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METTL3 inhibits inflammation
of retinal pigment epithelium
cells by regulating NR2F1 in
an m6A-dependent manner
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1The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, 2Chongqing Key
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N6-metyladenosine (m6A) RNA methylation has been proven to be involved in

diverse biological processes, but its potential roles in the development of

lipopolysaccharide (LPS) induced retinal pigment epithelium (RPE)

inflammation have not been revealed. In this study, we explored the effects

and underlying mechanisms of methyltransferase-like 3 (METTL3) in LPS

stimulated RPE cells. Proliferation of METTL3-silenced RPE cells was

examined by Cell counting kit-8 (CCK8) and 5-Ethynyl-2´-Deoxyuridine

(Edu). Expression of tight junction proteins ZO-1 and Occludin, and secretion

of inflammatory factors interleukins (IL)-1, 6 and 8 were detected by Western

blotting or Enzyme-linked immunosorbent assay (ELISA). RNA sequencing and

methylated RNA immunoprecipitation (MeRIP) sequencing were used to

analyze the target gene nuclear receptor subfamily 2 group F member 1

(NR2F1) of METTL3. Our results showed that both human RPE (hRPE) cells

and ARPE19 cells exhibited inhibited proliferation, tight junction protein

expression, and increased inflammatory factor secretion after METTL3

silencing. Mechanistically, we found that NR2F1, as a METTL3-methylated

target gene, inhibits Occludin level and promotes IL-6 secretion of RPE cells

in an m6A-dependent manner. Interestingly, NR2F1 deficiency reversed the

decreased Occludin expression and increased IL-6 secretion in METTL3-

defective RPE cells. In conclusion, our study revealed that METTL3 attenuates

RPE cell inflammation by methylating NR2F1, suggesting the critical role of

METTL3 in RPE cells.
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Introduction

Retinal pigment epithelium (RPE) cells, as the monolayer

and polygonal cells, are located between the retina and the

choroidal vascular layer and have a variety of functions, such

as phagocytosis, barrier, secretion, transport and vitamin A

metabolism (1, 2).

A key function of RPE cells is to maintain the integrity of the

photoreceptors and visual function. In autoimmune uveitis, the

outer blood-retinal barrier (BRB) composed of RPE cells is

severely damaged as a direct consequence of lymphocytic

infiltration (3–6). Activated leukocytes adhered to retinal

vascular plexus followed by upregulation of the adhesion

molecules ICAM-1 and P-selectin, and then resulted in

increased vascular permeability (7). Simultaneously, the

breakdown of BRB caused leukocytes extravasation and

recruitment into the retinal parenchyma. In addition, a

previous study revealed that RPE cells secrete a series of

cytokines, such as IL-6, in lipopolysaccharide (LPS)-induced

inflammatory responses in many ocular pathological conditions

(8). This study has demonstrated that LPS induced

inflammation of RPE cells play a crucial role in initiating

ocular inflammation and causing many intraocular

inflammatory diseases such as uveitis and age-related macular

degeneration (AMD).

N6-methyladenosine (m6A), as the most prevalent internal

modification on eukaryotic mRNA, is mainly localized in the

RRACH motifs (R=G/A, H=A/U/C) (9, 10). In 2011, the

identification of fat mass and obesity-associated protein (FTO)

as a genuine demethylase of m6A modification indicated that

m6A is a reversible and dynamic RNA modification (11). The

m6A process is regulated by multiple protein complexes termed

“writers”, “erasers” and “readers”. The writer complex, which

deposits m6A in mRNA, comprises methyltransferase-like 3 and

14 (METTL3 and METTL14) heterodimers and other adaptors

(12–14). m6A-binding proteins, named readers, are involved in

various physiological processes, such as splicing, nuclear export,

transcription, translation, degradation and stability (15–17).

Previous studies mostly focused on the role of m6A in

cancers, while current studies revealed that the dysfunction of

m6A in macrophages is also a pathogenic factor in inflammatory

diseases. Studies have demonstrated that METTL3 attenuates

LPS-induced inflammation of macrophages through NF-kB in

patients with rheumatoid arthritis (18, 19). Moreover, a

regulatory role of m6A exists in other inflammatory diseases,

such as systemic lupus erythematosus (SLE) and scleroderma

(20–22).

However, whether m6A is involved in the LPS induced

inflammatory response of RPE cells remains unclear, and the

purpose of our research is presented here. Our data first revealed

that the expression of Occludin was significantly decreased and

that the secretion of inflammatory factors, including IL-1b, IL-6
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and IL-8, was significantly increased in the METTL3-silenced

RPE cells. Furthermore, we found that NR2F1, as a downstream

target of METTL3, decreased Occludin expression and directly

promoted IL-6 secretion in an m6A-dependent manner. In

summary, we proved that METTL3 performs a crucial

function in LPS stimulated RPE inflammatory response and

unveiled the molecular mechanism.
Results

Decreased mRNA levels but increased
protein expression of METTL3 in RPE
cells after LPS stimulation

Given the critical effects of the methyltransferase METTL3

on inflammatory diseases, we detected the expression of

METTL3 in human RPE cells and ARPE19 (an RPE cell line)

cells (23, 24). Decreased mRNA levels but increased protein

expression was found in both hRPE and ARPE19 cells after

treatment with LPS, which revealed that METTL3 may play a

similar important role in LPS induced RPE autoinflammatory

response (Figure 1).
Silencing METTL3 inhibits proliferation,
Occludin expression but promotes IL-6
secretion of hRPE cells

To determine the role of METTL3 in RPE cells, we first

examined RPE functions by knocking down METTL3 using a

METTL3-silencing lentivirus in hRPE cells. After transfection,

approximately 90% infection efficiency was observed in these

hRPE cells (Figure 2A). Then, we selected stably transformed

strains using puromycin and detected the silencing efficiency.

Significantly decreased METTL3 expression and m6A

modification rates were found in the METTL3-silenced cells

compared with the control cells (Figures 2B, C). We further

explored the changes in hRPE phenotypes, such as proliferation,

tight junction protein expression, and secretion, after silencing

METTL3. Surprisingly, the proliferation of hRPE cells was

decreased in the METTL3-silenced cells with or without LPS

stimulation (Figures 2D–F). The significantly decreased protein

level of Occludin was found in the METTL3-silenced hRPE cells

(Figure 2G). Finally, we also assessed the secretion function of

hRPE cells. Increased secretion of IL-6 was found in the

METTL3-silenced hRPE cells with LPS stimulation but not

found in the cells without LPS stimulation. The secretion of

IL-8 in METTL3-silenced hRPE cells with LPS stimulation was

increased more than that without LPS stimulation, which

confirmed the increased inflammation of the METTL3-

silenced hRPE cells (Figures 2H–J).
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Silencing METTL3 inhibits proliferation,
tight junction protein expression but
promotes IL-6 secretion in ARPE19 cells

To further confirm the role of METTL3 in RPE cells, we also

examined RPE functions by silencing METTL3 in ARPE19 cells.

Similarly, approximately 90% infection efficiency was observed

in the ARPE19 cells after transfection with lentivirus

(Figure 3A). Then, we also selected the stably transformed

strains and detected the silencing efficiency. Decreased

expression of METTL3 and decreased m6A modification rates

were also found in the METTL3-silenced ARPE19 cells

(Figures 3B, C). In addition, the proliferation of ARPE19 cells

was decreased in the METTL3-silenced cells with or without LPS

stimulation (Figures 3D–F). However, the protein levels of both

Occludin and ZO-1 were significantly decreased in the

METTL3-silenced ARPE19 cells, which was different from the

METTL3-silenced hRPE cells (Figure 3G). Finally, the secretion

of IL-1b, IL-6 and IL-8 was shown to be increased in the

METTL3-silenced ARPE19 cells especially with LPS

stimulation (Figures 3H–J).
METTL3 epigenetically represses NR2F1
in an m6A-dependent manner

To investigate how METTL3 affects the inflammation of

RPE cells, we performed RNA sequencing and methylated RNA

immunoprecipitation (MeRIP) sequencing using the METTL3-

silenced ARPE19 cells stimulated with LPS. The results showed

that most of the m6A modifications were located in the coding

sequence (CDS) and 3´untranslated region (UTR) of ARPE19

cell mRNA in ARPE19 cells regardless of METTL3 silencing

(Figures 4A, B). To identify the critical target genes, we divided
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the 608 common genes from these two sequencings into three

parts: 38 m6A modifications-downregulated and RPE cell

function-related genes, 383 m6A modifications-downregulated

but RPE cell function-unrelated genes, and 187 m6A

modifications-upregulated genes (Figure 4C). From these 38

genes with downregulated m6A modifications and RPE cell

function-related, 15 RPE inflammation-related genes, such as

ETS1, were selected for verification. Significantly increased

expression of NR2F1 was found in the METTL3-silenced

ARPE19 cel ls , which was posit ive ly related to its

proinflammatory function (Figures 4D, E) (25). Then, we

verified the m6A modification and analyzed the motif of

NR2F1 mRNA. However, only one modification site could be

verified in the METTL3- and FTO-silenced ARPE19 cells after

LPS stimulation, and further motif analysis found that this m6A

site may be GG(/A)ACU(/A) (Figures 4F, G). Finally, we

detected the mRNA half-life of NR2F1, and a longer half-life

was observed in the METTL3-silenced ARPE19 cells than in the

control cells (Figure 4H).
Silencing NR2F1 inhibits inflammation of
RPE cells

To verify the effect of NR2F1 on RPE cell inflammation, we

silenced NR2F1 in the METTL3-silenced RPE cells. First, we

examined the transfection efficiency after lentiviral infection and

silencing efficiency after selecting the stably transformed strains

with puromycin and neomycin. Approximately 90% infectious

efficiency and silencing efficiency were observed in the METTL3

and NR2F1 double-silenced RPE cells (Figures 5A–C). Next, we

detected the expression of Occludin and secretion of IL-6 and

IL-8 to evaluate the effect of NR2F1 on RPE inflammation. The

results showed that the expression of Occludin was increased in
B

C D

A

FIGURE 1

Expression of METTL3 in RPE cells after LPS stimulation. (A, C) mRNA level of METTL3 in LPS treated hRPE and ARPE19 cells (mean ± SD; ***
P<0.001; n=3/group; unpaired Student’s t-test). (B, D) Protein level of METTL3 in LPS treated hRPE and ARPE19 cells. Left, representative
western blotting images of METTL3. Right, quantification of relative expression of METTL3 (mean ± SD; * P<0.05, **** P<0.0001; n=3/group;
unpaired Student’s t-test).
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the NR2F1-silenced ARPE19 cells and rescued in the METTL3

and NR2F1 double-silenced ARPE19 cells with or without LPS

stimulation (Figures 5D, G). The secretion of IL-6 was decreased

in the NR2F1-silenced ARPE19 cells and rescued in the

METTL3 and NR2F1 double-silenced ARPE19 cells

(Figures 5E, H). Surprisingly, the secretion of IL-8 was

increased in the NR2F1-silenced ARPE19 cells but not rescued
Frontiers in Immunology 04
in the METTL3 and NR2F1 double-silenced ARPE19 cells,

which suggested that IL-8 could be regulated by METTL3 and

NR2F1 but not the METTL3/NR2F1 pathway (Figures 5F, I).

Similar changes in Occludin and IL-6 were observed in the hRPE

cells after LPS stimulation (Figures 5J, K). To further investigate

how NR2F1 regulates Occludin and IL-6, we performed

binding prediction for transcription factors and promoters
B

C D

E

F

G

H I J

A

FIGURE 2

Phenotype of hRPE cells after silencing METTL3. (A) Transfection efficiency of the METTL3-silenced lentivirus in hRPE cells (BF, bright field;
EGFP, enhanced green fluorescence protein; scale bar, 10 mm). (B) Silencing efficiency of METTL3 in hRPE cells. Left, representative western
blotting images of METTL3. shMET, shMETTL3; shNC, Negative Control. Right, quantification of relative expression of METTL3 (mean ± SD; ****
P<0.0001; n=3/group; unpaired Student’s t-test). (C) m6A% after silencing METTL3 in hRPE cells (mean ± SD; ** P<0.01; n=3/group; unpaired
Student’s t-test). (D) Cell viability of hRPE cells after silencing METTL3 with or without LPS stimulation (mean ± SD; * P<0.05, *** P<0.001, ****
P<0.0001; n=6/group; unpaired Student’s t-test). (E, F) Proliferation of hRPE cells. (E) Representative Edu images of hRPE cells after silencing
METTL3 with or without LPS stimulation (scale bar, 166.4 mm). (F) Quantification of Edu positive cells (mean ± SD; * P<0.05, *** P<0.001; n=3/
group; one-way ANOVA). (G) Protein levels of Occludin and ZO-1 in hRPE cells after silencing METTL3 with or without LPS stimulation. Upper,
representative western blotting images of Occludin and ZO-1. Lower, quantification of relative expression of Occludin and ZO-1 (mean ± SD; ns
P>0.05, * P<0.05, ** P<0.01, **** P<0.0001; n=3/group; unpaired Student’s t-test). (H–J) The secretion levels of IL-1b, IL-6 and IL-8 in hRPE
cells after silencing METTL3 with or without 24 hours of LPS stimulation (mean ± SD; * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001; n=4-6/
group; one-way ANOVA).
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(Bioinfo.life.hust.edu.cn/hTFtarget#)! and then verified that

NR2F1 could directly bind to the promoter of IL-6 (Figure 5L).

Discussion

RNA methylation, as an emerging posttranscriptional

modification of RNA, has attracted increasing attention among
Frontiers in Immunology 05
epigenetic modifications, especially m6A. Previous studies have

demonstrated that m6A, the most abundant mRNA internal

modification, regulates diverse cellular processes in cancer,

immunology, and other human diseases (26–28). However,

whether m6A is involved in LPS stimulated inflammatory

response of RPE cells is still not clear. At the beginning of our

research, we found that the protein expression of the methylase
B

C D

E

F

G

H I J

A

FIGURE 3

Phenotype of ARPE19 cells after silencing METTL3. (A) Transfection efficiency of the METTL3-silenced lentivirus in ARPE19 cells (BF, bright field;
EGFP, enhanced green fluorescence protein; scale bar, 10 mm). (B) Silencing efficiency of METTL3 in ARPE19 cells. Left, representative western
blotting images of METTL3. Right, quantification of relative expression of METTL3 (mean ± SD; *** P<0.001; n=3/group; unpaired Student’s t-
test). (C) m6A% after silencing METTL3 in ARPE19 cells (mean ± SD; * P<0.05; n=3/group; unpaired Student’s t-test). (D) Cell viability of ARPE19
cells after silencing METTL3 with or without LPS stimulation (mean ± SD; ** P<0.01, *** P<0.001, **** P<0.0001; n=5-6/group; unpaired
Student’s t-test). (E, F) Proliferation of ARPE19 cells. (E) Representative Edu images of ARPE19 cells after silencing METTL3 with or without LPS
stimulation (scale bar, 166.4 mm). (F) Quantification of Edu positive cells (mean ± SD; * P<0.05, *** P<0.001; n=4/group; one-way ANOVA). (G)
Protein levels of Occludin and ZO-1 in ARPE19 cells after silencing METTL3 with or without LPS stimulation. Upper, representative western
blotting images of Occludin and ZO-1. Lower, quantification of relative expression of Occludin and ZO-1 (mean ± SD; * P<0.05, ** P<0.01, ***
P<0.001; n=3/group; unpaired Student’s t-test). (H–J) The secretion levels of IL-1b, IL-6 and IL-8 in ARPE19 cells after silencing METTL3 with or
without 24 hours of LPS stimulation (mean ± SD; * P<0.05, ** P<0.01, **** P<0.0001; n=4-6/group; one-way ANOVA).
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METTL3 was increased in both hRPE and ARPE19 cells after LPS

stimulation, which revealed the potential role of METTL3 in RPE

cell inflammation and laid the foundation for subsequent studies.

Our studies showed decreased proliferation, tight junction

protein expression, but increased inflammatory factor secretion in

METTL3-silenced RPE cells. Mechanistically, we proposed for the

first time that NR2F1, a transcription factor methylated by METTL3,

regulates Occludin expression and IL-6 secretion of RPE cells. In

addition, silencing of NR2F1 rescued the inflammatory phenotype in

the METTL3-silenced RPE cells, suggesting that METTL3 regulates

the RPE inflammation via the NR2F1/IL-6 pathway. However, no

studies have shown the transcriptional regulation of IL-6 by NR2F1.

The nuclear cotranscriptional regulator NR2F1, also named

COUP-TF1, is an orphan nuclear receptor belonging to the

superfamily of the steroid/thyroid hormone receptors (29).

Previous studies have shown that NR2F1 is mainly implicated

in brain cell cycle control, cancer cell dormancy, invasion and

metastasis (30). Its proteostasis was modulated by insufficiency

of RAN-binding protein-2 (RANBP2) in a post-translational
Frontiers in Immunology 06
modification upon oxidative stress in RPE cells (29). However,

the specific modification is still unknown. In our results, we

suggested that NR2F1 was epigenetically regulated by METTL3

in an m6A-dependent manner, which paved the way for further

studies on the epigenetic modification of NR2F1.

Given the increased protein expression of METTL3 and

obvious phenotypic differences have been shown in our results

after silencing METTL3 in RPE cells, we tried to verify these

conclusions in some models. Surprisingly, we found that the

level of m6A%, methylase METTL3 and demethylase FTO were

all decreased in primary RPE cells of experimental autoimmune

uveitis (EAU) mice (Supplementary Figure 1 and unpublished

data). In addition, these decreased METTL3 expression in RPE

cells of EAU or endotoxin induced uveitis (EIU) mice is contrary

to the in vitro findings, which revealed a complex process with

various cells interaction of the in vivo models.

In summary, our results showed that METTL3 regulated

RPE cell inflammation in vitro by methylating NR2F1 in an

m6A-dependent manner (Figure 6).
B C

D E

F G H

A

FIGURE 4

METTL3 inhibits NR2F1 in an m6A-dependent manner. (A) Pie charts represent the percent of all m6A peaks on mRNA (CDS, coding sequence;
UTR, untranslated region; TSS, transcription start site). (B) The percent of m6A peaks on three segments of mRNA: 5´UTR, CDS and 3´UTR. (C)
Venn diagram of MeRIP-seq and RNA-seq to identify common differentially expressed genes (DEG). (D) mRNA levels of ETS1, TLR4, SGK1,
ANGPTL4, HLA-A, NR2F1, VEGFC, MAP1B, HLA-C, LRP1, LIF, LOXL2, SLC2A1, IRAK1 and FURIN in the METTL3- or FTO-silenced ARPE19 cells
after LPS stimulation (mean ± SD; * P<0.05, ** P<0.01, *** P<0.001; n=3/group; one-way ANOVA). (E) Protein levels of ETS1, TLR4, SGK1,
ANGPTL4, NR2F1 and MAP1B in the METTL3-silenced ARPE19 cells after LPS stimulation. Left, representative western blotting images of these
proteins. Right, quantification of relative expression (mean ± SD; ns P>0.05, * P<0.05, *** P<0.001, **** P<0.0001; n=3/group; unpaired
Student’s t-test). (F) Site-specific mRNA levels of NR2F1 after m6A immunoprecipitation in the METTL3- or FTO-silenced ARPE19 cells (mean ±
SD; * P<0.05; n=3/group; one-way ANOVA). (G) NR2F1 binding motif identify. (H) The half-life detection of NR2F1 in the METTL3-silenced
ARPE19 cells after LPS stimulation (mean ± SD; n=3/group).
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Materials and methods

Cell culture

The ARPE19 cell line was purchased from the American

Type Culture Collection (CRL-2302, ATCC, USA) and hRPE

cells were obtained from donors visited at the First Affiliated
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Hospital of Chongqing Medical University. All the eyeball

samples were collected from the patients with written

informed consent and the procedures were approved by the

Ethics Committee of the First Affiliated Hospital of Chongqing

Medical University (2019-099). The posterior ocular tissues

within 24 hours after death were rinsed 3 times with sterile

phosphate buffer solution (PBS) and then digested by 0.25%
B C

D E F

G H I

J K L

A

FIGURE 5

Silencing NR2F1 increased expression of Occludin and inhibited secretion of IL-6. (A) Fold changes of NR2F1 mRNA after silencing (mean ±
SD; **** P<0.0001; n=3/group; one-way ANOVA). (B) Silencing efficiency of NR2F1 using siNR2F1-1. Left, representative western blotting
images of NR2F1. Right, quantification of relative expression of NR2F1 (mean ± SD; *** P<0.001; n=3/group; unpaired Student’s t-test).
(C) Cotransfection of METTL3- and NR2F1-silenced lentivirus (BF, bright field; EGFP, enhanced green fluorescence protein; MCHERRY, red
fluorescence protein; scale bar, 10mm). (D) Protein level of Occludin after METTL3 and NR2F1 silencing in ARPE19 cells. Left, representative
western blotting images of Occludin. Right, quantification of relative expression of Occludin (mean ± SD; ** P<0.01, **** P<0.0001; n=3/
group; one-way ANOVA). (E, F) The secretion levels of IL-6 and IL-8 in ARPE19 cells after METTL3 and NR2F1 silencing (mean ± SD; ns
P>0.05, * P<0.05, *** P<0.001; n=3/group; one-way ANOVA). (G) Protein level of Occludin in the METTL3- and NR2F1-silenced ARPE19
cells with LPS stimulation. Left, representative western blotting images of Occludin. Right, quantification of relative expression of Occludin
(mean ± SD; *** P<0.001, **** P<0.0001; n=3/group; one-way ANOVA). (H, I) The secretion levels of IL-6 and IL-8 in ARPE19 cells with LPS
stimulation after METTL3 and NR2F1 silencing (mean ± SD; ns P>0.05, ** P<0.01, *** P<0.001; n=3/group; one-way ANOVA). (J) Protein
level of Occludin after METTL3 and NR2F1 silencing in hRPE cells with LPS stimulation. Left, representative western blotting images of
Occludin. Right, quantification of relative expression of Occludin (mean ± SD; * P<0.05, **** P<0.0001; n=3/group; one-way ANOVA).
(K) The secretion level of IL-6 in hRPE cells with LPS stimulation after METTL3 and NR2F1 silencing (mean ± SD; * P<0.05, *** P<0.001;
n=3/group; one-way ANOVA). (L) The DNA expression of IL-6 after METTL3 silencing with NR2F1 immunoprecipitation (IgG for negative
control; mean ± SD; * P<0.05, ** P<0.01; n=3/group; one-way ANOVA).
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trypsin containing EDTA (25200072, Gibco, USA) at 37°C for

30 min. After filtered a 40 mm cell strainer, the single hRPE cells

were washed 3 times again with PBS and then cultured in

Dulbecco’s Modified Eagle Medium: F-12 (DMEM/F-12,

11320033, Gibco, USA) with 10% fetal bovine serum (FBS,

10100147, Gibco, USA) and 1% Penicillin-Streptomycin

solution (15070063, Gibco, USA) in the humidified incubator

at 37°C with 5% CO2.
Cell stimulation and lentiviral infection

Cells were stimulated with 1 mg/ml LPS (L2880, Sigma-

Aldrich, USA) for 24 h to induce inflammation and infected with

lentivirus carrying shMETTL3 or siNR2F1 packaged by

Genechem Co., Ltd. (Shanghai, China) or Sangon Biological

Engineering Technology & Services Ltd. Co. (Shanghai, China)

according to the manufactures’ instructions. Briefly, ARPE19 or

hRPE cells were sowed and cultured overnight, then infected

with lentivirus (multiplicity of infection, MOI: 30) for 6 h. On

day 3 after transfection, cells were observed and images were

collected using a fluorescence microscope (DMIL4000, Leica,

Germany). And then, the stably transformed strains were

selected by puromycin or neomycin for this study.
Real-time quantitative PCR

Total RNA was extracted from RPE cells using the Trizol

reagent (Roche, Swiss) according to the manufacturer’s

instructions . RNA concentrat ion was measured by
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spectrophotometer (Thermo Fisher Scientific. Inc., MA, USA),

and cDNA was synthesized with the RT Master Mix for qPCR

reagent (MedChemExpress, USA). Real-time quantitative

polymerase chain reaction (RT-qPCR) was performed using

the ABI 7500 Real-time PCR System (Applied Biosystems, CA,

USA) with SYBR Green qPCR Master Mix (MedChemExpress,

USA) according to the manufacturer’s instructions. All primers

sequences can be found in Supplementary Table 1. Relative

expression was normalized to b-actin and calculated using the

2−DDCT method.
Western blotting

Cells were lysed in radio immunoprecipitation assay (RIPA,

Beyotime, Shanghai, China) lysis buffer containing 1%

Phenylmethanesulfonyl fluoride (PMSF, Beyotime, Shanghai,

China) on ice and the proteins were quantified with the

bicinchoninic acid assay quantification kit (BCA, Beyotime,

Shanghai, China). Samples were separated by sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and then

electrotransferred onto polyvinylidene difluoride membranes

(PVDF, Millipore, Billerica, MA, USA). After being blocked in 5%

non-fat milk for 2 h at room temperature, the membranes were

subjected to immunoblotting with primary antibodies at 4°C

overnight. Following incubated with secondary antibodies at room

temperature for 1 h, the blots were visualized using the ECL kit

(Mengbio, Chongqing, China). The density of bands was quantified

by Image J, and normalized to GAPDH. Primary antibodies used in

this study are provided in Supplementary Table 2.
FIGURE 6

METTL3 regulates RPE inflammation by NR2F1 in an m6A-dependent manner. In normal RPE cell, METTL3 methylates NR2F1 and then decreases
protein level of NR2F1, which lead to reduced IL-6 transcription and secretion but increased Occludin expression (Left). In METTL3-silenced RPE
cell, NR2F1 is increased and then promotes IL-6 secretion but inhibits Occludin expression, which finally lead to increased inflammation (Right).
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m6A RNA quantification assay

Total RNA was extracted using the Trizol reagent (Roche,

Swiss) and the m6A RNA content was measured using the

EpiQuik m6A RNA Methylation Quantificat ion kit

(Colorimetric, Epigentek, Farmingdale, NY, USA) according to

the manufacturer’s instructions. In short, 200 ng of sample RNA

was coated on an assay well for the analysis after added with

binding solution. Followed with detection antibody and capture

antibody, enhanced solution was added to incubate. Finally,

optical density (OD) values of wells at 450 nm were measured

and calculated based on negative and positive controls.
Cell counting kit-8 (CCK8) assay

RPE cells were seeded into 96-well plates (5 × 103 cells/well)

and cultured for 0, 24, and 48 h at 37°C. For proliferation

detection, the original culture medium was replaced with

medium containing CCK-8 reagent (Invigentech, CA, USA) for

another 2 h. The absorbance was measured using a microplate

reader at 450 nm (Thermo Fisher Scientific. Inc. MA, USA).
5-ethynyl-2´-deoxyuridine (Edu) staining

Proliferation of RPE cells was investigated with BeyoClick™

Edu-555 Cell Proliferation Detection Kit (C0075S, Beyotime,

China) according to the manufacturer’s protocols. Briefly, after

being seeded into 12-well plates for 24 h at 37°C, RPE cells were

incubated with Edu working solution (10 µM) for 2 h. Then

washed with PBS twice and fixed with 4% paraformaldehyde for

15 min at room temperature. Next, the cells were permeabilized

with 0.3% TritonX-100 (Beyotime, China) for 10 min and

washed with PBS three times. Finally, cells were incubated

with Click Additive Solution for 30 min in dark, and

subsequently stained with 1X Hoechst for the nucleus staining.

Images were captured with the fluorescence microscope (Leica,

Germany). RPE cells at DNA replication phase appeared red

fluorescence while the nuclei represented blue fluorescence.
Enzyme-linked immunosorbent assay
(ELISA)

The supernatant of RPE cells with or without 24 hours of

LPS stimulation was collected, and then the concentration of

inflammatory cytokines (IL-1b, IL-6 and IL-8) was measured

using Elisa kits (Elabscience, Wuhan, China) according to the

manufacturer’s instructions. The microplate reader (Thermo

Fisher Scientific. Inc. MA, USA) was used to detect the

absorbance values at the wavelength of 450 nm.
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Methylated RNA immunoprecipitation-
sequencing (MeRIP-seq) and PCR

The procedure of m6A immunoprecipitation (MeRIP) was

performed on the basis of previously reported methods (31–33).

In brief, purified mRNAs were fragmented into approximately

100 nt of length by a 45 s incubation at 94°C in RNA

fragmentation reagent (AM8740, Life Technologies). Then, the

fragmented mRNAs were collected and incubated with anti-m6A

antibody or IgG in immunoprecipitation buffer containing

RNase inhibitor at 4°C overnight. Methylated RNAs were

immunoprecipitated with protein A/G beads (Life

Technologies, 10013D), eluted by competition with free m6A

and for library construction or qPCR analysis.

RNA-sequencing

Total RNA was extracted from RPE cells using the Trizol

reagent as mentioned above. For mRNA-sequencing, mRNAs

were single-end sequenced on Illumina HiSeq 2000 machines in

Novogene Technology Co., Ltd. (Beijing, China). Transcript

assembly and differential expression was examined by Cufflink

with Refseq mRNAs.

mRNA stability assay

After LPS stimulation, control and METTL3 knockdown

RPE cells were treated with 5 mg/mL actinomycin D (A1410,

Sigma-Aldrich, USA) for 0, 3, and 6 h. Cells were harvested at

each time point and subjected to RNA extraction. RT-qPCR was

used to examine the mRNA abundance of target genes in

each group.

Chromatin immunoprecipitation (ChIP)-
qPCR

The ChIP assay was performed using the Chromatin

Immunoprecipitation Kit (17-295, Millipore, Germany)

according to the manufacturer’s instructions. Briefly, RPE cells

were cross-linked with 1% formaldehyde (12606S, Cell Signaling

technology) for 10 min, and quenched with glycine for 5 min at

room temperature. Then, cells were collected, washed, and

resuspended in lysis buffer. Then cross-linked DNAs were

fragmented with sonication (6% energy, 30 s for 6 cycles). The

sonicated chromatin solution was incubated with beads coated

with 5 mg of anti-NR2F1 (ab181137, abcam, UK) or IgG at 4°C

overnight. Immunoprecipitated DNAs were purified and

analyzed by qPCR.

Statistical analyses

Comparison between two groups was analyzed by two-tailed

Student’s t-test, and comparison among three or more groups
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was analyzed by one-way ANOVA. The differences analyzed by

SPSS software 20.0 (IBM, USA) were considered to be

statistically significant at P<0.05. Data are presented as mean ±

SD, and figures were made using Prism version 8.0 software

(GraphPad, San Diego, USA).
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