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Purpose: Optic disc (OD) and optic cup (OC) segmentation are fundamental for fundus
image analysis. Manual annotation is time consuming, expensive, and highly subjec-
tive, whereas an automated system is invaluable to the medical community. The aim
of this study is to develop a deep learning system to segment OD and OC in fundus
photographs, and evaluate how the algorithm compares against manual annotations.

Methods: A total of 1200 fundus photographs with 120 glaucoma cases were collected.
The OD and OC annotations were labeled by seven licensed ophthalmologists, and
glaucoma diagnoses were based on comprehensive evaluations of the subject medical
records. A deep learning system for OD and OC segmentation was developed. The
performances of segmentation and glaucoma discriminating based on the cup-to-disc
ratio (CDR) of automated model were compared against the manual annotations.

Results: The algorithm achieved an OD dice of 0.938 (95% confidence interval
[CI] = 0.934–0.941), OC dice of 0.801 (95% CI = 0.793–0.809), and CDR mean absolute
error (MAE) of 0.077 (95% CI = 0.073 mean absolute error (MAE)0.082). For glaucoma
discriminatingbasedonCDRcalculations, the algorithmobtainedanareaunder receiver
operator characteristic curve (AUC) of 0.948 (95% CI = 0.920 mean absolute error
(MAE)0.973), with a sensitivity of 0.850 (95% CI = 0.794–0.923) and specificity of
0.853 (95% CI = 0.798–0.918).

Conclusions: We demonstrated the potential of the deep learning system to assist
ophthalmologists in analyzing OD and OC segmentation and discriminating glaucoma
from nonglaucoma subjects based on CDR calculations.

Translational Relevance: We investigate the segmentation of OD and OC by deep
learning system compared against the manual annotations.

Introduction

Glaucoma is the leading cause of irreversible blind-
ness around the world.1 In clinical practice, glaucoma
is diagnosed by evaluating the thickness of the retinal
nerve fiber layer (RNFL), and the morphology of the
optic nerve head (ONH).2,3 Some other features are

considered when making a diagnosis of glaucoma,1,4
including visual field (VF), intraocular pressure (IOP),
family history, corneal thickness, history of disc hemor-
rhages, etc. In fundus examinations, glaucoma is
usually characterized by a larger cup-to-disc ratio
(CDR), focal notching of the neuroretinal rim, etc.5,6
An enlarged CDR may also indicate the existence
of other ocular ailments, such as neuro-ophthalmic
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diseases. Previous studies have shown that a larger
vertical CDR is closely associated with the progres-
sion of glaucoma.7–9 However, calculations for the
CDR often vary among ophthalmologists and are
relatively subjective, because they require a comprehen-
sive judgment of shapes and structures of optic disc
(OD) and optic cup (OC).10,11 As such, several tools
incorporating computer vision and machine learning
techniques have been developed to perform automated
OD and OC segmentation for large-scale data analysis.

Recently, deep learning techniques have been
shown to perform very well in a wide variety of
medical imaging tasks,12,13 including diabetic retinopa-
thy screening,14–16 and age-related macular degener-
ation detection.17–19 Automated glaucoma detection
from fundus photographs has also received increas-
ing attention.20–23 However, most of the studies have
focused on predicting glaucoma directly from the
fundus photographs, without any visualization result.
By contrast, ODandOC segmentation could be helpful
for calculating the risk factors (e.g. CDR, rim-to-disc
ratio24), and providing a segmentation visualization
result. Moreover, although some automated segmen-
tation methods appear to perform well on the small
datasets,25–28 they have not been compared to perfor-
mance by the practicing ophthalmologists.

In this study, we developed a deep learning system
for automated OD and OC segmentation in fundus
photographs and evaluated its performances compared
against seven ophthalmologists for OD and OC
segmentation and glaucoma discriminating based on
CDR calculations.

Methods

Data Acquisition

The fundus photographs were collected from
Zhongshan Ophthalmic Center, Sun Yat-sen Univer-
sity, China. The fundus photographs were captured by
using Zeiss Visucam 500 and Canon CR-2 machines.
We included 1496 fundus photos from 748 subjects. As
long as the diagnosis of both eyes are determined, both
eyes of the same subjects were included. After a quality
assessment, the low-quality fundus photographs (e.g.
low-contrast and blurring) are excluded. Finally, a
total of 1200 fundus photographs are selected in
our study with 120 glaucoma and 1080 nonglau-
coma cases (inclusion criteria: 1. age ≥ 18 years
old; 2. clear images without artifacts or overexposure;
and 3. definite diagnoses acquired). Diagnoses were
based on the comprehensive evaluation of the subjects’
medical records, including fundus photographs, IOP

measurements, optical coherence tomography (OCT)
images, VFs. The fundus photographs came from
previous clinical studies,29 and all the participants
signed informed consent before enrollment. Insti-
tutional review board/Ethics Committee ruled that
approval was not required for this study.

The dataset was split into a training set (400
photographs with 40 glaucoma cases), a validation set
(400 photographs with 40 glaucoma cases, women:
52%, mean age: 25.3 ± 11.5 years), and a test set
(400 photographs with 40 glaucoma cases, women:
55%, mean age: 23.7 ± 9.0 years), following the
REFUGE challenge.29 The photographs from the same
patient were assigned to the same set. The training set
was used to learn the algorithm parameters, the valida-
tion set was used to choose the model, and the test
set was used to evaluate the algorithm, as well as the
ophthalmologists.

Diagnostic Criteria for Glaucoma

Patients with glaucomatous damage in the ONH
area and reproducible glaucomatous VF defects were
included in our study. A glaucomatous VF defect
is defined as a reproducible reduction in sensitiv-
ity compared to the normative dataset, in reliable
tests, at: (1) two or more contiguous locations with
P value < 0.01, (2) three or more contiguous locations
with P value < 0.05. ONH damage is defined as CDR
> 0.7, thinning of RNFL (an RNFL defect in the
optic nerve head shown on the OCT reports), or both,
without a retinal or neurological cause for VF loss.
Specifically, first, the diagnostic criteria were based on
the trial in glaucoma (i.e. UKGTS).30 Second, if the
points exist on the rim, there could be false-positive
cases. However, as mentioned in our manuscript, the
included subjects in our study received repeated VF
tests to ensure reliability. If the defects exist all the time,
we consider them as glaucomatous defects.

All OD and OC annotations were manually labeled
by seven licensed ophthalmologists (average experi-
ence: 8 years, range: 5–10 years). All ophthalmolo-
gists independently reviewed and marked OD and OC
in each photograph as the tilted ellipses using a free
image labeling tool with capabilities for image review,
zoom, and ellipse fitting. Ophthalmologists did not
have access to any patient information or knowledge
of disease prevalence in the data. The final standard
reference labels of ODandOCwere created bymerging
the annotations from multiple ophthalmologists using
majority voting. Specifically, a senior specialist with
> 10 years of experience in glaucoma performed a
quality check afterward, analyzing the resulting masks
to account for potential mistakes. When errors in
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Figure 1. Deep learning system for automated segmentation in fundus images. The algorithm included two stages: optic disc (OD) region
detection andOD and optic cup (OC) segmentation. For a given fundus image (a), the U-Net network (b) was utilized to detect theOD region
(c). With the cropped OD region (d), a polar transformation was used to map the image into polar coordinate (e). A multilabel network (f)
segmented the OD and OC jointly, and an inverse transformation returned the output map (g) back to original coordinates (h).

the annotations were observed, this additional reader
analyzed each of the seven segmentations, removed
those that were considered failed in his/her opinion,
and repeated the majority voting process with the
remaining ones. Only a few cases had to be corrected
using this protocol.

Algorithm Development

In this study, we proposed a deep learning system
for automated OD and OC segmentation in fundus
photographs (Fig. 1). The proposed system included
two main stages: (1) OD region detection, which first
localized theODcenter within thewhole fundus photo-
graph, and then cropped the OD region to remove the
background; and (2) OD and OC segmentation, which

segmented the OD andOC jointly via a multilabel deep
network in the cropped OD image. We used a U-Net
network for OD region detection, which was based
on encoder–decoder architecture to achieve satisfac-
tory performances in many biomedical image tasks.31
The encoder path consisted of the multiple convolu-
tional layers with various filter banks to produce a
set of feature representations for the inputs, whereas
the decoder path aggregated the feature representa-
tions to predict the probability map of the OD region
in the fundus photograph. Additionally, skip connec-
tions were used to concatenate the feature represen-
tations from the encoder path to the corresponding
decoder path. The final output of the U-Net network
was a probability map, indicating the OD region and
background for each pixel in the fundus image, as
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shown as Figure 1c. The implementation details of the
U-Net network for OD detection were given in Supple-
mentary Fig. 1A. With the probability map of OD
localization, we used a thresholding of 0.5 to obtain
the mask for the OD region, and cropped a local image
around the OD for the following OD and OC segmen-
tation stage.

In the second stage of our algorithm, a multilabel
network was utilized to segment OD and OC simul-
taneously in the cropped OD region image.26 Similar
to the U-Net network, the multilabel network also
consisted of an encoder and a decoder path based
on convolutional layers. The difference is that the
multilabel network used the average pooling layers to
naturally down-sample the images as multiscale inputs
to the corresponding encoder path, whereas the multi-
scale outputs from each scale of decoder path were
fused together as the final probability map. Addition-
ally, the multilabel loss function was used to learn the
binary classifier of each class (i.e. OD and OC), and
assign multiple labels to each pixel for segmentation
of OD and OC jointly. The implementation details of
the multilabel network for OD and OC segmentation
were given in Supplementary Fig. 1B. In the fundus
photograph, the size ratio of the OC region is less
than theODand background, which could lead overfit-
ting of deep model during training. To address this,
we map the OD region image into the polar coordi-
nates, before being fed into the multilabel network.
Polar transformations were carried out using the OD
center as the origin and the local image width as the
radius (see Fig. 1e). The implementation details of
polar transformations were given in Supplementary
Fig. 1C. After passing through the multilabel network,
an inverse polar transformation reverted the predicted
map back to the original coordinates.

The U-Net network for OD detection and multi-
label network for OD and OC segmentation were
trained separately. The U-Net network was trained
based on the whole fundus images resized to 800 by
800 pixels, with the OD reference label, whereas the
multilabel network was trained based on the OD region
images resized to 400 by 400 pixels, with the OD and
OC reference labels. Random flips and rotations were
applied to all training photographs before they were
fed into the networks for data augmentation. These
two networks were implemented with Python (version
3.6) based on Keras (version 2.2) with a Tensorflow
(version 1.12) backend. All network parameters of the
networks were optimized by using stochastic gradient
descent with a learning rate of 0.0001 and amomentum
of 0.9. In order to prevent the networks from overfit-
ting, early stopping was performed, which saved the
network model after each epoch and chose the final

model with the lowest loss on the validation set. Each
stage of training required around 2 hours for comple-
tion, on a single NVIDIA Titan XP.

Statistical Analysis and Evaluation

For segmentation evaluation, we reported three
performance metrics, namely, OD dice, OC dice, and
CDR mean absolute error (MAE). The dice scores
measured the overlap ratio between the target regions
of the reference label and segmented result, whereas
the CDR MAE was the mean absolute error between
the calculated CDR values from the reference label and
segmented result. We also determined the SD and 95%
Bayesian confidence interval (CI)32 for each segmenta-
tion metric.

In addition to evaluating the segmentation perfor-
mance, we also compared the algorithm against
ophthalmologists for discriminating glaucoma from
nonglaucoma photographs based on CDR calcula-
tions. The performances across different diagnostic
thresholds of CDR were assessed in terms of the area
under receiver operator characteristic curve (AUC). To
convert the CDR to a binary prediction, we chose the
highest point on the receiver operator characteristic
(ROC) curve, which offers minimal trade-off between
sensitivity and specificity, as the final discriminating
threshold. Moreover, the 95% bootstrapping CI33 was
provided for each discriminating metric as: comput-
ing 10,000 bootstrap replicates from the set, and each
metric was computed for algorithm and reference label
on the same bootstrap replicate. The P values were
reported by comparing the AUC with the algorithm
and ophthalmologist predictions. All statistical analy-
ses were performed using Python (version 3.6) with
SciPy (version 1.2) and Scikit-learn (version 2.20).
Figures were created usingMatplotlib (version 3.0) and
Seaborn (version 0.9).

Results

The segmentation performances of our algorithm
and annotations of the seven ophthalmologists, for
the test set, are listed in Table 1. For glaucoma
data, the algorithm obtained an OD dice of
0.941 (SD = 0.057; 95% CI = 0.926–0.956), OC dice of
0.864 (SD = 0.089; 95% CI = 0.841–0.887), and CDR
MAE of 0.065 (SD = 0.056; 95% CI = 0.051–0.080).
For nonglaucoma data, the algorithm predicted an OD
dice of 0.937 (SD = 0.040; 95% CI = 0.934–0.941),
OC dice of 0.794 (SD = 0.096; 95% CI = 0.786–
0.803), and CDR MAE of 0.079 (SD = 0.050; 95%



Deep Learning for Disc and Cup Segmentation in Fundus TVST | Special Issue | Vol. 9 | No. 2 | Article 33 | 5

Table 1. Segmentation Performances of Ophthalmologists and Algorithm on Test Set

OD Dice (SD, 95% CI) OC Dice (SD, 95% CI) CDR MAE (SD, 95% CI)

Glaucoma data (40 images)
Ophthalmologist 1 0.963 (0.026, 0.957-0.970) 0.880 (0.090, 0.857-0.904) 0.057 (0.055, 0.043-0.071)
Ophthalmologist 2 0.945 (0.034, 0.936-0.954) 0.867 (0.090, 0.843-0.890) 0.057 (0.045, 0.045-0.069)
Ophthalmologist 3 0.944 (0.031, 0.936-0.952) 0.888 (0.072, 0.869-0.907) 0.039 (0.035, 0.030-0.048)
Ophthalmologist 4 0.953 (0.027, 0.946-0.960) 0.884 (0.071, 0.865-0.902) 0.052 (0.040, 0.042-0.063)
Ophthalmologist 5 0.947 (0.030, 0.939-0.955) 0.865 (0.089, 0.842-0.889) 0.055 (0.054, 0.041-0.069)
Ophthalmologist 6 0.954 (0.030, 0.946-0.962) 0.904 (0.064, 0.887-0.921) 0.048 (0.042, 0.037-0.059)
Ophthalmologist 7 0.954 (0.030, 0.947-0.962) 0.719 (0.138, 0.683-0.755) 0.149 (0.091, 0.125-0.173)
Algorithm 0.941 (0.057, 0.926-0.956) 0.864 (0.089, 0.841-0.887) 0.065 (0.056, 0.051-0.080)
Nonglaucoma data (360 images)
Ophthalmologist 1 0.956 (0.028, 0.953-0.958) 0.686 (0.107, 0.677-0.695) 0.157 (0.071, 0.151-0.163)
Ophthalmologist 2 0.926 (0.047, 0.922-0.931) 0.842 (0.086, 0.834-0.849) 0.053 (0.040, 0.049-0.056)
Ophthalmologist 3 0.922 (0.040, 0.918-0.925) 0.837 (0.078, 0.831-0.844) 0.041 (0.032, 0.038-0.044)
Ophthalmologist 4 0.949 (0.033, 0.946-0.952) 0.801 (0.117, 0.791-0.811) 0.056 (0.043, 0.053-0.060)
Ophthalmologist 5 0.945 (0.035, 0.942-0.948) 0.870 (0.082, 0.863-0.877) 0.041 (0.036, 0.038-0.044)
Ophthalmologist 6 0.953 (0.034, 0.950-0.956) 0.903 (0.064, 0.898-0.909) 0.034 (0.030, 0.031-0.037)
Ophthalmologist 7 0.955 (0.032, 0.952-0.958) 0.664 (0.138, 0.652-0.676) 0.130 (0.063, 0.125-0.136)
Algorithm 0.937 (0.040, 0.934-0.941) 0.794 (0.096, 0.786-0.803) 0.079 (0.050, 0.074-0.083)
All data (400 images)
Ophthalmologist 1 0.956 (0.028, 0.954-0.959) 0.705 (0.121, 0.695-0.715) 0.147 (0.075, 0.141-0.153)
Ophthalmologist 2 0.928 (0.046, 0.925-0.932) 0.844 (0.086, 0.837-0.851) 0.053 (0.040, 0.050-0.056)
Ophthalmologist 3 0.924 (0.039, 0.921-0.927) 0.843 (0.079, 0.836-0.849) 0.041 (0.032, 0.038-0.044)
Ophthalmologist 4 0.949 (0.032, 0.947-0.952) 0.809 (0.116, 0.800-0.819) 0.056 (0.042, 0.052-0.059)
Ophthalmologist 5 0.945 (0.035, 0.942-0.948) 0.870 (0.082, 0.863-0.876) 0.043 (0.038, 0.040-0.046)
Ophthalmologist 6 0.953 (0.034, 0.950-0.956) 0.903 (0.064, 0.898-0.909) 0.035 (0.032, 0.033-0.038)
Ophthalmologist 7 0.955 (0.031, 0.952-0.957) 0.670 (0.138, 0.658-0.681) 0.132 (0.066, 0.127-0.138)
Algorithm 0.938 (0.041, 0.934-0.941) 0.801 (0.097, 0.793-0.809) 0.077 (0.051, 0.073-0.082)

OD, optic disc; OC, optic cup; CDR, cup-to-disc ratio; MAE, mean absolute error; CI, confidence interval.

CI = 0.074–0.083). The segmentation performances
of the algorithm on the whole test set achieved an OD
dice of 0.938 (SD = 0.041; 95% CI = 0.934–0.941), OC
dice of 0.801 (SD= 0.097; 95%CI= 0.793–0.809), and
CDR MAE of 0.077 (SD = 0.051; 95% CI = 0.073–
0.082). ForOD segmentation, the algorithm performed
better than ophthalmologist 2, who reported an OD
dice of 0.928 (SD = 0.046; 95% CI = 0.925–0.932),
and ophthalmologist 3, who determined the OD dice
to be 0.924 (SD = 0.039; 95% CI = 0.921–0.927). For
OC segmentation, the algorithm performed better than
ophthalmologist 1, who obtained an OC dice of 0.705
(SD = 0.121; 95% CI = 0.695–0.715), and ophthalmol-
ogist 7, who got an OC dice of 0.670 (SD = 0.138; 95%
CI = 0.658–0.681). The OD and OC dice scores of
inter-agreement for seven ophthalmologists are given
in Figure 2. Boxplots for the calculated CDRs of the
reference label, the ophthalmologist annotations and
the algorithm outputs, for glaucoma and nonglaucoma

data on test set, were plotted in Figure 3. The average
CDRs of the reference labels for the glaucoma and
normal cases were 0.656 and 0.453, respectively, for the
test set.

Figure 4 shows the visual results of automated
OD and OC segmentation, for both glaucoma and
nonglaucoma data. Several failure cases were also
provided in Figures 4E, 4F. One common failure case
for OD segmentation was confusion when peripap-
illary atrophy (PPA) was present, because this looks
similar to the OD (green arrow in Fig. 4E). Failure
cases also occurred due to the low-quality of the
fundus photographs, where poor illumination and low-
contrast oftenmade it difficult to determine the bound-
ary of the OC (green arrow in Fig. 4F). However, this
could be relieved using additional image enhancement
pre-processing.

The performances of discriminating glaucoma from
nonglaucoma subjects based on CDR, for the test set,
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Figure 2. Dice scores of inter-agreement for seven ophthalmologists on the test set for (A) optic disc, and (B) optic cup.

Figure 3. Boxplots of the calculated cup-to-disc ratio (CDR) from segmentation results on test set.

are shown in Figure 5 and Table 2. The algorithm
obtained an AUC of 0.948 (95% CI = 0.920–0.973),
with a sensitivity of 0.850 (95% CI = 0.794–0.923)
and specificity of 0.853 (95% CI = 0.798–0.918). The
algorithm obtained the rank 2 discriminating perfor-
mance, only lower than ophthalmologist 2, who got
an AUC of 0.956 (95% CI = 0.933–0.975, P value
< 0.0001). Moreover, Figures 4E, 4F showed the false
negative and false positive samples, respectively.

Discussion

The purpose of this study was to develop a
deep learning algorithm for automated OD and OC
segmentation in fundus photographs and compare
its performance to ophthalmologist annotations. The
results demonstrated that the proposed deep learn-
ing algorithm achieved satisfactory performances on
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Figure 4. The visual results of segmentation. The segmented optic disc and optic cup regionswere labeled by red and yellow colors, respec-
tively. (a, b) Glaucoma cases, (c, d) nonglaucoma cases, and (e, f) failure cases.

Figure 5. (A) The average receiver operating characteristic curves (AUC) for glaucoma diagnosis based on cup to disc ratio (CDR) on test
set. (B) The precision-recall curves for glaucoma diagnosis based on cup to disc ratio (CDR) on test set.

the OD and OC segmentation task and the glaucoma
discriminating task based on CDR calculations.

OD and OC segmentation are fundamental for
fundus analysis, especially for CDR calculations during
discriminating glaucoma from nonglaucoma subjects.

Developing an automated system for this task is
crucial. First, as briefly mentioned, manual fundus
photograph labeling is highly time-consuming, with
the average ophthalmologist requiring 40 seconds to
annotate a single photograph. Because our algorithm
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Table 2. Diagnosis Performances of Experts and Algorithm on Test Set

AUC (95% CI) P Value Sensitivity (95% CI) Specificity (95% CI) Precision (95% CI)

Reference label 0.946 (0.911-0.974) < 0.0001 0.875 (0.811-0.927) 0.867 (0.819-0.923) 0.700 (0.588-0.791)
Ophthalmologist 1 0.922 (0.884-0.955) < 0.0001 0.875 (0.800-0.897) 0.858 (0.812-0.887) 0.585 (0.464-0.694)
Ophthalmologist 2 0.956 (0.933-0.975) < 0.0001 0.875 (0.826-0.930) 0.869 (0.834-0.928) 0.700 (0.577-0.786)
Ophthalmologist 3 0.935 (0.902-0.964) < 0.0001 0.850 (0.789-0.913) 0.850 (0.795-0.908) 0.650 (0.556-0.771)
Ophthalmologist 4 0.916 (0.871-0.954) < 0.0001 0.850 (0.791-0.903) 0.847 (0.796-0.898) 0.575 (0.438-0.667)
Ophthalmologist 5 0.911 (0.866-0.951) < 0.0001 0.850 (0.756-0.892) 0.856 (0.755-0.886) 0.625 (0.525-0.755)
Ophthalmologist 6 0.947 (0.916-0.972) < 0.0001 0.900 (0.824-0.930) 0.881 (0.832-0.922) 0.659 (0.556-0.773)
Ophthalmologist 7 0.916 (0.876-0.951) < 0.0001 0.825 (0.765-0.882) 0.825 (0.772-0.878) 0.625 (0.469-0.720)
Algorithm 0.948 (0.920-0.973) – 0.850 (0.794-0.923) 0.853 (0.798-0.918) 0.700 (0.600-0.800)

AUC, area under the receiver operating characteristic curve; CI, confidence interval.

could reduce this time to 2 seconds, it would be
highly beneficial for accelerating processing time and
analyzing large-scale datasets. Second, manual annota-
tions are highly subjective. In fact, the segmentations
carried out by the ophthalmologists were easily affected
by both fundus resolution and image quality. The inter-
agreement rating between the various ophthalmolo-
gists, for both OD and OC dice scores on the test
set, are shown in Figure 2. As can be seen, there was
slight variation between the OD segmentation results,
with inter-agreement scores ranging from 0.89 to 0.95.
However, the OC segmentation task suffered a larger
variability, with inter-agreement scores ranging from
0.47 to 0.85. The boundary of OD was clear and
definite enough to determine in fundus photograph,
which produced a high inter-agreement score between
the ophthalmologists, as shown in Figure 2A. Different
from the OD, the boundary of OCwasmore difficult to
identify, which was influenced by many factors, such as
tilted disc, illumination, and low contrast, etc. These
factors may result in the clinical uncertainty during
different ophthalmologists and a variable OC segmen-
tation. Moreover, OC segmentation by an ophthalmol-
ogist was a highly subjective task, which was related to
individual bias and clinical experiences. This also led a
low inter-agreement score (see Fig. 2B). By contrast,
the automated algorithm provided a consistent result
for the same photograph with freezing the trained
parameters and model. Moreover, due to limited GPU
memory capabilities and parameter size constraints,
input fundus photographs had to be down-sampled
for training, thus removing the requirement for high-
resolution photographs. Another observation is that
the performances of algorithm on glaucoma cases (OD
dice of 0.941, cup dice of 0.864, and CDR MAE of
0.065) was better than its on nonglaucoma cases (OD

dice of 0.937, cup dice of 0.794, and CDR MAE of
0.079). One reason is that the advanced glaucoma cases
with severe cupping usually present more clear inter-
faces between the OD and OC.

Over the decades, many automated deep learning
algorithms have been proposed for glaucoma diagno-
sis in fundus photographs,22,34 OCT,35,36 and anterior
segment OCT (AS-OCT).37,38 However, although
many of these produce diagnostic results from fundus
photographs directly, they lacked clinical interpretabil-
ity and analyticity. By contrast, segmentation-based
algorithms generate a visible segmentation result and
have more potential for clinical assistant and analysis.
Some automated algorithms based on various visual
features and machine learning techniques have been
developed for segmenting OD and OC.28,39,40 Cheng et
al.25 classified each superpixel in the fundus image with
various hand-crafted features as OD and OC segmen-
tation and reported an OD dice of 0.905 and OC dice
of 0.759. Zheng et al.41 integrated the OD and OC
segmentation within a graph-cut framework. However,
they only utilized hand-crafted features, which were
affected by the low quality of fundus photographs.
In our study, a multilabel deep network was used
to obtain highly discriminative representations and
segment the OD and OC jointly with the multil-
abel loss. The results demonstrated that the proposed
method enabled automated OD and OC segmenta-
tion with a comparable performance to ophthalmol-
ogists. We also evaluated the model for discriminat-
ing glaucoma from nonglaucoma subjects based on
CDR calculations, which were calculated based on the
segmentation results as an important glaucoma indica-
tor. The proposed algorithm performed extremely
well in comparison to ophthalmologists for glaucoma
discriminating.
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One limitation of this study was a specific Chinese
population that was evaluated and the results may not
apply to other ethnic groups. Another potential limita-
tion of our studywas that the fundus photographs were
only taken using Zeiss Visucam 500 and Canon CR-
2 cameras. This could possibly have a negative effect
on the quality and performance when the algorithm
was applied to images from other fundus acquisition
devices. Third, in our study, we added CDR calcu-
lations as one of the clues for glaucoma diagno-
sis. However, some patients were shown to have a
small CDR despite significant VF loss, whereas others
displayed a large CDR without reporting any VF
loss.7 The dataset contained 10% of glaucoma subjects
and most of these glaucoma subjects were at moder-
ate or advanced stages, the difficulty of discriminat-
ing glaucoma from nonglaucoma subjects based on
CDR calculation was relatively lower. The perfor-
mance of the algorithmmay go down in another larger
dataset. Future studies were needed to explore whether
other annotations, such as RNFL defects, would
further enhance the performance of the algorithm.
Besides, early-stage glaucoma is very hard to diagnose
through fundus photographs. It would be interesting
to add more photographs from early-stage patients
and train the algorithm to make a diagnosis. We may
try to find new clues other than CDR or RNFL
defects in glaucoma discriminating based on fundus
photographs.

In summary, we developed and investigated a deep
learning system for OD and OC segmentation in
fundus images. Deep learning technique was shown
to be a promising technology for helping clinicians
to reliably and rapidly identify OD and OC regions.
Moreover, we also evaluated discriminating glaucoma
from nonglaucoma subjects based on the CDR calcu-
lations, where the proposed algorithm performed
extremely well in comparison to ophthalmologists,
obtaining an AUC of 0.946. As such, our technique
showed high potential for assisting ophthalmologists in
fundus analysis and glaucoma screening.
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