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Abstract

Motivation: RNA molecules become attractive small molecule drug targets to treat disease in recent years.
Computer-aided drug design can be facilitated by detecting the RNA sites that bind small molecules. However, very
limited progress has been reported for the prediction of small molecule–RNA binding sites.

Results: We developed a novel method RNAsite to predict small molecule–RNA binding sites using sequence pro-
file- and structure-based descriptors. RNAsite was shown to be competitive with the state-of-the-art methods on the
experimental structures of two independent test sets. When predicted structure models were used, RNAsite outper-
forms other methods by a large margin. The possibility of improving RNAsite by geometry-based binding pocket de-
tection was investigated. The influence of RNA structure’s flexibility and the conformational changes caused by lig-
and binding on RNAsite were also discussed. RNAsite is anticipated to be a useful tool for the design of RNA-
targeting small molecule drugs.

Availability and implementation: http://yanglab.nankai.edu.cn/RNAsite.

Contact: zhenling@tju.edu.cn or yangjy@nankai.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, many experiments suggest that RNA becomes an at-
tractive small molecule drug target to treat disease (Disney, 2019). A
significant amount of efforts were made to study the interactions be-
tween RNA and small molecules, such as small molecule design
(Ursu et al., 2019) and detection of small molecule–RNA binding
motifs (Childs-Disney et al., 2018). In these studies, the preknowl-
edge about the small molecule–RNA binding sites is essential.
However, due to the high cost with wet-lab experiments, the struc-
tural details for small molecule–RNA interactions are unknown for
most targets. This has motivated the development of computational
algorithms to predict small molecule–RNA binding sites.

The existing prediction methods can be classified into two groups:
structure-based and sequence-based. Structure-based approaches in-
clude MetalionRNA (Philips et al., 2012), LigandRNA (Philips et al.,
2013), Rsite (Zeng et al., 2015) and RBind (Wang et al., 2018).
MetalionRNA is a statistical potential-based method but can only
predict the binding sites for metal ions (magnesium, sodium and po-
tassium). LigandRNA is a knowledge-based potential to score the
interactions between RNA and small molecules. Its input includes
both the RNA structure and the small molecule’s binding poses,
which are ranked according to the returned potential score. Rsite is a
distance-based predictor to identify the functional sites of noncoding

RNAs. RBind is the latest structure-based approach by constructing a
structure-based nucleotide interaction network. As revealed in Wang
et al. (2018), RBind has a high precision at the expense of a low re-
call. In contrast, there are very few sequence-based methods to pre-
dict small molecule–RNA binding sites. To the best of our
knowledge, Rsite2 is the only sequence-based algorithm, which works
based on predicted secondary structure (SS; Zeng and Cui, 2016).

In this work, we proposed a novel algorithm named RNAsite to
predict small molecule–RNA binding sites. We first developed a
structure-based method (RNAsite_str) by designing a group of novel
structure-based features that effectively captured the preference to-
ward small molecule–RNA binding sites. Second, a sequence profile-
based predictor (RNAsite_seq) was designed to deal with the cases
where no structure is available. These two methods are combined,
yielding to the final approach RNAsite. Experiments on two inde-
pendent test sets show that RNAsite is competitive compared with
the state-of-the-art methods.

2 Materials and methods

2.1 Benchmark datasets
Two datasets were used to assess and compare the proposed method
with existing methods. The first one contains 19 RNAs from the
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work of RBind (Wang et al., 2018) (denoted by RB19). This dataset
was constructed based on the 251 structures in the work of
LigandRNA (Philips et al., 2013) after filtering structures with sim-
ple helix topology, remaining 22 structures. In addition, three RNAs
with more than one chain or pseudoknot interactions were further
removed to enable the structure prediction by the RNAComposer
program (Biesiada et al., 2016).

The second was constructed in this work from the Protein Data
Bank (PDB) (Burley et al., 2019) according to the following proced-
ure. First, in order to exclude the effects of other molecules (such as
DNA, protein and so on), we downloaded the complex structures
containing only RNAs with one or more small molecules (water was
not considered). In total, we obtained 1673 RNA chains. Second,
the following RNAs were removed: chain length is <20 or >1500;
all small molecules in the structure are crystallization additives [a
comprehensive list of crystallization additives was obtained from
BioliP (Yang et al., 2012)]; no small molecules interact with the
RNA structure. A nucleotide is defined as interacting with a small
molecule if one of the atomic distances between the nucleotide and
the small molecule is smaller than a specified distance cutoff (4 Å),
as adopted in the work of RBind. Such nucleotides are defined as
positive samples and others are defined as negative samples. 712
RNA chains remained after the above filtering.

Redundancy was removed for the above 712 RNA chains based
on a combination of structure and sequence similarity clustering.
First, the pairwise structure similarity TM-scoreRNA was calculated
with the program RNA-align (Gong et al., 2019). If the TM-
scoreRNA between two RNA structures is higher than 0.3, the one
with the higher ratio of positive samples is kept (defined as the total
number of positive samples in an RNA divided by the sequence
length). For example, 22 structures sharing >0.3 structure similarity
belong to the thiamin pyrophosphate riboswitches and only one of
them is kept to remove redundancy. A total of 78 RNA chains was
retained after this structure-similarity based filtering (denote by
RB78). About 3/4 of the 78 RNA chains are used for training and
the remaining 1/4 are for test. However, to make sure there is no re-
dundancy between the training and the test set, a sequence-based
clustering was performed. The 78 RNA sequences were then clus-
tered into 57 clusters at 30% sequence similarity with cd-hit-est (Li
and Godzik, 2006) and BLASTclust (Altschul et al., 1990) program.
The split of these RNAs was based on the cluster information: 42
clusters containing 60 RNAs were used as training set (denoted by
TR60) and 15 clusters containing 18 RNAs were used as independ-
ent test set (denoted by TE18). Due to the different procedure used
above and the PDB update, 65 new structures are included in RB78
compared with RB19. In addition, 9 (resp. 4) structures from TR60
(resp. TE18) are the same as the structures in RB19. The detailed in-
formation about the RNA and the ligands in each RNA structure is
available in Tables S1, S2 and S3.

2.2 Overview of our prediction model
As shown in Figure 1, the proposed method, RNAsite, is composed
of two independent components: a sequence-based module
RNAsite_seq and a structure-based module RNAsite_str. When no
structure is available, only RNAsite_seq is used to predict the bind-
ing nucleotides. When structure is available, additional prediction is
done by RNAsite_str. In addition, the prediction from RNAsite_seq
is added into the structure-based features and then fed into the ran-
dom forest (RF) algorithm to make a consensus prediction in
RNAsite, which shows improved performance over both
RNAsite_str and RNAsite_seq.

2.3 Sequence-based method RNAsite_seq
The RNA sequence is searched by BLASTN (Altschul et al., 1990)
with E-value <0.001 against the NCBI’s nonredundant nucleotide
sequence database (nt) to construct a multiple sequence alignment
(MSA). The evolutionary conservation of each position in the RNA
sequence is calculated from the MSA as follows. First, a weight is
assigned to each of the sequence in the MSA based on a similar idea
of the Henikoff–Henikoff scheme (Henikoff and Henikoff, 1994).

For the jth position in the ith sequence of the MSA, a score wij is cal-
culated as follows:

wij ¼ 1=fj � f ðNijÞ (1)

where fj is an integer indicating the number of occurring types of
nucleotides at this position (�4); Nij represents the type of nucleo-
tide at the jth position of the ith sequence; f(Nij) is the number of the
nucleotide Nij in the jth column of the MSA; second, the weight wi

for each sequence in the MSA is calculated according to Eq. (2) as
follows:

wi ¼
P

j
wijP

i;j
wij

(2)

For each position in the RNA sequence, the weighted count for
each nucleotide (gap included) is used as an evolutionary conserva-
tion score. As the nucleotides in an RNA are not independent with
each other, to encode the ith nucleotide, its neighbors inside a win-
dow (size w) on each side are also considered. Thus, the total num-
ber of features for representing a nucleotide in RNAsite_seq is
(2 � wþ1) � 5. These features are fed into the RF algorithm for
training and test.

2.4 Structure-based method RNAsite_str
When the structure (either experimentally solved or modeled) of an
RNA is available, three different sets of structural descriptors are
extracted, based on the topological features and the Laplacian norm
(LN) of the structure. To our knowledge, the LN is applied to small
molecule–RNA binding sites prediction for the first time. The trad-
itional solvent accessibility (SA)-based features are also used here.
Let L denote the number of nucleotides in an RNA.

2.4.1 Laplacian norm

The LN has been applied to protein structure analysis (Bonnel and
Marteau, 2012; Li et al., 2014) and function prediction (Liu and
Liu, 2020; Sun et al., 2016). Here, we apply the LN to characterize
RNA structures. The LN of each nucleotide is defined as the dis-
tance between a target nucleotide and the weighted center of its sur-
rounding nucleotides. For convenience, the ‘C3’ atom is used as the
representative of each nucleotide for all standard nucleotides. While
for nonstandard nucleotides, an arbitrary heavy atom is used. In
order to compute LN, a discrete Laplace operator is calculated using
a Gaussian kernel defined as follows:

XijðrÞ ¼ e�
kpi�pjk2

r2 ; ifji� jj > 1
0; otherwise

(
(3)

where pi and pj are the coordinate vectors for nucleotides i and j, re-
spectively; k k is the L2 norm. The parameter r in the Gaussian ker-
nel is a scale factor. Under a given scale factor r, the closer the two
nucleotides are, the higher the Laplace operator is. And the Laplace
operator decreases rapidly as the distance increases. Therefore, to
highlight the distribution pattern of sequentially distant residues, the
adjacent nucleotides are omitted when defining the discrete Laplace
operator. By varying r, the topology of a nucleotide can be
described at various scales. A low r measures deformation of each
nucleotide locally and implies that only spatially close nucleotides
will be considered in the computation of the Laplace operator. On
the other hand, a high r implies that more nucleotides in the RNA
will be included. Here, the Laplace operators can be considered as
the weights of surrounding nucleotides. Hence, the LN of each nu-
cleotide at a given r is defined as follows:

LNiðrÞ ¼ kpi �
Pji�jj>1

j
½pj�XijðrÞ�Pji�jj>1

j
XijðrÞ

k (4)

The value of LN can reflect the geometrical features of surface con-
vexity/concavity. A high value of LN means the nucleotide position
is convex in the RNA structure, while a low LN implies a concave
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position. The distances at 0, 1/4, 1/2, 3/4 and 1 quantile positions of
this distribution are chosen as the scale factors. The complete distri-
butions of LN are shown in Supplementary Figure S1. Thus, each
nucleotide is encoded into a five-dimensional vector.

2.4.2 Topological features

For each RNA structure, we transform it into a nucleotide inter-
action network in which a node denotes a single nucleotide and an
edge represents the existence of noncovalent interaction. In our def-
inition, two nonconsecutive nucleotides in a sequence are connected
in the network when they contain a pair of heavy atoms, one from
each nucleotide, within the distance of 8 Å (Alipanahi et al., 2015;
Wang et al., 2018). For each nucleotide, two network parameters
are calculated: closeness (CL) assessing its global importance in the
network and degree (DG) representing its local connectivity. CL is
computed as the inverse of the average of the shortest distance to
other nodes, while DG is the number of edges associated with the
node. Note that similar features have been used in the work of
RBind (Wang et al., 2018) and more information can be found there
for the calculation of these two features.

2.4.3 Solvent accessibility

The last group of structural features we used is the SA. Each chain
structure was submitted to the POPS package (Cavallo et al., 2003)
with the probe diameter of 1.5 Å to calculate all nucleotide-specific
accessible surface areas (ASAs).

In addition to the above structural features, we also tested the ef-
fect of using SS including base-stacking, base-pairing and bulges
computed by Lu et al. (2015). However, the prediction performance
did not improve by adding the SS feature (seen in Figure 3). Thus, SS
was not used in our method. More discussion about this is available
in Section 3.2.

To summarize, a total of eight structural features were obtained.
These features were linearly scaled to the range of [�1, 1] to make

them comparable between different RNAs. Similar to RNAsite_seq,
a sliding widow was used to incorporate the effects of neighboring
nucleotides, resulting in a total of (2 � w þ 1) � 8 features, which
were fed into RF for training and test.

Fig. 1. The flowchart of RNAsite for small molecule–RNA binding sites prediction. RNAsite consists of two components, RNAsite_str and RNAsite_seq, which are structure-

and sequence-based predictors, respectively. In RNAsite_str, based on the topological features and the LN of the structure, three groups of descriptors were obtained. In

RNAsite_seq, the query sequence is searched against a sequence database (nt) with the BLASTN program to construct an MSA, from which conservation-based features are

then designed. The prediction by RNAsite_seq is used as a feature, together with the structure-based features set in RNAsite. The classifiers for small molecule-binding sites

prediction are trained with the RF algorithm

A B

Fig. 2. Comparison of the distributions of the proposed structural features for

small molecule-binding (gray bars) and nonbinding (white bars) nucleotides. (A)

LN, (B) other features: CL, DG and SA. Each box plot consists of three parts:

center of the data sample (bar), margin values (the ordinate values of the two

short horizontal lines) and outliers (discrete points outside the margin values).

Each bar contains 50% of the data in the middle of the sample and it consists

three key values: median (short line in the middle of the bar), the upper quartile

(short line at the top of the bar) and the lower quartile (short line at the bottom

of the bar) of the sample data
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2.5 Statistical analysis of structural features
We performed a systematic comparison of the positive (the native

small molecule–RNA binding sites) and negative samples of all
structural features derived from structures on the dataset RB78.
Figure 2A shows that the LNs of positive samples are consistently

lower than those of negative samples from local to global scales,
indicating that small molecule-binding nucleotides prefer relatively
concave locations in RNA structures. In Figure 2B, the positive sam-

ples possess clearly higher CL values than the negative samples. A
similar tendency holds for DG. This result indicates that small

molecule-binding nucleotides mostly locate in the center of the
distance-based nucleotides interaction networks and they physically
interact with more nucleotides. The ASAs of the positive nucleotides

are lower than the negative sites, probably because lower ASA val-
ues correspond to concave positions. Overall, the proposed features

show discriminative characteristics between positive and negative
samples.

2.6 Model construction and performance evaluation
In this work, we conducted five-fold cross validation (CV) on the

training set and independent tests to evaluate our method. Due to
random effects in RF, the CV was repeated 100 times and the aver-
age was reported. The Precision, Recall, Mathews correlation coeffi-

cient (MCC) and the area under the receiver operating characteristic
curve (AUC) were used to assess the performance.

3 Results and discussions

3.1 Parameters optimization
All parameters including the sliding window size w and the number
of trees n in RF were tuned to maximize the MCC on the training
set TR60 based on five-fold CV. For the training set TR60, the sam-

ples were randomly divided into five subgroups. Four of them were
used for training and the remaining one was used for test. The five-

fold CV was repeated 100 times and the average was reported. To
speed up the optimization, the number of trees was first fixed to 100
when optimizing the window size w. After the optimal window size

was determined, a coarse-grid search was performed to optimize n.
The influence of n in RF to the performance of RNAsite_str is

shown in Supplementary Figure S2. From the figure, we can see that
the MCC is the lowest (0.2), when n is set to the default value 10.
When n increases to 100, the MCC improves to 0.276 and becomes

stable thereafter. Thus, the optimal value for n in RF was finally set
to 100.

Supplementary Figure S3 shows the influence of the window size
to the performance of RNAsite_str. The lowest MCC of 0.225 is
obtained when the window size is zero, i.e. no neighboring nucleoti-
des are used. When the window size is enlarged to 14, the MCC
reaches the highest value (0.276). Hence, the optimal window size
of RNAsite_str is set to 14. Similarly, the optimal window size of
RNAsite_seq is set to 12 (Supplementary Figure S4). When the struc-
ture information is available, the final features used in RNAsite in-
clude the structural features and the prediction from RNAsite_seq.
Therefore, the optimal window size of RNAsite is reoptimized.
Supplementary Figure S5 shows the best window size for RNAsite is
16. For the sake of generality, these values are also used for the two
independent test datasets without further optimization.

3.2 Analysis of feature contribution
The contribution of structural features to the method RNAsite_str
was investigated based on five-fold CV on the training set TR60.
The predictive quality measured by the average MCC is summarized
in Figure 3. It shows that the novel structural descriptors rank at the
top of all individual features. LN feature achieves the best perform-
ance, yielding MCC of 0.265. To avoid overtraining and remove re-
dundant descriptors, we adopted the greedy algorithm, i.e.
sequential forward selection (SFS), to produce the optimal feature
groups. The SFS started with the feature, LN, showing the highest
discriminatory capability between the positive and negative samples,
as revealed by MCC. We iteratively selected a new feature which
has the best performance from the remaining ones. This feature is
retained if its combination with the kept ones results in higher
MCC. This process is halted when the MCC value does not increase.
Finally, the highest MCC (0.276) is achieved when all the features
except SS are used together. As shown in Figure 3, the SS feature is
reasonable with 0.11 MCC. However, the MCC value (0.276) does
not increase when combining it with other features. This may be
caused by the redundancy of the structural information between SS
and other features. Statistical tests were performed to judge if the
MCC improvements by the combined feature groups are significant
or not, similar to the procedure used in Meng et al. (2018) and Su
et al. (2019). The P-values for the tests are shown in Table S7. It
indicates that the improvements by combining more feature groups
except SS are significant at P-value <0.05. These data support the
conclusion that these feature groups are in general complementary
to each other. Therefore, the RNAsite_str was modeled with all
structural features except SS.

3.3 Comparison with existing methods
RBind and Rsite are two structure-based methods for small
molecule-binding nucleotides prediction (Wang et al., 2018; Zeng
et al., 2015). Rsite2 is an SS-based computational prediction to iden-
tify the potential functional sites in RNA molecules (Zeng and Cui,
2016). To demonstrate the effectiveness and robustness of the pro-
posed method, we assessed the performance of our method with
existing publicly available methods on two independent datasets,
TE18 and RB19. We used the standalone programs RBind (http://
zhaolab.com.cn/RBind), Rsite and Rsite2 (http://www.cuilab.cn/
rsite) to collect the corresponding predictions of two test sets.
RNAsite obtained a very high accuracy when directly applying the
model trained on TR60 to make prediction on RB19. This is likely
because 12 RNAs in the training set TR60 share >80% sequence
identity with the RNAs in RB19. To deal with this issue, the leave-
one-out test was applied on RB19 to evaluate the accuracy.

When experimental structures are used, Figure 4 presents the
MCC and AUC, the two most objective metrics, on both datasets.
The results for other metrics are listed in Tables S4 and S5. The fig-
ure shows that the sequence-based predictor RNAsite_seq has slight-
ly lower MCC values than structure-based predictor RNAsite_str on
both datasets, suggesting the importance of structure-based descrip-
tors. The combination of both methods in RNAsite yields improved
MCC to 0.253 and 0.567 on TE18 and RB19, respectively, both

Fig. 3. Predictive performance of RNAsite_str on TR60 from different feature groups.

The features are divided into nine categories: five individual groups, (1) SS, (2) SA, (3)

DG, (4) CL, (5) LN; four combined feature groups: (6) LNþCL, (7) LNþCLþDG,

(8) LNþCLþDGþ SA and (9) ALL (i.e. LNþCLþDGþ SAþ SS)
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higher than other methods. Similar observations can be obtained
based on the AUC data in Figure 4. We note that the AUC values for
RBind are even lower than our sequence-based predictor
RNAsite_seq on both datasets. This is maybe because the prediction
by RBind is in binary rather than probability format, which is neces-
sary for AUC calculation. In addition, Tables S4 and S5 show
RNAsite has comparable precision with RBind but much higher re-
call on both datasets.

As many RNAs do not have experimentally solved structures, we
tested our methods on predicted structure models. The RNAComposer
server (Biesiada et al., 2016) was used to predict the structure for each
RNA in the test datasets TE18 and RB19. First, we calculated the accur-
acy of the predicted structures, measured by the full-chain root-mean-
square deviation (RMSD) (called global RMSD) and RMSD for the
small molecule-binding residues (called local RMSD). Figure 5 and
Supplementary Figure S6 show that the predicted structure models have
reasonable accuracy. For the dataset TE18, the average global and local
RMSDs are 11.732 and 7.469 Å, respectively. There are 11 models
with local RMSD <7 Å. The predicted models for the RB19 dataset
have higher accuracy with global average global and local RMSDs are
9.042 and 7.014 Å, respectively. As shown in Table 1, the accuracies
for all methods decrease when the modeled structures are used. In spite
of this, our methods outperform other methods when the same set of
predicted models are used. Statistical tests indicate that the improve-
ment of all our methods over existing methods is significant at the level
of 0.05, with detailed data in Tables S8 and S9.

In addition, we compared our method with two other methods,
which are not designed for small molecule-binding site prediction
but are related with RNA-small molecule binding. The first one is
Weinreb’s method (denoted by DCA) (Weinreb et al., 2016), which
predicts the intern-ucleotide interactions based on direct coupling
analysis (DCA). This comparison is based on the fact that nucleoti-
des contributing to an interface with other molecules would be
under selective pressure. We installed and ran the method DCA lo-
cally with MSA input for each RNA in our test set TE18. The top
predicted nucleotide pairs are considered as binding sites. However,
it only returned predictions for four RNAs. On these four RNAs,
DCA has a higher recall at the expense of lower precision, resulting
to very low MCC and AUC (Table S10).

The second one is InfoRNA (Disney et al., 2016), which is for
RNA motif mining by comparing the target RNA sequence against a
database of known RNA motif small molecule-binding partners.
The nucleotides in the returned RNA motif are regarded as the small
molecule-binding sites. InfoRNA only returned results for seven
RNAs. On these RNAs, InfoRNA does not perform well compared
with our method (Table S11). This is probably because the main
purpose of InfoRNA is for the design of small molecule targeting
RNA rather than binding site prediction.

3.4 Why is the accuracy on RB19 higher than that on

TE18?
We note that all metrics on the RB19 dataset are significantly
higher than the TE18 dataset for all methods. To explain this
data, we visually checked the small molecule–RNA complexes (the
experimental structures) on the two test sets. In addition, the pre-
diction by RBind rather than RNAsite was used here to make this
analysis unbiased. We find that the location of small molecules in
an RNA structure has a significant impact on the predictive accur-
acy for predicted binding sites, illustrated by two examples in
Supplementary Figure S7. As shown in Supplementary Figure S7A
(PDB ID: 1Q8N), when the small molecule is embedded in the
RNA structure, the binding nucleotides in this RNA are easier to
be identified, as revealed by the relatively high Precision and
Recall values (1 and 0.43, respectively). On the contrary, when
the small molecule is on the surface of the RNA structure, binding
nucleotides are more difficult to be recognized. For example, the
Precision and Recall are all 0 for the example shown in
Supplementary Figure S7B (PDB ID: 5BJO). Based on this obser-
vation, we divided the RNAs into two groups. A target is called a
hard target when the small molecule appears on the surface of the
RNA structure; and an easy target is defined when the small mol-
ecule locates in the concave region of the RNA structure. The
small molecule–RNA complexes in TE18 were divided into 10
easy and 8 hard targets. For the easy targets, the MCC, Precision,
Recall and AUC of RBind are 0.296, 0.867, 0.227 and 0.596, re-
spectively, which are close to the ones on the dataset RB19. This
result indicates that most of the RNAs on RB19 dataset are easy
targets. In addition, the lower RMSD of the structure models for
RB19 is consistent with this conclusion as well.

3.5 Performance on metal ions and non-metal ion small

molecules
The information about the small molecules is summarized in Tables
S1 and S2. Because the metal ions may have different properties
with other non-metal ion small molecules, we divided the small mol-
ecules into two types: metal ions and non-metal ions. Based on such

A B

C D

Fig. 4. The MCC and AUC of all compared methods with the input of experimental

structure. (A) and (C) the respective MCC and AUC for the dataset TE18, while (B)

and (D) are for the dataset RB19

A B

Fig. 5. RMSD distributions of the predicted structure models on TE18 (A) and

RB19 (B). Each pie chart is divided into two equal parts, to present the global and

local RMSD distributions, respectively. The RMSD values are divided into four

intervals: 0–2, 2–7, 7–15 and 15–30 Å

Table 1. MCC and AUC of our methods and other existing methods

with input of predicted structures

Methods TE18 RB19

MCC AUC MCC AUC

Rsite2 0.01 0.474 0.099 0.529

Rsite 0.055 0.496 0.051 0.496

RBind 0.141 0.540 0.187 0.558

RNAsite_seq 0.16 0.641 0.508 0.801

RNAsite_str 0.185 0.695 0.445 0.806

RNAsite 0.186 0.703 0.526 0.834
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division, the RNA structures in the test set TE18 are divided into

three subsets: metal ions only (4 structures), no metal ions (12 struc-
tures) and mixed (2 structures). RNAsite_str’s performance on these
subsets is presented in Table S12. It suggests that the metal ions-only

structures have lower accuracy than other structures. This is prob-
ably because many metal ions are often on the surface of the RNA

structure and do not form well-shaped binding pockets, making it
more difficult to predict. It may be also because the placement for
metal ions in the RNA structure was made through computational

predictions and thus could contain noises. We tried to calculate the
average B-factor for the metal ions in the RNA structure but this B-

factor did not seem to correlate the prediction accuracy of binding
site prediction. Another possible reason is because the training struc-
tures are dominated by non-metal ion small molecules. In future, it

should be worth of developing ion-specific methods, such as
MetalionRNA for metal ions-binding site prediction (Philips et al.,
2012).

3.6 Potential improvement by combining with binding

pocket detection
When structure information is available, it is evident to detect the

binding pocket, which usually maps to the concave region in the
structure. There are many binding pocket detection programs for
protein structure but very few for RNA structure. To the best of our

knowledge, there is only one publically available package for RNA
pocket detection, i.e. Fpocket (Le Guilloux et al., 2009). Fpocket

detects pockets based on Voronoi tessellation and alpha spheres and
it works for both protein and RNA structures.

We combine the pocket detection into RNAsite to see if further

improvement could be achieved. First, Fpocket returns a few binding
pockets for each RNA structure, which are sorted based on the num-

ber of nucleotides. Second, the nucleotides of the target sequence are
encoded by 1 if they are within the first pocket; and 0 otherwise.
After combing this feature with previous ones of RNAsite, we

retrained an RF-based predictor and tested it on the previous datasets.
For the sake of convenience, this new predictor is named as

fRNAsite. As shown in Figure 6, when the native structure is used,
MCC and AUC on both test sets are significantly improved in
fRNAsite. This is expected as the native structures are in holo form

with bound small molecule and geometry-based pocket detection can
easily recognize the small molecule-binding regions from the holo
structures. However, when the input structures are computational
models, the pocket detection seems to be useless to improve the accur-
acy. This is probably because the modeled structures are in apo form

without bound small molecule. In addition, some of the modeled
structures have low resolution. In reality, this is the case for most
RNAs. Thus, we did not combine pocket detection in RNAsite.

3.7 The impact of the dynamic feature of RNA structure
As RNA molecular is usually more flexible, which was not consid-
ered in the design of our method. We tested if the consideration of
the dynamic feature of RNA structure could improve our method or
not here. The GROMACS package (Abraham et al., 2015) was
applied to perform molecular dynamics simulations to generate five
alternative structural configurations for each RNA structure in the
dataset RB78. The two network-based features, CL and DG, were
extracted from each conformation. Hence, 10 additional structural
features were added for each target. We retrained the RF models on
TR60 and tested on the TE18. With these new features, we got
slightly higher Recall on TE18, but lower values for other metrics
(Table S6). Other new features may be designed to make full use of
the dynamic nature of RNA structure in future.

3.8 The impact of holo and apo structures
When RNA bind to small molecules, there may be some conform-
ational changes. By comparing the RNAs in the test dataset TE18
with other RNAs in PDB, we detected four RNAs that have both
holo and apo structures. We evaluated the performance of
RNAsite_str on these four paired structures.

Table 2 shows that two RNAs (on the 2nd and the 3rd rows)
have larger conformational changes, as reflected by the high RMSD
values (5.05 and 1.71 Å, respectively). For these two RNAs, the
MCC values decrease significantly. For the remaining two RNAs
(on the 4th and the 5th rows), the conformational changes are rela-
tively low (RMSD <1 Å). For the third RNA, its MCC values are
very low for both the holo (379 dB) and the apo (1mmeB) structures.
For the last RNA, the MCC for the holo structure (2misA) is 1,
which decreases for the apo structure but is still reasonable (0.752).
To summarize, the accuracy for binding residues prediction for holo
structures is usually higher than the apo structures. This is probably
because our prediction model was trained on holo structures only.
Extended training on both holo and apo structures should be helpful
for improving the binding residues prediction accuracy on apo struc-
tures, which will be investigated in future work.

4 Conclusions

We presented a new method RNAsite for small molecule–RNA bind-
ing sites prediction by combining sequence and structure information.
The sequence-based features are obtained based on sequence profile,
reflecting position-specific evolutionary conservation of nucleotides.
The structure-based features include LN, nucleotides interaction
network-based topological features and SA. RNAsite was shown to
be competitive with the state-of-the-art methods on two independent
test sets. When predicted structure models were used, RNAsite out-
performs other methods by a large margin, probably due to its com-
bination of sequence- and structure-based descriptors. We explored
the possibility of improving RNAsite by geometry-based binding
pocket detection. It suggests that RNAsite can be enhanced by the in-
clusion of pocket detection for experimental structures. However, for
predicted structure models, pocket detection does not contribute to
RNAsite. In addition, we also considered and discussed the influence

Fig. 6. Comparison between fRNAsite and RNAsite. RNAsitem and fRANsitem rep-

resent the respective RNAsite and fRANsite with input of predicted structure model

Table 2. MCC of RNAsite_str for four RNAs from the test set TE18

that have apo and holo structures

PDB ID RMSD (Å) Conformation

holo apo

430dA (1sclA) 5.05 1 0.033

2jukA (1pjyA) 1.71 0.436 0.27

379dB (1mmeB) 0.91 0.031 0.011

2misA (2l5zA) 0.64 1 0.752

Note: The PDB IDs outside/inside the brackets are for the holo/apo

structures.
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of conformational flexibility and conformational changes caused by
ligand binding on RNAsite.
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