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Aim: Fetal growth restriction (FGR) is associated with a variety of cardiometabolic

diseases in adulthood which could involve remodeling processes of the vascular walls

that could start in the fetal period. However, there is no consensus whether this

remodeling affects in a similar way the whole vascular system.We aimed to determine the

effects of FGR on the vasoactive and biomechanical properties of umbilical and systemic

vessels in fetal guinea pigs.

Methods: FGRwas induced by implanting ameroid occluders at mid-gestation in uterine

arteries of pregnant guinea pigs, whilst the control group was exposed to simulated

surgery. At the term of gestation, systemic arteries (aorta, carotid and femoral) and

umbilical vessels were isolated to determine ex vivo contractile and biomechanical

responses (stretch-stress until rupture) on a wire myograph, as well as opening angle

and residual stresses. Histological characteristics in tissue samples were measured by

van Gieson staining.

Results: Aorta and femoral arteries from FGR showed an increased in biomechanical

markers of stiffness (p < 0.01), contractile capacity (p < 0.05) and relative media

thickness (p < 0.01), but a reduced internal diameter (p < 0.001), compared with

controls. There were no differences in the biomechanical properties of carotid and

umbilical from control and FGR fetuses, but FGR umbilical arteries had a decreased

contractile response to KCl (p < 0.05) along with a reduced relative media thickness

(p < 0.05).

Conclusion: Altogether, these changes in functional, mechanical and morphological

properties suggest that FGR is associated with a heterogeneous pro-constrictive
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vascular remodeling affecting mainly the lower body fetal arteries. These effects would

be set during a pathologic pregnancy in order to sustain the fetal blood redistribution

in the FGR and may persist up to adulthood increasing the risk of a cardiovascular

disease.

Keywords: biomechanical, fetal growth restriction (FGR), systemic vessels, umbilical arteries, vascular remodeling

INTRODUCTION

Fetal growth restriction (FGR) is a condition in neonates whose
birth weight is below the 10th percentile for its gestational age,
but in a comprehensive manner, represents any condition that
constraint or negatively alter fetal growth trajectory (Zhang et al.,
2010). FGR babies have at short term an increased perinatal
morbidity and mortality, whilst at long term these subjects
have an important impairment of their development and a
greater risk of developing cardiometabolic diseases at adulthood
(Barker, 2006; Hunter et al., 2016). It has been proposed that
the cardiovascular risk associated to FGR is a consequence of
morphological and functional alterations in the fetal arteries,
which would derive from the chronic blood flow redistribution
that takes place when nutrient and oxygen delivery to the fetus
is restricted (Harman and Baschat, 2003). Few studies have
analyzed the biomechanical characteristics of vessels derived
from fetuses affected by FGR, suggesting the presence of an
increased arterial stiffness resulting from increased collagen
content and remodeling of the arterial wall. These changes would
impair at short and long term the vascular structure and function
(Dodson et al., 2013, 2014). However, none of these studies
have addressed the relationship between the biomechanical and
vasoactive responses of different arteries derived from FGR
subjects.

Compelling data show that FGR babies have a pro-atherogenic
vascular structure, characterized by an increased aortic intima-
media thickness (Skilton et al., 2005) and stiffness (Dodson
et al., 2013), which seem to be permanent across the lifespan.
Comparable effects of FGR on aorta remodeling have been
reported in experimental models of FGR in sheep and guinea pigs
(Thompson et al., 2011; Dodson et al., 2014). However, there is
no clarity whether these structural alterations represent common
changes in the entire circulatory system or are territory-specific.
Moreover, different studies addressing the presence of vascular
remodeling in the carotid artery at birth (Crispi et al., 2012;
Morsing et al., 2014; Stergiotou et al., 2015), as well as at different
ages (Martin et al., 2000; Oren et al., 2004; Te Velde et al., 2004;
Bjarnegard et al., 2013), show no conclusive effects of FGR in
humans. A single study in carotid arteries from FGR fetal sheep
suggests that vascular remodeling at this level would be opposite
to the morpho-structural changes observed in the aorta (Dodson
et al., 2013, 2014). Nonetheless, there are no studies comparing
the impact of FGR on the structure and function of vessels from
different vascular beds and how these changes reflect the chronic
blood redistribution that occurs in the restricted fetuses.

Classical analysis of vascular alterations in pathological
conditions has been addressed using histological or ex vivo
functional specific approaches, which correlate in some extend

with the effects observed in vivo (Mulvany and Aalkjaer, 1990).
Similarly, analysis of the biomechanical properties of vessels
samples exposed to non-physiological forces has been extensively
used to unveil structural changes in the vascular tree occurring
in adult subjects with cardiovascular dysfunction (Weisbecker
et al., 2015). The present study aims to characterize the vascular
changes that take place in the FGR vasculature, by comparing
histological and biomechanical properties, as well as ex vivo
functional responses in carotid, aorta, umbilical and femoral
arteries from control and FGR fetuses. We hypothesized that
FGR has a differential effect on the biomechanical and structural
properties of the fetal aorta, carotid, femoral and umbilical
arteries and these heterogenous changes reflect the blood flow
redistribution occurring in this condition. Using a blind scheme
with the three complementary approaches, we aimed to provide
a comprehensive modeling of the structural changes in the FGR
circulatory system.

MATERIALS AND METHODS

Animals
All animal care, measurements, and experimental procedures
were approved by the Ethics Committee of the Faculty of
Medicine of the Pontificia Universidad Católica de Chile
(1130801) and the Universidad de Chile (protocol CBA N◦ 0694
FMUCH) and were conducted according to the Guide for
the Care and Use of Laboratory Animals published by the
US National Institutes of Health (NIH Publication No. 85–23,
revised 1996). These procedures were reported in accordance
with the ARRIVE guidelines (https://www.nc3rs.org.uk/arrive-
guidelines).

Fourteen adult female Pirbright White guinea pigs (Cavia
porcellus) were used for this study. All animals were housed in
individual cages under standard conditions (30–35% humidity,
20–21◦C and a 12:12-h light-dark cycle), with controlled food-
by-body weight intake with a commercial diet (LabDiet 5025,
Guinea Pigs, 20–30 g d−1) and alfalfa hay, plus water ad libitum.
Four-to five-month-old virgin sows in estrus were paired with a
fertile male for 2 days. After the mating period, the females were
individually housed with daily monitoring of body weight, food
intake, and water consumption. Pregnancy was confirmed with
ultrasonography at d 20–25, where the first day with the male was
considered day 0 of pregnancy (Term∼67 days).

Surgical FGR Induction
At day 35 of gestation, all pregnant sows were subjected to
aseptic surgery, randomly assigned to either sham-operated
(control) or progressive uterine artery occlusion (FGR) as
previously described (Herrera et al., 2016). Briefly, under
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general anesthesia (ketamine 60mg kg−1, xylazine 4mg kg−1

and Atropine 0.1mg kg−1, IM) an infra-umbilical midline
laparotomy was performed, exposing the gravid uterus. For the
FGR group, ameroid constrictors (COR-2.00-SS, NW Research
Instruments, Inc., USA) were placed bilaterally around the base
of each uterine artery. The abdominal wall and skin were then
sutured in layers with absorbable sutures (Vicryl 4/0, Ethicon,
USA). Finally, surgical staples (Auto SutureTM, Condivien,
Dominican Republic) were installed in the skin. As part of this
procedure, animals received analgesia (carprofen 4mg kg−1, SC)
and prophylactic antibiotic (20mg oxytetracycline kg−1, SC)
treatments. The skin staples were removed 7–8 days after surgery.
The control group underwent the same surgical, analgesic and
prophylactic procedures, but without placement of the ameroid
constrictors (sham-operated).

Euthanasia at Near-Term
At ∼90% of pregnancy, approximately 60–63 days of gestation,
the guinea pigs, and their fetuses were euthanized with amaternal
anesthetic overdose (Sodium Thiopentone 200mg kg−1, IP,
Opet, Laboratorio Chile). Once the cardio-respiratory arrest was
confirmed, the fetuses were extracted and their umbilical, aorta,
carotid and femoral vessels were carefully dissected.

Passive Response
Vessel segments of 2 mm of carotid, aorta, femoral and umbilical
arteries were mounted in a wire myograph (model 620M; Danish
Myo Technology A/S, Aarhus, Denmark), maintained at 37◦C in
Ca2+-free Krebs buffer (in mmol L−1: 118.5 NaCl, 25 NaHCO3,
4.7 KCl, 1.2 KH2PO4, 1.2 MgSO4, 5.5 D-glucose) with constant
bubbling (5% CO2 in air).

The passive response measurement consists in subjecting to
vessel segment to a radial elongation performed by hooks. During
the test, the load (F) and the displacement of the hooks (1) were
recorded (Bustos et al., 2016). The variables used were the initial
thickness (eo), the initial width (ao), the diameter of the hook (φ)
and the mean diameter of the artery (d). The initial length (1o)
was determined by:

1o =
π

2

[

d − (φ + eo)
]

(2.1)

Thus, it is possible to define the elongation considering the semi-
perimeter of the artery and the increase in separation of the
hooks:

λ = 1+ 2
(1 − 1o)

πd
(2.2)

Finally, the expression of the Cauchy stress in the arterial wall was
defined by:

σ =
F

2aoeo
λ (2.3)

To simplify the analysis and allow the comparison between
specimens, five parameters were summarize to represent the
passive mechanical response of the arterial wall, used in previous
works (Garcia-Herrera et al., 2012); the magnitude of the slope

at the beginning (E1) and at the end (E2) of the stress-stretch
curve, the stress at the elbow of the stress-stretch curve (σc) and
the stretch and stress at the breaking point (λR, σR) (Figure 1).

Active Response
Vessel segments of 2 mm of carotid, aorta, femoral and umbilical
arteries were dissected and mounted in a wire myograph
(model 620M; Danish Myo Technology A/S, Aarhus, Denmark),
maintained at 37◦C in Krebs buffer with constant bubbling
(5% CO2 in air, a gas mixture that delivered ∼100 mmHg of
oxygen in the buffer) (Wareing et al., 2006). Isometric force
was recorded using a PowerLab data acquisition hardware
(ADInstruments, Castle Hill, Australia) and LabChart software
(version 6; ADInstruments). After 30 min of equilibration,
vessel internal circumferences were determined by measuring
the maximal active force in response to KCl (65 mmol L−1)
as described (Krause et al., 2016). This method allows the
comparison between different vessels normalizing the vessel tone
to similar in vivo levels (Mulvany and Aalkjaer, 1990). Maximal
wall tension was determined by measuring the tension achieved
to increasing concentration of KCl (5–125 mmol L−1) and the
vessel length as previously described (Delaey et al., 2002).

Ring Opening Test
For the determination of residual stress in the different arteries
studied, opening angle measurements in vessels rings were
performed. The opening angle (Garcia-Herrera et al., 2016) is
used to measure the angle (α) subtended by the ends after making
a radial cut of a circular segment of the artery. Briefly, the ring

FIGURE 1 | Stress-stretch curve and mechanical parameters.

Schematic representation of the parameters displayed in experimental

stress-stretch curves; the stretch (λ, an index of deformation of the material),

the Cauchy stress (σ, measure of the internal forces per unit of area), the

rupture stretch (λr, represent the stretch at the breaking point), the rupture

stress (σr, represent the stress at the breaking point), the elbow stress (λc,
transition point between the elastic and stiff zone), the initial slope (E1,

represents the contribution of the elastin to the stiffness) and the final slope

(E2, associated mainly with the collagen fibers).
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was immersed in calcium-free Krebs at 37◦C ± 1◦C for about
5 min, and subsequently cut radially and photographed after
20 min. With this, the internal diameter is obtained from the
circumference that best fit the open ring and the mean thickness
was considered as the mean of 5 measurements of each sample.

Vessel Histology
After dissection, freshly isolated vessels segments of fetal carotid,
aorta, femoral and umbilical arteries were immersed in 4%
formaldehyde for 24 h and then washed in PBS 1× and embedded
in paraffin. Thereafter, sections were cut in 5 µm serial slides
and treated with Hematoxylin-eosin and van Gieson staining
procedures (Herrera et al., 2016). Histological sections of fetal
carotid, aorta, femoral and umbilical arteries were analyzed and
photographed at 10× or 40× with a microscope (Olympus
BX-41) coupled to a digital camera. Briefly, luminal, medial
and adventitial perimeters were measured for the estimation
of the internal and, external diameters. Further, luminal,
medial and adventitial areas were measured and the following
ratios calculated: luminal/vascular area and luminal/wall area
as indexes of vascular remodeling (Herrera et al., 2008). All
measurements were performed in 5 replicates and an average per
animal was calculated. The analysis of the microphotographs was
performed with the software Image Pro-Plus.

Statistical Analysis
Values are expressed as mean ± S.E.M., where n indicates the
number of animals per analyses. The different approaches were

carried out in independent laboratories with a blind scheme to
avoid bias. Data from isolated vessels reactivity were adjusted to
Boltzmann sigmoidal curves from which maximal responses and
potency (EC50) were obtained. All comparisons were analyzed
by ANOVA One way. Analyses were carried out with GraphPad
Prism 6.01 (GraphPad Software Inc., SanDiego, CA, USA), where
p ≤ 0.05 was considered the cut-off for statistical significance.

RESULTS

Biomechanical Properties and Residual
Stress in Systemic and Umbilical Arteries
from FGR Fetuses
In FGR aorta there was an increase in the initial slope
(15.490 ± 1.349 kPa) compared to control (5.246 ± 1.895 kPa)
(p = 0.003), but similar final slopes (control, 1041 ± 114 kPa;
FGR, 1363 ± 152 kPa, p = 0.10). The elbow of the experimental
curve was defined by the point [λ, 2.026; 146.15 kPa] for control
and [λ, 1.820; 102.46 kPa] for FGR, without differences in the
rupture points (λcontrol = 2.318, 527.6± 72.2 kPa; λFGR = 2.321,
512.6± 80.7 kPa, p= 0.89) (Figure 2A).

Carotid arteries from control and FGR showed comparable
initial (control, 6.43 ± 1.87 kPa; FGR, 10.590 ± 3.924 kPa,
p = 0.32) and final (control, 2178 ± 293 kPa; FGR, 1749 ± 288
kPa, p = 0.32) slopes. Similarly, the elbow of the experimental
curve ([λcontrol, 1.916; 176.39 kPa] [λFGR, 1.923; 129.13 kPa]) and
rupture points (λcontrol = 2.406; 1023 ± 117 kPa; λFGR = 2.499;

FIGURE 2 | Stress-stretch curves in systemic and umbilical arteries from guinea pig fetuses. Stress-stretch for (A) aorta, (B) common carotid, (C) umbilical,

and (D) femoral arteries from control (open circles, n = 7 different subjects) and FGR (solid circles, n = 6 different subjects) fetal guinea pigs until the first sample

rupture. Values were expressed as Mean ± SEM. *p < 0.05, t-test.
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898 ± 190 kPa) were comparable between control and FGR
carotid arteries (Figure 2B).

There were no differences in the initial (control, 4.289± 1.065
kPa; FGR, 4.012 ± 1.013 kPa, p = 0.85) and final (control,
502.3 ± 40.9 kPa; FGR, 548.2 ± 57.86 kPa, p = 0.54)
slopes between control and FGR umbilical arteries (Figure 2C).
However, point to point comparison showed a lower Cauchy
stress at high stretch conditions (p < 0.05) in FGR arteries. The
elbow of the experimental curve was defined by the point [λ,
1.716; 41.50 kPa] for control and [λ, 1.868; 39.54 kPa] for FGR,
whilst rupture points were similar between control (λ = 2.184,
225.3 ± 10.33 kPa) and FGR (λ = 2.31, 206.1 ± 24.64 kPa)
umbilical arteries.

Contrariwise, FGR femoral arteries showed a higher initial
slope (32.19 ± 5.31 kPa) compared with control (6.43 ± 1.87
kPa) (p = 0.002) without differences in the final slope (control,
1217 ± 123 kPa; FGR, 1439 ± 159 kPa, p = 0.34). The elbow
of the experimental curve was defined by the point [λ, 1.966;
114.80 kPa] for control and [λ, 1.699; 106.07 kPa] for FGR.
Rupture points were comparable between control (λ = 2.552;
652 ± 85 kPa) and FGR (λ = 2.305; 638 ± 59 kPa) femoral
arteries (p= 0.90) (Figure 2D).

In the opening ring test, there were an increase in the opening
angle in the FGR aorta (+55.63%) and carotid (+17.65%)
arteries, but a decrease in umbilical (−16.40%) and femoral
(−25.16%) arteries compared with the control group (Table 1).

Ex vivo Constrictor Responses in Systemic
and Umbilical Arteries from FGR Fetuses
Aorta, carotid and femoral arteries (Figures 3A,B,D) from FGR
showed a decrease of 13, 35, and 25% in the optimal diameter,
respectively, compared with their control counterparts, whilst no
differences in the optimal diameter were observed in umbilical
arteries (Figure 3C).

Conversely, FGR aorta showed a 3.7-fold increase in the
maximal tension in response to KCl (0.8± 0.1 Nm−2) compared
with controls (0.2 ± 0.1 N m−2) (Figure 4A), an effect also
observed in FGR femoral arteries (Figure 4D) (FGR, 5.4 ± 0.7
N m−2 vs. controls, 2.2 ± 0.2 N m−2). The increased response
to KCl in FGR aorta and femoral arteries were evident from
concentrations of KCl above 50 mM. In contrast, vasoactive
constriction in response to KCl was comparable between
control and FGR in carotid arteries with a maximal tension of
∼1.2 N m−2 (Figure 4B). Furthermore, FGR umbilical arteries
(Figure 4C) showed a lower KCl-induced constriction relative
to controls (FGR, 2.2 ± 0.4 N m−2 vs. controls, 3.9 ± 0.5
N m−2), a difference observed at elevated KCl concentrations
(>50mmol L−1).

Histology of Systemic and Umbilical
Arteries from FGR Fetuses
Morphometry of vessel samples showed a decreased area of
the intima (∼30%) and adventitia (∼35%) but an increased
media (∼15%) in FGR aorta relative to control arteries. Vascular
dimensions were similar for the carotid arteries from control
and FGR fetuses. In contrast, there was a decrease in the media

TABLE 1 | Opening angle measurements for arteries from control and FGR

fetuses.

Control FGR p

Carotid (α, ◦) 86.10 ± 4.01 101.30 ± 6.86 0.0567

Aorta (α, ◦) 55.74 ± 3.03 86.75 ± 4.16 0.0003

Umbilical (α, ◦) 86.02 ± 5.26 71.91 ± 3.25 0.0497

Femoral (α, ◦) 135.10 ± 4.72 101.10 ± 3.57 0.0001

Values expressed as Mean ± SEM, t-test. Results with significant statistical differences

are indicated in bold.

(∼15%) and an increase in the area of the adventitia (∼35%)
compared with control samples in FGR umbilical arteries.
Conversely, FGR femoral arteries showed a decreased in the
intima (∼30%) and adventitia (∼25%) but an increase in the
media (∼30%) (Table 2).

DISCUSSION

In this work, we studied and compared the changes in the
mechanical, functional and structural properties of the aorta,
carotid, umbilical and femoral arteries from guinea pig fetuses
affected by fetal growth restriction. The biomechanical test
showed a normal response to stretch in carotid and umbilical
arteries from FGR, however, there was an increased stiffness in
the aorta and femoral arteries characterized mainly by higher
initial Cauchy stress slope. These biomechanical properties were
associated with a normal morphology and response to KCl in
carotid arteries, as well as a decreased in the relative media
thickness and contractile response to KCl in FGR umbilical
arteries. In contrast, the increased biomechanical stiffness in
the aorta and femoral arteries from FGR correlated with an
increase in the relative intima-media area and KCl-induced
constriction. These comparable changes in mechanical, ex vivo
and morphological properties of the studied arteries suggest that
FGR is associated with a heterogeneous vascular remodeling
affecting mainly to the lower body fetal arteries.

Effect of FGR on Aorta and Femoral
Arteries
Several studies have addressed the short and long term effects
of FGR on vascular function and structure, supporting the
notion that an impaired intrauterine growth leads to increasing
cardiovascular risk later in life. A study on young adults shows
that subjects born with FGR have a decreased internal diameter
and increased stiffness in the ascending aorta (Bjarnegard et al.,
2013). In this context, data from hypoxia-induced FGR in guinea
pigs demonstrate the presence of vascular remodeling in the
aorta of adult animals (Thompson et al., 2011). Similar changes
in the in vivo structural and biomechanical properties of the
aorta have been reported in children born with FGR (Bradley
et al., 2010; Zanardo et al., 2011) suggesting that this altered
vascular structure has an early onset. In this study, using a
guinea pig model of FGR, we found that the aorta and femoral
arteries from FGR subjects have a stiffened response to stress-
stretch, along with an increased contractile capacity and reduced
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FIGURE 3 | Optimal diameter in systemic and umbilical arteries from guinea pig fetuses. Optimal diameter determined by measuring the maximal active force

in response to KCl in (A) aorta, (B) common carotid, (C) umbilical, and (D) femoral arteries from control (open bars, n = 7 different subjects) and FGR (solid bars, n =

6 different subjects) fetal guinea pigs. Values were expressed as Mean ± SEM. **p < 0.01, ***p < 0.001 t-test.

FIGURE 4 | Ex vivo contractile response to KCl in systemic and umbilical arteries from guinea pig fetuses. Concentration-response curves in response to

KCl from (A) aorta, (B) common carotid, (C) umbilical, and (D) femoral arteries from control (open bars, n = 7 different subjects) and FGR (solid bars, n = 6 different

subjects) fetal guinea pigs. Values were expressed as Mean ± SEM. *p < 0.05, **p < 0.01 vs. control, ANOVA.

internal diameter which were associated to remodeling traits.
A comparable study in fetal sheep show similar changes in
the biomechanical properties of the aorta from FGR, however,

those changes were not paralleled by modifications in the vessel
morphology and no data regarding the vasocontractile response
is provided (Dodson et al., 2014). Compelling evidence in
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TABLE 2 | Histological properties of systemic and umbilical arteries.

Control FGR p

Carotid Intima (%) 7.42 ± 0.25 8.00 ± 0.25 0.1619

Media (%) 56.07 ± 1.70 59.67 ± 1.02 0.1195

Adventitia (%) 36.51 ± 1.87 32.33 ± 1.15 0.1061

Aorta Intima (%) 7.48 ± 0.31 5.26 ± 0.41 0.0210

Media (%) 72.52 ± 0.37 82.00 ± 0.27 0.0004

Adventitia (%) 20.00 ± 0.50 12.74 ± 0.68 0.0053

Umbilical Intima (%) 2.01 ± 0.34 1.43 ± 0.16 0.1613

Media (%) 72.31 ± 2.24 63.74 ± 1.97 0.0207

Adventitia (%) 25.68 ± 1.94 34.82 ± 1.22 0.0040

Femoral Intima (%) 11.92 ± 0.42 7.99 ± 0.83 0.0063

Media (%) 47.72 ± 3.61 62.92 ± 2.47 0.0089

Adventitia (%) 40.36 ± 3.47 29.09 ± 1.75 0.0174

Values expressed as Mean ± SEM, t-test. Results with significant statistical differences

are indicated in bold.

humans show that FGR is associated with an increased aortic
intima-media thickness and decreased internal diameter (Skilton
et al., 2005; Koklu et al., 2007; Visentin et al., 2013; Zanardo et al.,
2013; Stergiotou et al., 2015) which can be evidenced even in
utero (Cosmi et al., 2009; Gomez-Roig et al., 2015). Interestingly,
the increase in aortic intima-media thickness in human FGR
is associated with an increase in the umbilical artery pulsatility
index (Cruz-Lemini et al., 2014) an effect also observed in this
model (Herrera et al., 2016). It is worth to note that, changes
in biomechanical properties of FGR aorta and femoral arteries
in this study were not completely comparable. In FGR aorta the
most significant changes occurred in the maximal contractile
response (4-fold higher than control) and residual stress (50%
increase), whilst in femoral arteries there was a reduction in the
residual stress but a substantial increase in the Cauchy stress slope
(5-fold higher than control) which could be due to the different
nature of these arteries. Altogether, this data suggests that FGR
is associated with an early pro-constrictive vascular remodeling,
affecting conduit and peripheral arteries which could contribute
to cardiovascular diseases later in life.

Effect of FGR on Carotid and Umbilical
Arteries
Considering that carotid artery intima-media thickness has been
extensively used as a prognostic tool for cardiovascular disease,
several studies have attempted to determine a relationship
between born with FGR and structural alterations in the carotid
artery. Notably, studies in adults show no changes in the intima-
media thickness and biomechanical properties in the common
carotid artery from subjects born FGR (Oren et al., 2004; Te
Velde et al., 2004; Bjarnegard et al., 2013) or with a reduced birth
weight (Painter et al., 2007). Furthermore, studies in children
and neonates born with FGR show no conclusive data regarding
modifications in the carotid artery structure or biomechanical
properties (Martin et al., 2000; Crispi et al., 2012; Morsing et al.,

2014; Stergiotou et al., 2015). In this study, we found a decrease in
the internal diameter of FGR carotid arteries, however, there were
no changes in the biomechanical, contractile and morphological
properties of these arteries compared with control. Conversely, it
has been reported in growth-restricted fetal sheep a decrease in
the carotid artery intima-media thickness and increased internal
diameter and Cauchy stress (Dodson et al., 2013). In spite of the
differences in both studies, it has been extensively reported that
FGR is associated with a preserved, or even favored, blood flow
to the brain (Giussani, 2016), which would be accompanied by
permissive biomechanical properties in carotid arteries.

Interestingly, FGR umbilical arteries show counterintuitive
changes in their biomechanical and morphology properties.
It is well established that, in humans, an increased placental
vascular resistance occurs in FGR which is commonly expressed
as an increased umbilical artery pulsatility and resistance index.
Nonetheless, several studies show that this increased vascular
tone is associated with a reduction in the umbilical artery wall
thickness (Bruch et al., 1997; Yoshimatsu et al., 2006; Burkhardt
et al., 2009; Sharony et al., 2016) and maximal contractile
force in response to KCl (Krause et al., 2013). Therefore, the
increase in umbilical artery pulsatility and resistance index
mainly represents downstream placental vascular resistance,
which correlates with FGR and multisystem effects of placental
deficiency (Harman and Baschat, 2003). In the present study,
there were no significant differences in the Cauchy stress curves
between control and FGR guinea pig umbilical arteries; however,
there was a substantial decrease in the residual stress and intima-
media area which translated into a decreased maximal contractile
response. These changes in the umbilical artery could result from
an increased proliferation but a reduce the size of smooth muscle
cells (Yoshimatsu et al., 2006) as well as lower relative content
and less organized elastin (Dodson et al., 2013).

Integrating the Vascular Remodeling in the
FGR
It is widely accepted that asymmetric FGR is accompanied by
a blood flow redistribution toward the upper body in order
to maintain brain nutrient and oxygen supply, a term named
brain sparing (Giussani, 2016). It has been proposed that
this redistribution would occur accompanied by a conserved,
or even permissive, vascular function in arteries that feed
cerebral circulation, such as carotid arteries, and an increased
resistance in peripheral arteries from the lower body, such as
femoral arteries. However, in vivo studies in animal models of
impaired fetal growth conditions show heterogeneous effects
on blood flow redistribution to the lower body (Poudel et al.,
2015; Allison et al., 2016) suggesting the need for further
evidence. In this study, using a guinea pig model of asymmetric
FGR we found a differential effect of an impaired placental
function on the biomechanical and morphology properties
of systemic fetal arteries feeding the upper and lower body.
However, permissive remodeling was also observed in umbilical
arteries (a lower body vascular bed), suggesting that a vascular
remodeling favoring prefusion would occur in other organs
that show a preserved growth in FGR. It is worth to note
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that the characterization made in this report gives a reasonable
approximation of the pathological mechanical and vasoactive
behavior of these vascular beds, but we cannot quantify the
functional consequences. Nonetheless, we recently reported that
in this animal model there is a reduced vasodilatory response
to acetylcholine, a sign of endothelial dysfunction in aorta,
femoral and umbilical arteries (Herrera et al., 2017), such as
have been reported elsewhere. Future studies must take into
account the active response considering changes in the vascular
tone, in addition to detailed analysis of the microstructure,
providing phenotyping of the different cell types. Nonetheless,
altogether this data suggests that FGR leads to a differential
artery remodeling which would privilege cerebral and placental
circulation and established a pro-constrictive biomechanical and
vasoactive behavior in the peripheral circulation.
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