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LETTER TO EDITOR

Identification of potential vaccine targets for COVID-19 by
combining single-cell and bulk TCR sequencing

Dear Editor,
COVID-19 is a highly infectious novel pneumonia that

has become the largest health crisis in modern history.
T cells participate in recognizing and clearing viral infec-
tions and also helping B cells to produce antibodies. This
pivotal role of T cells in immunity makes them ideal tar-
gets for studying the immune response in COVID-19. Here,
we use scRNA-seq, scTCR-seq, deep TCR-seq, and HLA-
genotyping to decode the matching T cell phenotype and
antigenic epitopes of 16 early-recovery COVID-19 patients
in the context of human HLA haplotypes.
We collected fresh blood samples from 16 early-recovery

patients with COVID-19 (Table S1). PBMCs were isolated
for subsequent data generation: (1) single-cell transcrip-
tome sequencing, (2) single-cell TCR sequencing, (3) deep
TCR repertoire sequencing, and (4) HLA genotyping (Fig-
ure 1A andTable S1). Overall, we totally obtained single cell
gene expression data from 26 223 T cells, single cell paired
αβTCRs from 27 467 T cells and hypervariable regions of
immune receptors from 4.9 million TCR clones (Table S2).
In addition, high-resolution HLA typing results were per-
formed by sequencing 5 HLA genes, including HLA-A,
B, C, DRB1, and DQB1 (Table S3). In order to reveal the
T cell response changes caused by COVID-19, 8 healthy
controls (healthy cohort1) with scRNA-seq profiled by 10x
Genomics and 31 healthy controls (healthy cohort2) with
deep TCR-seq were included in this study (Figure S1).
Using unsupervised clustering, we identified 13 distinct

T cell types (Figure 1B), including naïve CD4+ T cells
(Naïve CD4), Th1 cells (Th1), Th17 cells (Th17), Tfh cells
(Tfh), cytotoxic CD4+ T cells (CD4 CTL), regulatory T
cells (Tregs), naïve CD8+ T cells (Naïve CD8), memory
CD8+ T cells (Memory CD8), transitional CD8+ T cells
(transitional CD8), terminal effector CD8+ T cells (Effec-
tor CD8), gamma-delta T cells (gdT), MAIT cells (MAIT),
and platelet-like cells (Platelets). Cells were annotated by
SingleR.1 Classical marker genes were used to distinguish
different cell types (Figure 1D, Figure S2).
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Of all the T cell types identified in this study, the pro-
portion of Transitional CD8, Effector CD8 and CD4 CTL
in COVID-19 patients were significantly higher than those
in healthy controls (P = 1.91 × 10−4, 2.52 × 10−2, and
2.98 × 10−3, respectively), while the proportion of Naïve
CD4 was significantly lower (P = 1.24 × 10−2) (Figure 1C).
Single cell repertoire analysis demonstrates that larger
clonotypes exhibited a non-uniform distribution of cell
types with an enrichment for cytotoxic T cells, such as
transitional CD8, effector CD8 and CD4 CTL (Figure 2).
Interestingly, effector CD8 and CD4 CTL in our study also
jointly expressed resident memory marker ZNF6832 and
tissue exit marker S1RP53 (Figure 1D). According to Ref.
(4), these cells might be cytotoxic T cells recently egressed
from tissues (such as lung tissue) and reentered circula-
tion, an observation thatwaits for further experimental val-
idation.
To investigate whether the TCR repertoires of the recov-

ered patients with COVID-19 differentiate from healthy
individuals, we compared the deep TCR-seq data between
patients with COVID-19 and controls. At the repertoire
level, T cell diversity in COVID-19 patients was signif-
icantly lower than that in controls (P < 0.0001, Fig-
ure 3A), consistent with the clonal expansion upon anti-
gen exposure. Clustering of TCRs with similar CDR3s is
an effective approach to identify antigen-specific T cells,5–7
as TCRs sharing similar motifs from distinct individuals
may also share antigen-specificity. Through TCR cluster-
ing, we detected 29 409 TCR groups (Table S4). Interest-
ingly, COVID-19 patients shared more TCR groups than
healthy controls (Figure 3B). To obtain patient-specific
TCRs, we searched for CDR3 groups significantly enriched
in the COVID-19 cases, and identified a total of 916 groups
(FDR < 0.05, Table S5), which were referred as ‘COVID-
19 TCR groups’ in the downstream analysis. These groups
of T cells are enriched for activated T cells, specifically, the
transitional CD8, effectorCD8 andCD4CTL subtypes (Fig-
ure 3C-D).
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F IGURE 1 Single cell transcriptome profiling of T cells of patients with COVID-19 and controls. (A) An overview of experimental
design. PBMCs from 16 patients with COVID-19 were divided to perform scRNA-seq, scTCR-seq, deep TCR-seq and HLA genotyping. (B)
UMAP plot of T cells from patients with COVID-19 and controls. Clustering was based on unsupervised k-means using the normalized gene
expression values after batch effect removal. (C) Bar plots showing the distribution of T cell types in patients with COVID-19 and healthy
controls. (D) Dot plot shows the average log-normalized gene expression of marker genes for cell types discussed in the main text. The size of
the dot represents the percentage of cells that express the gene in each cluster, and the color represents the average level of expression after
scaling

The identification of COVID-19 TCRgroups also allowed
us to uncover the candidate antigenic epitopes from the
virus genome. In total, 866 9-mer peptides from 11 SARV-
CoV-2 proteins were computationally predicted to bind
patient HLA alleles profiled in our study (Table S6). We
examined the peptides andCDR3 groups found inmultiple

individuals, and identified 1602 cooccurring TCR-antigen
pairs that were significantly shared by the same patients,
covering 31 CDR3 groups and 114 peptides (FDR < 0.05,
Table S7). Of these, we identified two pairs, each with a
single TCR group and a single antigen (FDR < 0.001, Fig-
ure 4A). Another pair consists of oneCDR3 groupmapping
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F IGURE 2 Clonally expanded T cells in COVID-19 patients. (A) Clonal distribution of T cell receptors in COVID-19 patients. (B) UMAP
plot shows the distribution of clonally expanded T cells. (C) Residual plot for the Pearson’s chi-squared test of clone expansion from cell types,
using the corrplot package in R. Red circles indicate an overrepresentation, and blue circles indicate an underrepresentation. A Pearson’s
chi-squared test shows this difference is statistically significant (χ2 = 17605, df = 24, simulated P < 2.2E-16). (D) Bar plot shows the
distribution of clonotypes by size (NA = 1, ≥ 2, ≥ 10 ,and ≥ 20 cells, NA represents cells with no αβTCR sequence detected). (E) Pie charts
show the cell type composition of clonotypes from each sample stratified by clone size
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F IGURE 3 Antigen-specific T cells in COVID-19 patients. (A)
Comparison of D50 TCR diversity between patients with
COVID-19 and healthy controls. Low D50 value indicates low
diversity and high clonal expansion. (B) Heatmap plot for
clustering results of shared TCR groups among all samples. Each
entry of the pairwise sharing matrix documents the number of
shared TCR groups between two individuals. Unsupervised
hierarchical clustering was applied to organize the columns and
rows of the matrix. (C) The distribution of T cells of 916 COVID-19
TCR groups overlaid on top of all the single cell data in the UMAP
plot of T cells. (D) Residual plot for the Pearson’s chi-squared test
of COVID-19 specific TCR groups from cell types, using the
corrplot package in R. Red circles indicate an overrepresentation,
and blue circles indicate an underrepresentation. A Pearson’s
chi-squared test shows this difference is statistically significant
(χ2 = 2658.5, df = 12, simulated P < 2.2E-16)

F IGURE 4 Identification of clonally expanded TCR groups and potential virus epitopes. (A) Diagram showing perfectly matched TCR
groups and peptides presented by MHC I alleles of COVID-19 patients (FDR < 0.001). (B) The distribution of MHC I presentation regions in
each protein from the SARS-CoV-2 genome. Peptides computationally predicted to bind MHC-I with high affinity are colored as dark blue.
Those peptides presented by MHC-I with high affinity, significantly cooccurring with a COVID-19 TCR group are colored as red
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tomultiple epitopes (Figure 4A), which demonstrated sim-
ilar motifs in the TCR contact regions.8 We next located
all the 114 peptides in the virus genome, and found more
than 91% were distributed in proteins ORF1ab, S, N, and
ORF3a (Figure 4B), where ORF3a showed significant epi-
tope enrichment (P = 0.0056, Binomial test). In summary,
our analysis revealed a number of candidate peptides as
promising targets for COVID-19 vaccine development.
This study provides an effective solution for identify-

ing potential antigenic peptides based on large-scale TCR
repertoire and HLA typing. The combined use of single-
cell and deep TCR sequencing provided us with single-
cell resolution, and also enabled us to obtain millions
of immune receptors.9 However, highly abundant T cell
clones may not be disease-specific.10 With this strategy, we
grouped similar TCRs to search for evidence of convergent
selection in patients. Mapping these receptors to single cell
data identified novel T cell phenotypes specific to recovery
COVID-19 patients. In addition, with HLA genotyping, we
were able to provide individualized TCR epitopes, which
allowed us to investigate their associations with recurrent
TCR groups across different individuals. This method led
to statistically confident antigen targets and provided guid-
ance for efficient mRNA vaccine design. We hope that our
findings and immune receptor datasets will inform the
development of next-generation vaccines that can better
activate natural T cell immunity for COVID-19.
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