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Abstract
Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional
magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we
established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step
toward scale-free brain music. In this study, we used a neural mass model, the Jansen–Rit model, to simulate activity in several
cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor
imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions
were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon–Windkessel
hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal
changes slowly, we used a sampling rate of 250Hz to produce the temporal series for music generation. Then, the BOLD music was
generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also
scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that
determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLDmusic
for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for
discriminating the different populations if the differences can be confirmed by more real data.

Abbreviations: AAL = Automated Anatomical Labeling, BOLD = blood oxygenation level dependent, DFA = detrended
fluctuation analysis, DTI = diffusion tensor imaging, EEG = electroencephalogram, EPSP = excitatory postsynaptic potential, fMRI =
functional magnetic resonance imaging, IPSP = inhibitory postsynaptic potential.
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1. Introduction neuroinformation, into music. To date, several methods have
Music has existed in human society since prehistory.[1] Due to its
long history, music is considered an artistic expression and can
represent the human mind or mood. Additionally, music can
shape our brain through long-term training.[2,3] How do our
brains process music into something emotionally powerful, and
how does music affect us? The sonification of brain signals is an
approach to study the relationship between the brain and
music.[4] In addition, this approach could facilitate studies of
brain mechanisms. Since 2009, we have been developingmethods
to translate electroencephalogram (EEG) signals, 1 form of
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been developed to generate scale-free music according to the
varieties of neuroinformation.[5,6] Thus, we can understand the
meaning of brain rhythms from a musical perspective and
examine the physiological mechanism behind the neuroactivities.
Currently, diffusion tensor imaging (DTI), which enables

visualization and characterization of white matter fasciculi, has
become one of the most popular magnetic resonance imaging
techniques in brain research. Information transmission in the brain
is assumed to be mediated by the underlying brain structure, and
thefiber tracts havebeenused to reflect the anatomical connectivity
of the brain.[7,8] In several recent studies, various mathematical
models have been developed using the DTI structural connection
matrix to simulate both normal and abnormal brain states; thus
enabling a better understanding of different brain functions.[9–11]

Epilepsy is a common nervous system disease worldwide.
Epilepsy is a chronic disease caused by brain neurons suddenly
becoming abnormal, leading to transient brain dysfunction;
epilepsy plagues the physical and mental health of humans. EEG
is a very important tool for processing epilepsy diagnosis, and it
can reflect the special waveforms generated by epilepsy during
seizures. However, the accuracy of clinical diagnosis by EEG is
not very high.[12] Furthermore, because epilepsy is unpredictable,
it is difficult to obtain the real-time signal.
The neural mass model, which is a classical macroscopic

population model, has been used to study brain signals for many
years. Additionally, this model has greatly advanced our
understanding of brain functions.[13–22] The Jansen–Rit neural
mass model is widely used to study the brain’s various EEG
rhythms.[23–25] Compared to real physiological data, the
data produced by the model are in line with physiological
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characteristics. More importantly, the physiological parameters
generated by the model can be used to predict the neural
mechanisms concealed under real physiological data.[26] The
blood-oxygen-level dependent (BOLD) signal is one of the
physiological signals that can reflect neural activities. However,
the temporal resolution of the BOLD signal is too low to generate
music for further analysis. To address this issue, we simulated
BOLD activity in each cortical region based on the Jansen–Rit
model and the Balloon–Windkessel hemodynamic model, and
then, we obtained the signal with a higher temporal resolution.
Here, we are interested in using BOLD music, which was

simulated by a whole-cortical brain network model constructed
from DTI, to determine the relationship between the structure
and function of the brain and music. Then, we translated this
brain activity into scale-free brain music using the method
described in our previous work.[5,6] Unlike direct brainwave
music, music generated from a neural mass model might reflect
various physiological brain states and enable us to develop
another tool for understanding brain disease, such as epilepsy.

2. Materials and methods

2.1. Data acquisition

DTI data were obtained from 15 healthy volunteer students from
the University of Electronic Science and Technology of China
(UESTC) on a 3T MRI scanner (GE Discovery MR750) at the
Figure 1. Anatomical structure of human subjects. (A) The averaged structural con
cortical region of interest (ROI), and the blue lines show the fiber connectivity betwee
there are 78 cortical ROIs, and the connectivity strength is normalized with the maxi
the AAL template. Here, the left and right indices show the cortical regions in the le
ROI= region of interest.
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MRI research center of UESTC. Our research was approved by
the Ethics Research Committee at the School of Life Science and
Technology, UESTC. All subjects had no history of clinical
evidence of major neurological or psychological disorders. The
subjects provided informed consent before the experiment was
conducted according to the established guidelines of the review
boards and were paid for their participation.
As previously described,[27] each diffusion-weighted imaging

dataset consisted of a nondiffusion weighted volume with b=0
and 20 diffusion weighted images with the following parameters:
50 slices of 2.5-mm thickness, with 3.25mm between adjacent
slices; b=1000s/mm2 for the weighted images; field of view=
220�220mm2; acquisition matrix=128�128, corresponding
to an “in plane” spatial resolution of 1.72�1.72mm2; echo time/
repetition time=104ms/7200ms; and a flip angle=90°. For the
3D T1-weighted images, we used the following scan parameters:
176 contiguous slices of 1-mm thickness in the sagittal
orientation; in plane field of view=224�256mm2, with a
spatial resolution of 1�1mm2; echo time/repetition time=3.02
ms/2600ms; and a flip angle=8°.
To map the connections between brain regions, we used FSL

software (FSL4.1.6, http://www.fmrib.ox.ac.uk/fsl) to process
and analyze the data. The diffusion parameters were estimated to
build up the distributions of the diffusion parameters at each
voxel. Then, probabilistic tracking was performed on each mask.
Finally, the connectivity matrix (shown Fig. 1A and B) was
nectivity network from 15 healthy human subjects. The red nodes indicate the
n two cortical regions. (B) The averaged structural connectivity matrix. Note that
mal connectivity strength in the matrix. (C) The list of cortical regions is based on
ft and right hemispheres, respectively. AAL=Automated Anatomical Labeling,

http://www.fmrib.ox.ac.uk/fsl


Table 1

The parameters used in the model are adopted from previous studies.

Symbol Value Physiological significance

A 3.25 or 3.8mV The maximum amplitude of EPSP
B 22mV The maximum amplitude of IPSP
a 100s�1 Average time constant and time delays
b 50s�1 Average time constant and time delays
C1 135 Connection strength between local excitatory neural populations
C2 108 Connection strength between local excitatory neural populations
C3 33.75 Connection strength between local excitatory and inhibitory neural populations
C4 33.75 Connection strength between local excitatory and inhibitory neural populations
v0 6mV PSP of half activation level of firing rate
e0 2.5 s�1 The maximum firing rate of a neural population
r 0.56mV�1 The steepness of the sigmoid transformation
ad 33s�1 Average time delay between different cortical regions
W 200 Scale factor modulating interactions between cortical regions
p(t) The subcortical input to each cortical region, the mean is 60 pulse/s and the standard deviation is 3.16 pulse/s.

EPSP= excitatory postsynaptic potential, IPSP= inhibitory postsynaptic potential.

Figure 2. Schematic of the neural mass model. (A) The framework of the
Jansen–Rit model, which contains a pyramidal neuron population and
excitatory and inhibitory interneuron populations. (B) The cortical network
model based on the Jansen–Rit model.Di,j shows the connection strength from
cortical region i to j.
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established by taking the sum of the connection weight from
region X to region Y and that from region Y to region X as the
weight of the edge between regions X and Y.[27] We used the
connectivity matrix as the basis of the model structural
connection to mediate the interactions between different cortical
regions. Each element in the connectivity matrix represents the
normalized fiber connection strength between related brain
regions. It should be noted that in this study, we adopted only 78
cortical regions based on the Automated Anatomical Labeling
(AAL) template.[28] The corresponding brain regions are shown
in Fig. 1C.

2.2. Jansen–Rit neural mass model
In the present study, we used the Jansen–Rit model,[15] which is a
classical neural mass model derived from the lumped parameter
model,[13] to simulate the activity of each cortical brain region. As
previous studies described, the neural mass model consists of 3
neural populations: a pyramidal neuron population, excitatory
interneuron population, and inhibitory interneuron population.
Each population connects to the other populations with
numerous synapses characterized by connectivity constants
(see Table 1). The simplified schematic of each cortical model
is shown in Fig. 2A.
In each neural population, the transformation relationship

between the 2 main variables, which are the average postsynaptic
potential and pulse density of the action potential, determines the
dynamical behavior of the neural population. To clearly show the
relationship, we used a linear block and a nonlinear block.
Specifically, the linear block transformed the average pulse
density of action potentials from other populations into
the average postsynaptic membrane potential. Following
Jansen and Rit,[15] the impulse response was different for
excitatory and inhibitory neural populations, which is shown

as HeðtÞ ¼ Aate�at t≥0
0 t < 0

�
and HiðtÞ ¼ Bbte�bt t≥0

0 t < 0

�
,

respectively. A and B depict the amplitude of the excitatory
and inhibitory postsynaptic potentials (EPSP and IPSP), respec-
tively, a and b are the lumped parameters of the reciprocal of the
time constants for the EPSP and IPSP, respectively. Therefore,
based on the impulse response function, we could infer that the
form between the input signal and output signal matches a second
order differential equation as €yðtÞ ¼ GgxðtÞ � 2g €yðtÞ � g2yðtÞ,
where x(t) and y(t) are the input and output signals, respectively.
3

The value represented byG(g) was the same as those represented
by A(a) and B(b).
The nonlinear block uses a sigmoid function to transform

the average postsynaptic membrane potential into the average
pulse density, which is shown as SigmðvÞ ¼ 2e0

1þerðv0�vÞ. Here, e0
indicates the maximum firing rate for each neural population, r is
the steepness, and v0 is the half-activation level. Using this
sigmoid function can ensure that the firing rate of each neural
population is within a reasonable physiological range as the
potential changes.
According to the 2 blocks for each neural population, the

interactions between different neural populations can be clearly
described by 6 ordinary differential equations, as described in
previous work.[15] Note that in the normal brain state, we setA=
3.25mV; however, A=3.8mV for the epileptic case.[15–17]

The model parameters and related physiological significances
are given in Table 2. All simulations were based on these default
parameters unless otherwise stated.
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Table 2

The levels of arousal and the levels of pleasure on BOLD music
judged by 25 volunteers.

Type of music

Levels of arousal
(Means±Standard

deviation)

Levels of pleasure
(Means±Standard

deviation)

Healthy BOLD 3.23±1.88 3.19±1.02
Epileptic BOLD 7.15±1.59 3.08±1.32

BOLD=blood oxygenation level dependent.
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To show the brain interactions across large-scale cortical
regions, we used the Jansen–Rit model to build a whole-brain
cortical network model (Fig. 2B) with the averaged DTI
connectivity matrix. Due to time delays caused by spatial
factors of brain cortical regions, a time delay impulse
response function was introduced. Following Jansen and
Rit,[15] the form of the delayed impulse function is defined as

HdðtÞ ¼ Aadte�adt t≥ 0
0 t < 0

�
, which is similar to the excitatory

impulse response function, and ad � a=3. Furthermore, we
assumed that these impulse functions are the same for each brain
cortical region. Hence, the large-scale cortical network mod-
el[15,16] can be shown as

_yk0ðtÞ ¼ _yk3ðtÞ ð1Þ

_yk1ðtÞ ¼ _yk4ðtÞ ð2Þ

_yk2ðtÞ ¼ _yk5ðtÞ ð3Þ

_yk6ðtÞ ¼ _yk7ðtÞ ð4Þ

_yk3ðtÞ ¼ AaSigm yk1ðtÞ � yk2ðtÞ
h i

� 2ayk3ðtÞ � a2yk0ðtÞ ð5Þ

_y4kðtÞ ¼ Aa pkðtÞ þ C2Sigm C1yk0ðtÞ
h i

þW
XN

j¼1;j≠k
Dj;ky

j
6ðtÞ

n o
� 2ayk4ðtÞ � a2yk1ðtÞ

ð6Þ
_yk5ðtÞ ¼ BbC4Sigm C3yk0ðtÞ

h i
� 2byk5ðtÞ � b2yk2ðtÞ ð7Þ

_yk7ðtÞ ¼ AadSigm yk1ðtÞ þ yk2ðtÞ
n o

� 2ady
k
7ðtÞ � a2dy

k
6ðtÞ ð8Þ
Figure 3. The power law for the generated BOLD signals. The logarithm of F(k) is plo
ln F/ln k (the scaling exponent a is specified for Fig. 3), is called the scaling expone
exponent a of the epilepsy BOLD signal is 1.255, both of which obey the power

4

Here,Djk shows the fiber connection strength from the cortical
region j to k. W is the scale factor modulating the interactions
between cortical regions, and we set W=200 in our simulations.
The number of cortical regions considered in the network model
was N=78. yki i ¼ 0; 1; . . . 7ð Þ is the output of the excitatory or
inhibitory neural population, and yk1ðtÞ � yk2ðtÞ is the output of
the neural population in the cortical region k. In the following, we
used the Balloon–Windkessel hemodynamic model[29] to trans-
form the neural population output yk1ðtÞ � yk2ðtÞ into the BOLD
signal. Note that in our simulations, we down-sampled the BOLD
signal to 250Hz to enable a comparison analysis.
All of the above differential equations in this cortical network

model were solved numerically with a forward Euler methodwith
a step size of 0.1 ms.

2.3. Brain music from the BOLD signals

After the calculation, BOLD signals were found to obey power-
law rules (shown in Fig. 3). We simulated the case of an epileptic
patient by changing the parameter that determined the amplitude
of the EPSP in the neural mass model. Therefore, we obtained 2
BOLD signals. Afterward, we chose a temporal region channel to
generate the scale-free music according to the translation rules.
The rules included the direct mapping from the BOLD signal
period to the duration of a note, the logarithmic mapping of the
average power change of the BOLD signal to the music intensity
according to Fechner’s law, and a scale-free-based mapping from
the amplitude of the BOLD signal to music pitch according to the
power law. The entire procedure from DTI to BOLD music is
shown in Fig. 4.

3. Results

We obtained different BOLD music for healthy and epileptic
cases (shown in Fig. 4). To test the distinct BOLD music between
these 2 cases, we recruited 25 volunteer students from UESTC to
judge differences between these pieces of music. None of the
volunteers had professional training in music. The volunteers
were asked to rate arousal level (1-weak, 9-strong) and the
pleasure level (1-weak, 9-strong), which are commonly used in
brief evaluations of music.[30] The results are shown in Table 2.
The significant musical distinction on levels of arousal (t=8.11,
P< .05) provides a potential tool for discriminating different
populations if these differences can be confirmed by real data.
However, there was no significant difference in levels of pleasure
(t=0.35, P>0.05) between these 2 types of music.
tted as a function of the logarithm of the time scale k.[5] The slope of the plot, a=
nt. The scaling exponent a of the healthy BOLD signal is 0.822, and the scaling
law rule. BOLD=blood oxygenation level dependent.
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Figure 4. The procedure for generating the BOLD music. BOLD=blood oxygenation level dependent.
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4. Discussion

The brain music, containing individual physiological informa-
tion, is derived from physiological signals.[31] Thus, the potential
clinical application makes it intriguing. Throughout human
physiological signals, BOLDmay relate to the electrical activity of
a group of neurons through a neurovascular coupling relation-
ship. However, the sonification of BOLD signals has rarely been
reported, which is probably due to its low temporal resolution.
Based on the Jansen–Rit model and the Balloon–Windkessel
hemodynamic model, we can obtain the BOLD signal with a
higher temporal resolution and make its sonification feasible.
Furthermore, the different scaling exponent a based on

detrended fluctuation analysis (DFA) has different meanings.[32]

Some studies have shown that DFA has a good effect on the
clinical detection and classification of epilepsy.[33,34] A study on
DFA exponents for seizure activity in human hippocampus found
a small enhancement of a during seizure activities.[35] In our
epileptic case, the scaling exponent a of the BOLD signal from the
healthy and the epilepsy is different, which is in accordance with
previous research. In addition, differences in the levels of arousal
of BOLD music between healthy and epileptic music are also
found. We believe BOLD music can be a potential tool for
discriminating different populations.
Nonetheless, it should be noted that the model we used in this

article was not perfect. In our study, we only adopted 78 cortical
regions based on the AAL template; this division for the use of
models may not be accurate enough. In addition, the individual
differences should be considered in the model in the following
study. Future work may also focus on whether BOLD music
associated with these musical differences can provide more
potential applications after being confirmed by real data.
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