessible surface

area (ASA) in the unbound structure and the average ASA of that residue in the 100 lowest-

energy docking poses. The ABS values were normalized in order to obtain the NIP value per

residue [37]. Residues with NIP value greater or equal to 0.2 were predicted to be interface

hot-spot residues. This was previously shown to provide a good compromise between preci-

sion and sensitivity, and yielded similar success rates to other predictive methods [37]. The
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novelty here is that the predicted interface patches were extended by including surface residues

(relative accessible surface area rASA> 0.1) within 10 Å distance from the predicted interface

hot-spot residues. This method was used to characterize nsSNPs as core, interface or non-

interacting surface in complexes with no structural data (S6 Table).

The protein-protein docking benchmark 4.0 [44] was used to test the performance of the

above described method to predict extended protein-protein interfaces. We processed all the

176 complexes in the benchmark with our docking-based interface prediction protocol, start-

ing from the structures of the unbound proteins. The predicted extended interface patches

were compared to the real interfaces, which were composed of those residues within 10 Å of

the partner molecule in the complex structure. Then sensitivity and precision of the method

were computed as follows.

SensitivityðSÞ ¼
TruePositives

TruePositivesþ FalseNegatives
ð3Þ

PrecisionðPÞ ¼
TruePositives

TruePostivesþ FalsePositives
ð4Þ

Identification of interface pathological mutations at RAS/MAPK cascade

We used our interface prediction method to extend a previous study [24] on 956 RASopathy

and cancer missense mutations found in 15 genes of the RAS/MAPK pathway: PTPN11, SOS1,

RASA1, NF1, KRAS, HRAS, NRAS, BRAF, RAF1, MAP2K2, MAP2K1, SPRED1, RIT1,

SHOC2 and CBL. For the determination of possible pathways affected by the nsSNPs at the

interface of the proteins, we used the GO annotation for the functional classification of genes

provided by PANTHER database [45].

Supporting information

S1 Table. Statistical analysis of nsSNPs frequencies in the disease-related protein interac-

tion networks.

(PDF)

S2 Table. Proteins associated to each disease according to OMIM database.

(TXT)

S3 Table. Proteins associated to the six selected diseases based on OMIM database. All of

them have available structure or homology-based model in Interactome3D.

(TXT)

S4 Table. Proteins contained in the first layer interaction networks of the six selected dis-

eases. Structural coverage according to Interactome3D (EXP: experimental structure; MDL:

Homology model; NS: no structure).

(CSV)

S5 Table. Protein complexes forming the first layer interaction networks of the six selected

diseases, with their structural coverage. Structural information according to Interactome3D

(EXP: experimental structure; MDL: Homology model; MDD: Domain-domain model), or

docking. NS: no structure for the subunits.

(CSV)

S6 Table. nsSNPs associated to the protein interaction networks of the six selected diseases.

They are based on humsavar, with their location in the protein according to the real complex
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structures (Interactome3D) or to the docking predictions (pyDockNIP extended). Many of the

nsSNPs are characterized based on both structural and docking data, because they are involved

in interactions with available structure and in other ones with no available structure.

(CSV)
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