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Snow avalanches can be triggered by strong
earthquakes. Most existing models assume that
snow slab avalanches happen simultaneously during
or immediately after their triggering. Therefore, they
cannot explain the plausibility of delayed avalanches
that are released minutes to hours after a quake. This
paper establishes the basic mechanism of delays in
earthquake-induced avalanche release using a novel
analytical model that yields dynamics consistent
with three documented cases, including two from
Western Himalaya and one from central Italy. The
mechanism arises from the interplay between creep,
strain softening and strain-rate sensitivity of snow,
which drive the growth of a basal shear fracture.
Our model demonstrates that earthquake-triggered
delayed avalanches are rare, yet possible, and could
lead to significant damage, especially in long milder
slopes. The generality of the model formulation opens
a new approach for exploring many other problems
related to natural slab avalanche release.

1. Introduction
That strong earthquakes can trigger snow avalanches
is well established [1], with current models predicting
immediate release after the seismic event [2–5].
Meanwhile, there have been a few documented examples
from Western Himalaya [6] of delayed avalanches
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Figure 1. Geographical background of the Rigopiano avalanche. (a) Locations of the epicenter of the 18 January 2017
earthquakes in the Abruzzo region, Italy, and of the Rigopiano hotel hit by the avalanche (image from Google Maps). (b) The
time (GMT) of the avalanche relative to seismic activity in the area, highlighting the longest possible delay of 6 h after the
strongest quake and shortest possible delay of½ h after the closest tremor passing the statistical bound ofMw > 3 described
by Podolskiy et al. [1]. The grey area in (a) highlights the uncertainty of the avalanche time. (Online version in colour.)

that were released minutes to hours after a quake. Non-seismic triggers in these cases were
considered unlikely [6], with no snowfall or strong winds occurring in the hours preceding the
release, although effects of temperature changes and strong radiation at high altitude cannot be
fully excluded. There has also been a debate on whether the deadly avalanche in Italy’s Abruzzo
region on January 2017 was primarily triggered by snowfalls or by the set of earlier earthquakes
[7], the last tremor being 30–50 min before the avalanche. Remarkably, however, in all the reliably
documented cases of delayed avalanches, the slopes of the release areas were consistently long,
flat and uncommonly mild (from 31 to 33°). Here, we report a general analytical model that
establishes the basic physical processes of possible delays in earthquake-induced avalanche
release. The main delay mechanism arises from the interplay between strain-rate dependency
of snow stiffness [8–10] and strain-rate sensitivity of snow strength [11–15], driving the growth of
a basal shear fracture.

The understanding and forecasting of snow avalanches is of major importance in natural-
hazard sciences [16]. Unfortunately, the origin of some avalanches cannot be reliably identified
or explained by existing snow-avalanche models, which are mostly not designed to capture
natural avalanche release. The ‘Rigopiano avalanche’ is one of those cases where the combination
of rare conditions inspires further thinking. This avalanche impacted Hotel Rigopiano on 18
January 2017, at the foothill of Monte Siella of Southern Italy’s Abruzzo region (figure 1a), and
literally swallowed the hotel, bulldozing its pieces 10 m down the mountain, killing 29 people
and injuring 11.

Two causal factors were attributed to instigate the avalanche. The first is the strong snowfall
and snowdrift in the release zone during the days preceding the avalanche. While we cannot
entirely neglect the role of snow accumulation, the likeliness that this has been a causal factor
may be questioned in the light of the lack of clear snowstorm-triggered avalanches on the slope
of the Rigopiano-avalanche release area. Specifically, at least for over more than 50 years, there has
been no record of avalanches of similar magnitude on that slope above the hotel [17], while the
region has reportedly experienced other strong snowstorms [18]. Furthermore, this slope (approx.
32°, figure 2a; see also the electronic supplementary material) could be regarded as rather mild
[2,4,16] with respect to the statistical data of human-triggered avalanches (figure 2d).

The second potential factor triggering the Rigopiano avalanche is the series of four major
quakes of magnitude Mw > 5 (figure 1b) that struck the region before the avalanche, all focused
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Figure 2. The slopes related to the three potential earthquake-induced avalanches. (a–c) The avalanche tracks for the
Rigopiano avalanche and Western Himalaya’s Drass and Chandan avalanche release zones, respectively (images from Google
Earth). Inset in (a): image of the avalanche track one month after the Rigopiano avalanche accident, showing the damages
caused to the Rigopiano hotel (extracted and adapted from [19]); with (1) release zone; (2) propagation zone; (3) run-out zone.
(d) Comparison between the slope angles in Rigopiano, Drass and Chandan against the statistics of human-triggered snow
avalanches by local skier perturbations (adapted from Schweizer & Jamieson [16]). (Online version in colour.)

10 km deep with epicentres just 40 km away (figure 1a). The last quake stronger than the statistical
bound of Mw = 3 (for epicentres under 150 km away) known to trigger avalanches in the past [1]
took place between about 30 and 50 min prior to the avalanche. However, this factor too cannot be
reconciled by existing snow-avalanche models, as none of them is able to explain possible delays
of avalanches after global seismic perturbations. (The previous attempts to explain delays after
local non-seismic perturbations, have led to incoherent paradoxical results [20,21], as discussed
in §5 below).

While the chance for the Rigopiano avalanche release can be considered very high even
without the earthquakes, this coincidence motivates another look at the unresolved problem of
the plausibility of delayed avalanche release. A lack of attention to the possibility of delays may
be attributed to the perceived scarcity of such events, which may be partially due to the absence
of precise avalanche time records. Nevertheless, over a period of 5 years starting from March
1995, several seismically induced delayed avalanches were identified in the Western Himalaya
[6], occasionally devastating lives. The documented delays range from seven minutes to six hours.
Strikingly, as highlighted in table 1, the only two documented avalanches, which passed the
statistical bound of Mw = 3 for nearby earthquakes, were released from equally long and mild
slopes (figure 2b–d). Remarkably, these events were not accompanied by any snowstorm on the
day before the avalanche. Therefore, these cases reinforce the plausibility that earthquakes may
trigger avalanches with a delay.
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Table 1. Examples for potential earthquake-induced delayed avalanches. Other cases in Western Himalaya (WH) can be found
in Singh & Ganju [6], but only those with confirmed delays are listed (slope angles and lengths cannot be found in Singh &
Ganju [6], and were established using Google Earth of exact location provided by the authors). Highlighted cases in grey pass
the statistical bound by Podolskiy [1].

avalanche earthquake

date location

delay since
last quake
(min)

days
without
storm

casualties,
injuries

slope
angle
(o)

slope
length
(m)

distance
(km)

magnitude,
Mw

04 Mar 1996 WH, Lagongama [6] 350 — 1, 2 400 4.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26 Jan 1999 WH, Chandan [6] 49 1 31 220 70 3.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 Jan 2000 WH, Drass Sector [6] 7 2 33 290 126 3.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21 Jan 2000 WH, Jawala area [6] 82 3 1, 2 23 500 410 3.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18 Jan 2017 Italy, Abruzzo region 40 0 29,11 32 250 40 4.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For these reasons, we develop the first model able to: (a) predict the delay of avalanches after
earthquakes; (b) explain why avalanches triggered by global seismic perturbations can develop
on milder slopes than those by local non-seismic perturbations; and (c) demonstrate why these
events are rather rare.

2. The mechanism

(a) Slab release mechanisms
Current snow avalanche models, typically ‘slab-release’ models, assume the presence of a
mechanically weak layer as a pre-requisite for an avalanche [2–5,22]. The onset of avalanches
is then taken to depend on the strength of the weak snow layer and the growth of cracks
in it. Where failure and crack growth in snow depend on competing internal relaxation
processes (e.g. slow sintering, bond damage and particle rearrangement), their effects should be
considered in slab-release models [23]. Already in the 1930s, Haefeli noted analogies between
soil and snow mechanics [24], and the fundamental work of Palmer & Rice [25] has later
inspired the development of snow-avalanche [2–5] and soil-landslide models [26,27] alike.
In the analysis of landslide mechanisms, slow relaxation processes have explained delayed
failures in slowly creeping sub-aerial landslides constrained by obstacles [28,29] and underwater
granular landslides [30]. It is, therefore, appealing to explore the delay of avalanches after
external perturbations as a function of rate-dependent properties of snow, including strain-
rate dependency of stiffness [8–10] and strain-rate sensitivity of strength [11–15]. Strain-rate
dependency of stiffness has been considered in analysing the response of a downstream stable
snowpack to dynamic loading by a gliding rigid avalanche slab [31] in old snow covers prone
to full-depth tensile cracks. On the other hand, whereas strain-rate sensitivity of peak shear
strength has been linked to slow ruptures of interfaces [32] and dynamic instabilities during
elementary tests in both shear [14,15] and compaction [11,33], this has not been reflected in current
slab-release models.

(b) Strain-rate dependency of shear strength of snow
The key property of snow allowing for the delay in the avalanche release is the rate-sensitivity
of the shear strength of the weak snow layer, which first increases with increasing strain rate
and then decreases upon a certain critical strain rate. Because of the very fragile nature of snow
material, which renders it difficult to handle, mechanical tests on snow samples are extremely
challenging to conduct. Tests in compression/extension show that snow exhibits strain-rate
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Figure 3. Strain-rate dependence of the peak shear stress of snow. (a) A dataset obtained from a single experiment over a
broad range of shear strain rates (after Kirchner et al. [15]). (b) Collation of other datasets from the available literature with
tests performed over different smaller ranges of strain rate. The dashed lines indicate themain trends. Note that for the earliest
dataset provided by McClung [34] the mean values with standard deviations are shown. (Online version in colour.)

hardening followed by strain-rate softening when increasing the strain rate (see, for instance, the
pioneering works of Kinosita [12] and Narita [13]). As compression tests are not deviator shear
stress-free, they generally support the transitional strain-rate hardening-to-softening scenario
for snow under shear. Furthermore, while studies on shear experiments remain scarce (see the
summary below) the available datasets clearly confirm that the strain-rate-dependent behaviour
observed in compression is also true for the shear strength of snow.

Figure 3 shows the evolution of the shear strength as a function of shear rate, relying on a rather
unique dataset [15] obtained over a broad range of strain rate in shear experiments (panel (a)), as
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Figure 4. The mechanism underlying the delayed release of earthquake-induced avalanches. (a) Geometry of the mechanism
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well as on the collation of datasets from other shear tests available in literature (panel (b)). The
data shown in figure 3b include tests on weak layers: depth hoar layer [14], surfaces hoar, faceted
crystals, depth hoar or a mixture of them [35] and buried surface hoar [36]. The data also include
tests on other types of snow: thin homogeneous snow samples [34], fine-grained snow [15,37] and
small rounded particles [38].

The rather unique dataset obtained over a broad range of strain rates (figure 3a) clearly shows
that strain-rate hardening first occurs at low shear rate (typically smaller than 10−4 s−1) and is
then followed by strain-rate softening at high shear rate (greater than 10−4 s−1). Compiling all
other data available in the literature obtained from shear tests conducted over narrower ranges
of strain rate (figure 3b) exhibits a rather large scatter, which can be attributed to variations in
testing conditions. More studies over a wider range of conditions are required to quantify the
transition from hardening to softening for different types of snow with different densities and
different temperatures. Nevertheless, the general trend observed in figure 3a can also be detected
in figure 3b. This type of the hardening-softening strain-rate dependency of the shear strength of
snow is the key feature of the delayed avalanche release mechanism proposed below.

(c) The mechanism of delayed avalanche release
The key mechanism behind our model, as summarized in figure 4, is the interplay between the
strain-rate dependency of stiffness of the creeping mass, strain softening of shear strength within
the process zone of the basal shear fracture and, most importantly, the strain-rate sensitivity of the
shear strength in the intact weak layer. This is novel for both avalanche and landslide analyses
and provides the critical ingredient for explaining the delayed-avalanche phenomenon.

The mechanism starts with an earthquake-induced initial ‘basal shear fracture’ of length
l0 within a pre-existing slope-parallel weak layer (figure 4a), where the snow softens to its
residual shear strength τr. Because of this, the unbalanced gravitational sliding force τg − τr > 0
in the ‘sliding snow slab’ loads the ‘creeping snow mass’, causing there strain-rate-dependent
deformation (figure 4c), which in turn drives the process zone of the basal shear fracture into
an ‘intact weak layer’. In order to maintain equilibrium, the softening of the shear strength in
the process zone is compensated by an increase in peak shear strength in the intact weak layer
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through rate-hardening (figure 4b). The slow growth of the basal shear fracture continues until it
reaches a critical strain rate, γ̇cr, from which point snow exhibits strain-rate softening (figure 3).
This critical strain rate determines the critical length lcr of the shear fracture, at which the peak
shear strength reaches its maximum possible value τp = τp,max in the intact weak layer. At this
moment, no additional resistance can be mobilized through rate-hardening, resulting in the loss
of equilibrium and catastrophic propagation of the shear fracture, leading to the release of the
avalanche.

In the absence of clear quantification of bond healing effects on τr within continuously sheared
weak layers, the rate dependence of τr is considered negligible to a first approximation. Second-
order extensions that take τr as rate dependent could be explored in the future, by applying
perpetual shear conditions that could be achieved experimentally using the ring shear device.
The detection of grain-scale healing would require, however, non-obstructive in situ observations
that may not be trivial, especially for natural snow. On the other hand, the effect of healing [39]
is already considered implicitly in the proposed model (see the following section) through the
relaxation time tr, which affects both the peak strength τp and creep. The compression behaviour
(figure 4c) of snow exhibits rate-dependent tendencies similar to the shear behaviour [14,15],
with very similar relaxation times [11–13]. Here, we are mainly interested in the pre-failure rate-
dependent behaviour of the creeping snow mass, because its yield stress is unlikely to be reached
before the intact weak layer mobilizes its maximum strength τp,max.

3. The model

(a) Problem formulation
In the following, a simplified rate-dependent slab release model is developed, which builds on
the mechanism with geometrical and rheological ingredients illustrated in figure 4. Specifically,
we assume a symmetric plane strain model of an infinite slope with angle α, where a slope-
parallel basal shear fracture of initial length l0 forms due to an earthquake in a buried weak
layer of thickness d at depth h (figure 4a). The origin of the x-axis is taken in the middle of the
initial shear fracture. We shall consider propagation of this shear fracture upslope and downslope
focusing on the downslope half of the problem. Initial conditions (before the appearance of the
initial shear fracture in the buried weak layer) at the depth h are: in the creeping snow mass, an
initial internal lateral pressure (σg); and in the shear fracture an initial shear stress (τg = ρgh sin α),
where ρ is snow density and the initial displacement (δg) resulting from the long-term decaying
creep in the weak layer under the constant initial shear stress τg. In the following, we adopt a
net value Δτ = τb − τg for the shear stress τb in the shear fracture, and the net values Δσ = σ − σg

and Δδ = δ − δg for the internal lateral pressure σ and displacement δ of the creeping snow mass,
respectively.

The fully softened shear fracture (where the strength has been reduced to its residual value,
τr, along its entire length, figure 4a,b) is flanked by an intact rate-hardening weak layer where
the softening has not yet started. Due to rate-dependent deformations within the rate-hardening
weak layer and in the creeping snow mass above it, the shear fracture will propagate parallel
to the slope until at a certain time tf after the earthquake it reaches a critical length lcr and
the propagation becomes catastrophic, releasing an avalanche. Here, the rate dependency is
accounted only for stiffness and peak strength but not for residual strength and is similar
for shear, downslope compression and uphill extension [10]. These pre-failure elements are
captured most effectively by employing the simple spring-dashpot-slider models in figure 5a,b
for the shear (τb) and normal (σ ) stresses, respectively. The stress response of these models is
given by the summation of a Newtonian dashpot resistance proportional to the strain rate, and
Hookean spring resistance proportional to the strain (until the yield stress is reached in the
sliding element). In this classical Kelvin–Voigt model, the creep decays under constant stress.
Unlike the more general Burgers model [10], the Kelvin–Voigt model neglects the possibility
of a limited instantaneously pure elastic response (insignificant for our problem as it involves
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Figure 5. Schematic presentation of pre-failure, rate-dependent constitutivemodels using rheological elements (the Hookean
spring, the Newtonian dashpot and the yield stress slider). (a) Kelvin–Voigt shear behaviour with rate-sensitive strength in the
intact weak layer; and (b) Kelvin–Voigt compressive behaviour in the creeping snowmass.

monotonically increasing loading and rather large accumulated deformations) yet avoids non-
decaying creep (inconsistent with long-term pre-failure behaviour of snow [10]). Note, that the
spring coefficients G and E in the Kelvin–Voigt models in figure 5a,b correspond to the so-called
delayed (or long-term) shear and Young’s moduli, and not to the instantaneously pure elastic
moduli.

While representing a simplification of the real snow behaviour, the models adequately capture
the primary phenomena governing the mechanism of delayed avalanche release in the absence of
the weak layer collapse [22], i.e. the strain-rate dependency of snow stiffness and the strain-rate
sensitivity of its shear strength. Upon shear failure, the snow rapidly loses its strength and the
shear stress reaches a rate-independent residual strength value (τr) (figure 4b). It is assumed that
this degradation (where the shear strength drops from peak τp to residual τr) occurs within a small
process zone whose length ω � l0 is at this stage neglected, but can also be explicitly incorporated
into analysis similar to the current rate-independent models [40,41].

The length of the shear fracture at time t is denoted as l(t) = 2|x0(t)|, where l(0) = l0. Neglecting
inertia forces for quasi-static viscosity driven fracture propagation, the equilibrium condition for
the creeping mass x < x0(t) is given as:

∂Δσ

∂x
= Δτ

h
; Δτ = τb − τg; Δσ = σ − σg. (3.1)

The pre-failure (γ ≤ γp) shear response of the weak layer can be described schematically using
the Kelvin–Voigt model in figure 5a, where for γ < γp and τ < τp,max:

Δτ = G
d

(Δδ + trΔδ̇); Δγ = Δδ

d
; Δδ = δ − δg; Δδ̇ = ∂Δδ

∂t
, (3.2)

where tr is the relaxation time for a quasi-static shearing; G is the delayed (long-term) shear
modulus and

δg = d
G

τg; τg = ρgh sin α, (3.3)

where δg is the initial displacement of the slab, resulting from the long-term decaying creep in the
pre-existing buried weak layer under the constant initial shear stress τg (before earthquake).

For γ = γp and τ < τp,max (which is the case for Δδ̇ < Δδ̇cr), the model reaches the peak strength
τp. The strain-rate dependency of the peak strength is described by a Bingham-type rheology ([12],
figures 4b and 5a):

τp(δ̇) = τp0

(
1 + tr

δp
Δδ̇

)
, for Δδ̇ < Δδ̇cr and δ = δp = γpd, (3.4)

where the delayed shear modulus G is related to failure parameters via

G
d

= τp0

δp
(3.5)
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Above a certain velocity Δδ̇cr, however, the rate dependency of the peak shear strength has a
cut-off given by its maximum value (figures 4b and 5a):

τp,max = τp0

(
1 + tr

δp
Δδ̇cr

)
= const., for Δδ̇ ≥ Δδ̇cr and δ ≤ δp, (3.6)

from which the critical displacement rate can be back-calculated as:

Δδ̇cr = δp

tr

(
τp,max

τp0
− 1

)
. (3.7)

The residual shear strength τr as well as parameters δp = γpd and δr = γrd are assumed here to
be rate independent.

The rate-dependent compression and extension in the creeping snow mass, which takes place,
respectively, down and upslope from the sliding slab (figures 4c and 5b), is assumed to have the
same relaxation time tr as in shear, which is consistent with the findings in [10]:

Δσ = E′ ∂

∂x
(Δδ + trΔδ̇); Δε = ∂Δδ

∂x
, (3.8)

where E′ = E/(1 − ν2) is the delayed plain strain modulus. Combining equations (3.2) and (3.8)
gives:

Δσ = E′d
G

∂Δτ

∂x
. (3.9)

(b) Stresses in the creeping snow slab
Differentiating equation (3.1) with respect to x and substituting equation (3.9) into it gives a
differential equation for lateral stresses:

∂2Δσ

∂X2 = Δσ ; X = x
le

; le =
√

E′hd
G

, (3.10)

where we introduced the normalized coordinate X = x/le and the characteristic length le.
Using the boundary conditions (zero stress changes at infinity and equilibrium of lateral

stresses at the boundary x0(t) between the creeping snow mass and the sliding snow slab in
figure 4a):

Δσ (−∞; t) = 0; Δσ (x0; t) = τr − τg

h
x0(t) = Δτr

h
x0(t), (3.11)

the following solution of equation (3.10) can be obtained:

Δσ (X; t) = Δτrle
h

X0(t)eX−X0(t), (3.12)

and from equation (3.1) it follows that

Δτ = ∂Δσ

∂X
h
le

= ΔτrX0(t)eX−X0(t). (3.13)

Equilibrium can be maintained only as long as the maximum shear stress does not exceed the
peak maximum strength ΔτrX0(t) ≤ Δτp,max which provides an expression for the critical length
for catastrophic shear fracture propagation:

lcr

2le
= −Δτp,max

Δτr
= τp,max − τg

τg − τr
, (3.14)

where the peak strength τp,max is given by equation (3.6).
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(c) Displacements in the creeping snowmass
Substituting the shear stress in equation (3.13) into constitutive equation (3.2) gives the equation
for the displacements in the creeping snow mass:

Δδ + trΔδ̇ = Δτrd
G

X0(t)eX−X0(t). (3.15)

Note that in spite of the moving boundary invading the creeping mass, the convective
derivatives can be neglected because the coordinate system is fixed in space and prior to being
invaded by the sliding snow slab the material points in the snow mass only experience small
displacements.

The boundary condition for the displacements of the creeping snow mass at the tip of the
shear fracture X0(t) is defined by the fact that in order to reach the residual strength τr in the
softened weak layer, the slip δr = γrd has to be achieved at the boundary of the sliding snow slab
(figure 4b). The boundary condition for the displacements at the boundary of the creeping snow
mass is defined by the fact, that in order to reach peak strength τp in the rate hardening layer,
the slip δp = γpd has to be achieved (figure 4b). This discontinuity of displacements across the
boundary X0(t) is a result of neglecting the length of the process zone of the basal shear fracture,
where the stress drops from τp to τr, and does not affect subsequent derivations.

The initial (post-earthquake) condition for displacements in the creeping snow mass follows
from neglecting instantaneously pure elastic response in the Kelvin–Voigt model:

Δδ(x, 0) = 0. (3.16)

The solution for equation (3.15) with the initial condition (3.16) depends on the coordinate of
the moving boundary X0(t), representing the tip of the shear fracture:

Δδ(X, T) = eX−T Δτrd
G

∫T

0
X0(t)et−X0(t)dt, (3.17)

where

T = t
tr

. (3.18)

(d) Criterion for the growth of the basal shear fracture
For the basal shear fracture to start growing beyond its initial length l0 = −2X0(0)le, the peak
strength τp has to be reached in the rate hardening intact weak layer at the tip of the shear fracture.
This takes place after at the onset time T0 when the slip at the tip reaches Δδ(X0(0), T0 ) = Δδp =
δp − δg:

Δδ(X0, T0) = eX0−T0
Δτrd

G

∫T0

0
X0(t)et−X0(t)dt = Δδp. (3.19)

The increase in displacement Δδ in time is caused by the rate-dependent deformation of the
creeping snow mass and underlying weak layer under the constant load corresponding to the
constant length of the shear fracture X0(T ≤ T0) = X0(0). Substitution of the X0(T) = X0(0) into
equation (3.19) produces

Δτrd
G

X0(0)(1 − e−T0 ) = Δδp. (3.20)

Therefore, since the initial length of the basal shear fracture is l0 = −2X0(0)le, the time t0 for the
onset of its growth can be determined

t0 = tr ln
l0

l0 − lg
; lg = 2le

k
; k = − Δτrd

GΔδp
= (τg − τr)d

(δp − δg)G
> 0, (3.21)

where we introduced the growth-triggering length lg and the stress ratio k.
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This gives the criterion for the growth of the shear fracture:

l0 > lg. (3.22)

If this condition is not satisfied, the slip at the tip of the shear fracture will never reach Δδp and
the shear facture will not grow beyond its initial length l0.

(e) The growth of the basal shear fracture
Subsequent growth of the shear fracture begins at the onset time T0, which after substitution
into equations (3.17) and (3.20) provides the initial condition for the subsequent evolution of
displacements in the creeping snow mass:

Δδ(X, T0) = ΔδpeX−X0(0). (3.23)

For this initial condition, the solution of equation (3.15) is given by

Δδ(X, T) = eX(T)−T

(
Δτrd

G

∫T

T0

X0(t)et−X0(t)dt + ΔδpeT0−X0(0)

)
. (3.24)

The time evolution of the normalized coordinate X0(T) can be found from the condition, that
in the rate hardening intact weak layer at the tip of the shear fracture the slip should remain
Δδ(X0, T) = Δδp:

Δδ(X0, T) = eX0(T)−T

(
Δτrd

G

∫T

T0

X0(t)et−X0(t)dt + ΔδpeT0−X0(0)

)
= Δδp. (3.25)

or

Δτrd
GΔδp

∫T

T0

X0(t)et−X0(t)dt = eT−X0(T) − eT0−X0(0), (3.26)

which after differentiation with respect to the normalized time T gives a differential equation for
X0(T), with k defined in equation (3.21):

− kX0 + dX0

dT
= 1. (3.27)

Using the initial condition (that the initial length l0 of the shear fracture is known and stays
constant until T0):

X0(T0) = X0(0) = − l0
2le

, (3.28)

which gives the following expression for X0(T):

X0(T) = ekT

(∫T

T0

e−ktdt − l0
2le

e−kT0

)
=
(

1
k

− l0
2le

)
ek(T−T0) − 1

k
. (3.29)

or in terms of the length of the basal shear fracture:

l(t) = l0 for t ≤ t0 = tr ln
l0

l0 − lg
; lg = 2le

k

and l(t) = (l0 − lg)ek(t−t0)/tr + lg for t > t0

⎫⎪⎬
⎪⎭ (3.30)

This length should be compared to the critical fracture length lcr for catastrophic avalanche
release, which can be obtained from equation (3.14), or other equilibrium, energy or fracture
mechanics based criteria [3–5,21,40,41].
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(f) Conditions for delayed avalanche failure
From equations (3.22) and (3.30), it follows that for the basal shear fracture to grow progressively
due to creep, the initial post-earthquake shear fracture length l0 has to exceed the growth-
triggering length lg but has to be smaller than the critical length lcr for catastrophic avalanche
release:

lcr > l0 > lg = 2le
k

= 2
δpG/d − τg

τg − τr

√
E′hd

G
. (3.31)

It follows that lcr > lg is a necessary condition for delayed avalanche failures. Using equations
(3.14), (3.31) and (3.5) this condition can be expressed as:

lcr

2le
= τp,max − τg

τg − τr
>

lg
2le

= 1
k

= δpG/d − τg

τg − τr
= τp0 − τg

τg − τr
. (3.32)

Inequality (3.32) is satisfied if
τp,max > τp0, (3.33)

which is always the case as is seen from equation (3.6).
It follows that the total time tf of delayed avalanche release after an earthquake can be

calculated from equations (3.30) and (3.21) as a sum of two terms, the time t0 of the onset shear
fracture propagation and the time interval Δtcr, during which the shear fracture grows until it
reaches the critical length lcr:

tf = t0 + Δtcr, (3.34)

where

t0 = tr ln
l0

l0 − lg
; Δtcr = tr

k
ln

lcr − lg
l0 − lg

; lg = 2le
k

. (3.35)

Note, that for stress ratios k � 1 the first term in equation (3.34) becomes t0 ∼ kΔtcr which is
considerably smaller than the second one Δtcr. Also note, that if the time of delayed failure tf is
known, the length of the initial shear fracture l0 can be back-calculated from equations (3.34) and
(3.35) providing an opportunity to study the evolution of this initial length under seismic loading.

(g) Parameters of the model
Following Gaume et al. [40], the model parameters can be defined using conventional snow
strength and stiffness relationships.

Gravitational shear and normal stresses acting on the weak layer plane:

τg = ρghΔ sin α; σn = ρghΔcosα. (3.36)

The peak and residual strength in the weak layer:

τp0 = c0 + τr; τp,max = cmax + τr; τr = σn tan ϕ; (3.37)

where ϕ is the angle of internal friction; c0 is the rate-independent component of the cohesion;
cmax is the maximum cohesion reached at the critical shear strain rate. In the post-peak regime, the
cohesion gradually drops to zero, as reflected in the above definition of the residual strength τr.

Substituting these expressions into equation (3.32), we obtain an expression for the stress ratio:

k = 1 − tan ϕ/ tan α

c0/τg − (1 − tan ϕ/ tan α)
. (3.38)

It follows that the critical growth-triggering length lg, which the initial shear fracture has to
exceed to trigger the delayed avalanche release, can be expressed as

lg
2le

= 1
k

= c0/τg

1 − tan ϕ/ tan α
− 1; le =

√
E′hd

G
. (3.39)
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According to equation (3.14), which is equivalent to the one presented in Gaume et al. [40], the
critical length of the shear fracture for catastrophic avalanche release is given by:

lcr

2le
= cmax/τg

1 − tan ϕ/ tan α
− 1 >

lg
2le

. (3.40)

From the typical parameter ranges presented by Gaume et al. [40], it can be deduced that
c0/τg ∼ 100, which upon substitution into equation (3.38) gives a quick assessment for the stress
ratio

k ≈ tan α/ tan ϕ − 1 (3.41)

4. Parametric and case studies

(a) The growth of the shear fracture and the total time of delayed release
Our new model enriches previous snow slab-release models with essential rheology,
acknowledging both the rate dependency of snow stiffness and the rate-sensitivity of its strength.
We follow the equilibrium approach, which has been adopted in fundamental modelling of
interfacial dynamics [32], and take the shear fracture as the driver of frictional motion. In doing
so, we arrived at solving three differential equations with closed-form analytic solutions for the
normal stress σ and displacement δin the creeping snow mass and, finally, for the growing length
l of the basal shear fracture. Specifically, the growth of this length with time, t, is given as

l(t) = (l0 − lg)ek(t−t0)/tr + lg

t0 = tr ln
l0

l0 − lg
,

⎫⎪⎬
⎪⎭ (4.1)

which depends on the relaxation time tr of snow, the time for the onset of fracture growth t0, and
two important physical quantities. The first is the stress ratio k,

k = τg − τr

τp0 − τg

τg = ρgh sin α,

⎫⎪⎬
⎪⎭ (4.2)

which depends on the residual shear strength τr, the snow peak strength at zero velocity τp0 and
the snow density ρ (g is the Earth’s gravitational acceleration). It follows that for an accelerating
growth of the basal shear fracture the gravitational shear stress τg has to be larger than the residual
strength τr but smaller than the peak strength τp0. Therefore, milder slopes α, for which τg is
smaller and k lower, exhibit slower growth of the shear fracture and are prone to longer avalanche
delays (figure 6a).

The second quantity is the critical growth-triggering length lg:

lg = 2le
k

le =
√

E′hd
G

,

⎫⎪⎪⎬
⎪⎪⎭ (4.3)

defined using the delayed plane strain modulus E′ = Esl/(1 − ν2
sl), with Esl and νsl being delayed

Young’s modulus and Poisson’s ratio of the snow slab, respectively; G = Gwl is the delayed shear
modulus in the intact weak layer. All these parameters are clearly defined and measurable [10].

Similar to rate-independent models, for immediate avalanche release, our mechanism requires
an initial shear fracture length longer than critical, l0 > lcr. For delayed avalanches, l0 has to be
larger than the critical growth-triggering length lg (lg < l0 < lcr). On the other hand, if l0 < lg, our
model predicts no fracture growth and only limited deformation, which overcome inconsistencies
of previous attempts (see §5).
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The relationship between the total time tf of delayed avalanche release and the length of the
initial shear fracture l0 is given by equations (3.34) and (3.35):

tf = tr ln
l0

l0 − lg
+ tr

k
ln

lcr − lg
l0 − lg

. (4.4)

The model parameters affecting this relationship can be calculated using equations (3.39)–
(3.41):

lcr = lg + 2le

(
1 + 1

k

)
s; lg = 2le

k
; k ≈ tan α/ tan ϕ − 1; s = cmax − c0

c0
. (4.5)

(b) Typical ranges of the model parameters
In order to evaluate the model parameters in equations (3.37), three properties of the snow are
essentially needed: the friction angle ϕ, the cohesion c and the length le. The latter depends on
Young’s modulus and Poisson’s ratio of the slab, the shear modulus of the weak layer, and the
slab and weak layer thicknesses.

It is difficult to determine precise values of the above snow properties for the cases considered
in the present study (the Rigopiano case in Italy and the Chandan and Drass cases in India)
because they were not measured. Note that this is often the case after avalanche events that took
place in non-surveyed mountain remote areas and/or during snowstorm weather conditions.
Moreover, snow properties are extremely variable even for a relatively well-documented single
event at one given site. In the following, we rather propose a broad range of realistic values for
each snowpack property above, guided by the existing literature about the mechanical properties
of snow.

(i) Friction angle

There have been some attempts to evaluate the internal friction angle of snow weak layers.
Detailed studies were recently conducted by Podolskiy et al. [42] who reported values of ϕ ranging
from 15° to 30°, and by Reiweger et al. [43] who arrived at a mean value of about 20° with
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values ranging from 12° to 28°. Note that the recent theoretical studies addressing the problem
of avalanche release used different values of friction angle of either 20° [41] or 30° [40]. For
their recent model for dynamic anticrack propagation in snow, Gaume et al. [22] have chosen
an intermediate friction coefficient of 0.5 (ϕ ≈ 26.5°). Acknowledging the variability of the friction
angle of snow, we considered a friction angleϕ ranging from 20° to 30°, in accordance with the
literature mentioned above.

(ii) Snow cohesion

The snow cohesion is reported to generally range from 0.5 to 2.5 kPa (see [40]) and relevant
references therein). Assuming that the maximum cohesion reached at the critical shear strain rate,
cmax, can be up to five times greater than the rate-independent component of the cohesion, c0, this
gives a typical range between 0.5 and 4 for the parameter s.

(iii) Characteristic length le

The characteristic length le is defined as le = √
E′hd/G, where E′ = Esl/(1 − ν2

sl) is the delayed plane
strain modulus of the snow in the slab; G = Gwl is the delayed shear modulus of the snow in the
weak layer. Expressing E′ as the delayed shear modulus of the snow in the slab: E′ = 2Gsl/(1 − νsl)
produces le =√

(Gsl/Gwl)(2hd/(1 − νslab)). By adopting a broad range of characteristic lengths
le between 0.1 and 3.0 m, we accommodate typical values of slab thickness h (from 0.5 to 5 m);
weak layer thickness d (from 0.5 to 5 cm); Poisson’s ratio of the slab νsl from 0.1 to 0.4 (defined
in [8,23,40]) and the ratio between the delayed shear moduli Gslab/Gwl ∼ 100 − 101 (assumed to
have a similar range as the ratio between elastic moduli [44–46]).

(iv) Relaxation time

Shinojima [10] measured relaxation times in quasi-static torsion, compression and elongation
tests. The times were similar in all the test types and varied between 40 s and 40 min,
approximately inversely proportional to the strain rate in the range. For the strain rates relevant
to our problem (i.e. below and around the critical shear strain rate of about 10−4 s−1 in figure 7),
the relaxation time of 1–10 min appeared to be an adequate choice.

(c) Parametric study and plausibility of delayed avalanches in India and Italy
The proposed mechanism can be used to demonstrate the plausibility of delayed avalanches, the
importance of mild and long slopes for such events, and the scarcity of delayed avalanches. With
respect to the plausibility, our model does not impose a theoretical upper bound for the longest
possible delay time for arbitrary conditions. Even in steep slopes (where stress ratio k is large),
there could be indefinitely long delays, if l0, caused by the external perturbation, is larger and
sufficiently close to lg. For mild slopes, with smaller k, significant delays are possible even for l0
being closer to lcr than to lg.

By considering a broad range of typical snow properties, the corresponding ranges of model
parameters estimated above can be summarized as:

le = 0.1 − 3.0 m; ϕ = 20◦ − 30◦; s = 0.5 − 4.0; tr = 1 − 10 min (4.6)

For these ranges and mild slopes (α = 31◦ − 33◦) of observed avalanches in Italy and India,
we back-calculate the length of the initial shear fracture l0 that could cause the recorded delay
times of tf = 5 − 50 min (figure 6c–f ). The resulting initial fracture lengths of l0 = 1 − 100 m appear
to be consistently smaller than the lengths of the potential avalanche initiation zones (reported
in table 1), and are thus geographically allowable. This is also consistent with previous results
[40,41] that in the absence of the weak layer collapse [22], in mild slopes with inclination close to
the friction angle, only long initial basal shear fractures can result in an avalanche. Local triggers
by skiers and explosions cannot generate such long fractures. By contrast, a global trigger like an
earthquake, with a relatively flat slope-parallel shear wavefront arriving from a large distance,
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Figure 7. Seismic parameters of earthquake-triggered avalanches. The figure is adopted from Podolskiy et al. [1].

can easily generate long shear fractures within a weak layer in a relatively uniform mild slope
(figure 6b). This is consistent with the observation that Italian and Indian avalanches took place
in mild long slopes between 31° and 33°.

This analysis also explains the rarity of the observed delays in avalanche release. Indeed,
such an event requires a combination of rare conditions, such as long mild slopes, thick snow
covers and an earthquake of sufficiently high intensity. Nevertheless, it is possible that there are
more delayed avalanches than reported due to the absence of precise avalanche time records.
Furthermore, in spite of this low probability of occurrence, the hazard of delayed avalanches
cannot be ignored due to potentially high damage.

(d) Effects of the earthquake magnitude and source-to-site distance
The proposed mechanism can also be used to understand effects of the earthquake intensity on the
plausibility of delayed avalanches. Podolskiy et al. [1], plotted observed seismic events that have
potentially caused avalanches (figure 7). The dark grey area in the plot with the magnitude Mw > 5
indicates events confirmed by witnesses, where the avalanche took place during or immediately
after the earthquake. The light grey area with the magnitude 3 < Mw < 4.5 and the epicentral
distance with the magnitude R < 250 km indicates seismic events whose link to the corresponding
avalanches has only been established statistically, without direct observations. The three delayed
avalanches investigated in this paper belong to this light grey range (table 1), suggesting that
in addition to the lack of direct observation, delayed release could be one of the reasons behind
the uncertainty when trying to link between an earthquake and subsequent avalanches. For the
avalanches outside of the two grey areas, no link to seismic events could be established.

Our mechanism provides a possible explanation why delayed avalanches occur after
earthquakes of moderate magnitude. Indeed, the length l0 of the initial fracture increases with
the increasing earthquake intensity, and for high magnitudes is likely to exceed the critical length
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lcr, causing an immediate avalanche release. By contrast, for lower magnitudes, the length l0
is likely to be smaller than the growth-triggering length lg, necessary for initiating the basal
fracture growth. It follows that delayed release is possible only in a certain intermediate range
of earthquake intensities, which is qualitatively consistent with the statistical study presented in
figure 7.

5. Summary and discussion

(a) Summary of the proposed mechanism
Our model quantifies the mechanical process of delayed release of earthquake-induced
avalanches in the following way:

1. Seismic loading creates an initial shear fracture of length l0 within an existing weak layer.
2. Appearance of this fracture will redistribute the forces in the sliding slab and will trigger

a Kelvin–Voigt type behaviour in the creeping snow mass and in the intact weak layer
outside of the shear fracture.

3. This Kelvin–Voigt creep is decaying and if the initial length l0 is smaller than the newly
defined growth-triggering length lg, this decaying creep will not generate sufficient
displacement to enable the fracture growth.

4. However, if l0 > lg, the same decaying creep will produce enough displacement in the
intact weak layer to trigger its visco-plastic response. At this moment t0, the shear fracture
starts growing with the rate of its growth being mainly controlled by the visco-plastic
rate-hardening of the weak layer.

5. If the shear strength was rate-independent, the propagation of the shear fracture would
become catastrophic already at t0. Instead, the rate-hardening allows for a slowly
accelerating growth of the shear fracture until a certain critical strain rate is reached in
the weak layer.

6. Upon this critical strain rate, the visco-plastic rate-hardening of the shear strength in the
weak layer switches to rate-softening. At this moment tf = t0 + Δtcr, the shear fracture
has reached its critical length lcr, which manifests the onset of its catastrophic propagation
leading to the avalanche release.

(b) Significance of adequate constitutive modelling
The few known attempts found in the literature to model viscous shear fracture growth in dry
snow did not provide reliable assessment of delays. The first attempt by McClung [20] was
made to explain the delay of avalanche release after explosions (by introducing time-dependent
elastic parameters into a time-independent fracture energy criterion), though this line of thought
has not been taken further. The result exhibits two significant inconsistencies: (1) shorter initial
shear fractures produce shorter delay times (with a minimum delay for zero initial shear fracture
length); (2) all shear fractures should grow irrespective of their initial length, thus implying
orders of magnitude more avalanches than observed with or without explosions. These paradoxes
originate from the use of non-decaying Maxwell creep employed for the snow mass and the rate-
independent rigid-plastic behaviour taken for the weak layer. In contrast to this model above,
our model is based on Kelvin–Voigt decaying creep and captures strain-rate hardening, thus
yielding a new expression for the critical length lg, below which no shear fracture can start
growing. In addition, we find consistently shorter delay times for longer initial shear fractures.
The second attempt was made by Bader & Salm [21] and focused on the dynamics of shear fracture
propagation in snow but they too employed oversimplified constitutive assumptions in the form
of Newtonian fluid with finite viscosity for the snow mass and zero viscosity for the basal shear
fracture. In using zero viscosity for the shear fracture, the continuity conditions declared for the
normal stresses and normal velocities could not be satisfied. A number of other significant flaws
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followed from the Newtonian fluid assumptions: (1) as criticized by Schweizer [23], their model
predicts thinner weak layers to be more prone to failure than thicker ones (with unlimited failure
of all shear fractures for infinitesimal thickness d → 0, irrespective of their initial length l0); (2)
probable shear fracture propagation for slopes milder than the snow’s friction angle; and finally
(3) indefinitely large displacements, even for very short initial fractures and very mild slopes.
Again, our model is clean from such flaws thanks to the use of self-consistent and more realistic
constitutive assumptions.

(c) Generality of the model formulation
The proposed model is not limited to earthquake-induced or delayed avalanches. The generality
of its formulation has enabled us to construct a most complete model of natural slab avalanche
releases. It is, therefore, proposed that with minimal constitutive refinements, our formulation
may dramatically improve our understanding of many other problems related to slab avalanches
and triggering processes.

6. Conclusion
In conclusion, our model demonstrates that delayed avalanches, while plausible, require a
combination of rare conditions, such as long mild slopes, thick snow covers and an earthquake of
sufficiently high intensity. Nevertheless, it is possible that there are more delayed avalanches than
reported due to the absence of precise avalanche time records. Furthermore, in spite of this low
probability of occurrence, the hazard of delayed avalanches cannot be ignored due to potentially
high damage.

Our basic physical model paves the path for better forecasting delayed snow avalanches,
and highlights the (previously ignored) risk of delays in milder slopes. In addition to the easily
accessible slope angles, a full forecast requires three lengths: the growth-triggering length lg, the
critical length lcr and the initial length l0 of the basal shear fracture. Where expressions for lg
and lcr were derived, they depend on a number of well-defined physical parameters varying
with temperature and density. By contrast, the way l0 depends on the earthquake magnitude
and snow conditions is a well-recognized uncertainty [1] and requires further work. However,
the framework proposed here provides a relation between the time of delay and the initial
fracture length. Accordingly, careful attention should be paid to registering the exact time of
future potentially earthquake-induced avalanches, as this would facilitate a better understanding
of the evolution of the initial basal shear fractures during seismic loading.
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