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Objective. To screen the differentially expressed miRNAs (DEMs) and the differentially expressed gene mRNAs (DEGs) in lung
adenocarcinoma (LUAD) from the TCGA database and to explore the relationship between miRNAs and the prognosis of lung
adenocarcinoma and their biological functions. Methods. (e RNA-seq and miRNA-seq data of lung adenocarcinoma samples
were downloaded from the TCGA database for analysis, and the R program was used to screen for differentially expressed
miRNAs and mRNAs. (en, the molecular functions, biological processes, cellular components, and signaling pathways involved
in the occurrence and development of LUAD were analyzed using the functional accumulation analysis software of GSEA. (e
relationship between the integrated differentially expressed RNAs was analyzed by miRcode, TargetScan, and miRTarbase
databases, and the miRNA-mRNA network was constructed. Result. A total of 516 differentially expressed miRNAs and 5464
differentially expressed mRNAs were identified in LUAD.(e GSEA enrichment analysis showed that miRNAs and mRNAs were
mainly enriched in extracellular structure organization, external encapsulating structure organization, extracellular matrix
organization, and gated channel activity.(ey were mainly involved in neuroactive ligand-receptor interaction signaling pathway.
Some miRNAs and mRNAs in clustering modules were found to be associated with the prognosis of LUAD. Four targeting
networks consisting of 22 miRNAs and 531 mRNAs were constructed. Conclusion. (e miRNA and mRNA related to the
prognosis of LUAD were screened out, which provided a valuable preliminary basis for the follow-upin-depth clinical research
and basic experimental research of LUAD.

1. Introduction

LUAD is one of the most common malignancies with high
morbidity and mortality worldwide [1]. Lung cancer is
histologically divided into SCLC and NSCLC, the latter
accounting for approximately 85% of total cases [2]. LUAD
and LUSC are the two most common subtypes of NSCLC.
(e most common predominant histological subtype of
LUAD is papillary (37%), followed by alveolar (30%), solid
(25%), and fine bronchoalveolar (7%) carcinomas, but not
pure [3]. (e lung’s adenocarcinoma can be classified
according to the malignancy of the disease and the extent of
the lesion as preinfiltrative, microinfiltrative, and invasive

adenocarcinoma, with preinfiltrative lesions classified as
atypical adenomatous hyperplasia and adenocarcinoma
in situ [4]. (e lungs are the most important sites of gas
exchange in the body, and the alveoli are densely packed
with capillaries that expel carbon dioxide and take in oxygen
[5]. Tissue cells in the lungs may undergo DNA damage if
they are exposed to carcinogens inhaled with the air, and
although human tissues have the ability to repair themselves,
the risk of cellular carcinogenesis increases significantly if
the DNA damage is long-term and repeated [6]. Lung ad-
enocarcinoma is the uncontrolled malignant proliferation of
genetically mutated cancer cells in the lung, which invade
adjacent normal tissues and form cancerous lesions [7].
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Moreover, the rich vascularity of the lung facilitates the
dissemination of cancer cells to the whole body through
blood circulation. Hence, patients with advanced lung
cancer are often accompanied by multiorgan metastases [8].
To date, the most important known lung carcinogenic factor
is cigarette smoke, including active smoking or secondhand
smoke exposure [9]. Risk factors that are clinically relevant
to the development of lung adenocarcinoma are as follows:
female, middle-aged and elderly population over 40 years of
age, long-term heavy smoking, long-term exposure to heavy
air pollution, family history, risk of occupational exposure,
and concomitant chronic respiratory disease [10].

(e oncogenic process of LUAD is a multistage and
multigene process, involving the activation of oncogenes and
inactivation of oncogenes [11]. Its treatment has changed
considerably in recent years as a result of a better un-
derstanding of the biological mechanisms and the imple-
mentation of molecular and clinical biomarkers to guide
clinical decisions. Despite advances in the treatment of
LUAD, including surgical resection, chemotherapy, and
immunotherapy, the prognosis of advanced LUAD remains
poor, especially in patients with metastatic diseases [12]. (e
clinical presentation of the tumor is closely related to its
stage and grading. (e tumor, lymph node, and metastasis
(TNM) staging system provides a method for assessing
cancer status and predicting prognosis, and it is widely used
in clinical practice [13]. (erefore, exploring the target
molecules associated with TNM staging is important for the
diagnosis and treatment of LUAD [14, 15].

GO is a database created by the Gene Ontology Con-
sortium to establish a semantic vocabulary standard for
qualifying and describing gene and protein functions that is
applicable to a wide range of species [16] and can be updated
as research progresses [17]. KEGG is a functional enrich-
ment, i.e., a set of genes (multiple genes) that may be sig-
nificantly concentrated in which functions, or arguably, in
which pathways. Similar pathway databases are wikipath-
way, reactome, etc. (e large public transcriptome database
provides a valuable resource for the analysis of genome-wide
coexpression networks, the screening of tumor markers
associated with prognosis and phenotype, and the study of
the molecular mechanisms of pathogenesis [18]. R package
for weighted correlation network analysis (WGCNA) is
a systems biology approach for describing correlation pat-
terns between genes by microarray samples [19].

Currently available LUAD markers do not have suffi-
cient predictive power. Most of the current methods are
invasive. (erefore, we reanalyzed the TCGA dataset to find
new biomarkers that are closely related to the patient TMN
stage, survival rate, and other prognosis.

In this study, we downloaded raw expression data from
LUAD RNA high-throughput sequencing (RNA-HTSeq)
from TCGA and analyzed DEGs and DEMs between LUAD
patients and normal lung gland tissues. (e WGCNA ap-
proach based on DEG identified important gene coex-
pression modules and genes associated with TNM staging.
GO and KEGG enrichment analyses were performed to
analyze the functional genes and cellular signaling pathways
involved. In addition, modular gene networks were

constructed, and hub genes associated with TNM staging
were identified by Cytoscape software. (e relationship
between hub genes and survival was analyzed. Four target
networks consisting of 22 miRNAs and 531 mRNAs were
constructed, which may be related to the development and
clinical features of LUAD, laying a theoretical foundation for
further research and discovery of new target biomarkers
for LUAD.

2. Materials and Methods

2.1. Workflow. (e workflow chart of all experimental
contents in this study is shown in Figure 1. Firstly, we
downloaded the dataset of LUAD experimental group and
normal control group samples needed for the study from
TCGA database, screened out DEMs and DEGs, and did the
analysis in terms of differentially expressed miRNAs, mo-
lecular functions of mRNAs and upstream and downstream
signaling pathways involved. Hub gene is often an important
action target, and a research hotspot can be constructed with
the coexpression of the interactions network, and then based
on Hub gene is often an important target and research
hotspot. (en, DEMs and DEGs are distinguished into
different modules to assess whether there is a positive or
negative regulatory relationship between modules and be-
tween modules and tumor malignancy degrees. (e tar-
geting network relationship between miRNAs and mRNAs
was mapped.

2.2. Data Collection and Preprocessing. RNA-HTSeq and
clinical information data of LUAD patients were down-
loaded from (e Cancer Genome Atlas (TCGA, https://
cancergenome.nih.gov/). After the removal of duplicate and
no clinically informative samples, miRNA data sample
profiles are as follows: 470 cancer samples and 44 normal
samples, while mRNA data sample profiles are as follows:
477 cancer samples and 53 normal samples. RNA-seq data
were generated by Illumina HiSeq platform. Read counts
were used to indicate gene expression levels [20]. Data were
processed using RStudio software (v1.1.463, Boston, USA)
and in accordance with TCGA policies on human subject
protection and data access.

2.3. Identification of DEMs and DEGs. (e R package edgeR
is used to demonstrate DEMs and DEGs between tumor and
normal samples [21]. After the p-value is obtained, multiple
hypothesis test correction is performed, and the threshold of
the p-value is determined by controlling the FDR (false
discovery rate). At the same time, we calculated the fold of
differential expression according to the FPKM value, i.e.,
fold-change. (e screening indicators for this analysis were
p-value <0.05, log2FC> 1 or <-1.

2.4. GSEA Functional Enrichment Analysis. GSEA version
2.2.2 software was used for functional enrichment analysis.
(e miRNAs were divided into high and low expression
groups according to their target molecule mRNA expression,
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and each expression group was enriched by the GSEA
software for the Kyoto encyclopedia of genes and genomes
(KEGG) signaling pathway analysis. (e gene enrichment
analysis was performed by default weighted enrichment
statistics, and the number of random combinations was set
to 1000. Gene sets with false discovery rate (FDR)< 0.25
were considered significantly enriched gene sets in GSEA.

2.5. WGCNA Analysis. (e weighted gene coexpression
network analysis is a systems biology method used to de-
scribe gene association patterns between different samples,
which can be used to identify gene sets with high covariation,
and it is based on the interconnectivity of gene sets and the
relationship between gene sets and phenotypes. (e asso-
ciation identifies candidate biomarker genes or therapeutic
targets. WGCNA can be used to identify the cluster modules
of highly correlated genes for summarizing such clusters
using module signature genes (ME) or hub genes within the
modules, correlating modules to each other and to external
sample features (e.g., TNM staging), and using to calculate
module membership metrics. WGCNA is divided into two
parts: expression cluster analysis and phenotype association,
which mainly include the following four steps: the calcu-
lation of correlation coefficient between genes, de-
termination of gene modules, coexpression network, and
association between modules and traits. (e first step is to
calculate the correlation coefficient (Person Coefficient)
between any two genes. To measure whether two genes have
similar expression patterns, it is generally necessary to set
a threshold for screening, and those above the threshold are
considered to be similar. In WGCNA analysis, the weighted
value of the correlation coefficient is used, i.e., the gene
correlation coefficient is taken to the power of N, so that the
connection between the genes in the network obeys the
scale-free network distribution. (is algorithm has more
biological significance. (e second step is to construct
a hierarchical clustering tree through the correlation co-
efficient between genes. Different branches of the clustering
tree represent different gene modules, and different colors
represent different modules. Based on the weighted corre-
lation coefficients of genes, the genes are classified according

to their expression patterns, and genes with similar patterns
are grouped into a module. In this way, genes can be divided
into dozens of modules by gene expression patterns, which is
a process of extracting and summarizing information.

2.6.Differential ExpressionmiRNAGeneTargetingPrediction.
(e so-called seed sequence (2nd–7th nt) located at the 5′ end
of the miRNA can form Watson-Crick pairing with the 3′
UTR of the target gene. It is the most important factor in the
prediction of all miRNA target genes. MiRNA inhibits target
gene expression at the post-transcriptional level through
partial complementary pairing with the mRNA of the target
gene. Studies have shown that miRNAs are involved in
various biological processes, including cell proliferation,
apoptosis, differentiation metabolism, development, and
tumor metastasis, among other biological processes.

MiRanda it is the first miRNA target gene prediction
software. Its screening of 3′ UTR is mainly based on se-
quence matching, thermal stability of miRNA and mRNA
duplexes, and cross-species conservation of target sites. (e
scope of application is wide. For potential hybridization
sites, miRanda also gives scores. MiRanda selects the top 10
genes in the relative 3′UTR of each miRNA as the candidate
target genes for miRNAs. For multiple miRNAs corre-
sponding to the same target site, miRanda selects the pair
with the highest score and lowest free energy. (e coex-
pression network relationship map was drawn.

3. Result

3.1. LUAD DEMs and DEGs Screened from the GEO-TCGA
Database. (e transcriptome data of 470 cases of miRNA
cancer samples and 44 cases of normal samples were
downloaded from GEO and TCGA databases, and DEMs
between LUAD patients and healthy individuals were an-
alyzed using edgeR and limma, and a total of 516 DEMs were
screened, of which 203 were upregulated and 313 were
downregulated (Figure 2(a)). TCGA database download of
LUAD clinical mRNA data sample status is as follows: 477
cancer samples and 53 normal samples. DEGs between
LUAD patients and healthy individuals were analyzed using

Lung adenocarcinoma WGCNA Hub gene Targeted network

Differential gene enrichmentDifferential gene analysisTCGA database

mRNA

miRNA

gene pathway

Figure 1: Workflow.
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edgeR and limma, and a total of 5464 DEGs were screened,
of which 3379 were upregulated and 2085 were down-
regulated (Figure 2(b)).

3.2.GOandKEGGEnrichmentAnalysis. To further elucidate
the biological processes, cellular components, molecular
functions, and signaling pathways associated with module-
trait, we applied several modules with significant module-
trait relationships for GO and KEGG enrichment analysis.

(e molecular functions of differentially expressed
miRNA in lung adenocarcinoma were mainly enriched in
channel activity, passive transmembrane transporter activ-
ity, and gated channel activity (Figure 3(a)). (e cellular
components were mainly enriched in the transmembrane
transporter complex and collagen-containing extracellular
matrix (Figure 3(a)). Biological processes were mainly
enriched in extracellular structure organization, external
encapsulating structure organization, and extracellular
matrix organization (Figure 3(a)). (e miRNA signaling
pathway is mainly enriched in neuroactive ligand-receptor
interaction (Figure 3(b)). (e molecular functions of dif-
ferentially expressed mRNA in lung adenocarcinoma were
mainly enriched in channel activity, passive transmembrane
transporter activity, and gated channel activity (Figure 3(c)).
(e cellular components were mainly enriched in collagen-
containing extracellular matrix and transmembrane trans-
porter complex (Figure 3(c)). Biological processes were
mainly enriched in extracellular structure organization,
external encapsulating structure organization, and extra-
cellular matrix organization (Figure 3(c)). Lung adenocar-
cinoma differentially expressed mRNA signaling pathways

that were mainly enriched in the neuroactive ligand-receptor
interaction (Figure 3(d)). (e GO and KEGG enrichment
analysis of miRNAs and mRNAs differed in detail, however,
the overall trends and specificities were highly consistent.

3.3. Construction of LUAD-Weighted Gene Correlation Net-
work Analysis WGCNA. A biological approach to system-
atically characterize gene association patterns between
different samples and allow the identification of highly
covariant genomes. Candidate biomarker genes or thera-
peutic targets are identified based on the cohesion of the
genome and the association between the genome and
phenotype. Based on the WGCNA-based systems biology
approach, gene coexpression networks were constructed to
screen potential biomarkers and therapeutic targets for the
disease.

In the study, a weighted gene association network was
constructed using 1575 DEMs and 514 LUAD samples, and
a weighted gene association network was constructed using
5464 DEMs and 530 LUAD samples. To construct the
WGCNA network, we first computed the soft threshold
power β and boosted the coexpression similarity to compute
the adjacency. WGCNA adopts the pick Soft (reshold
function to analyze the network topology. In the subsequent
analysis, the soft threshold power β was set to 3, the scale
independence reached 0.9, and the average connectivity was
relatively high (Figure 4(a), 5(a)).

We constructed gene networks and identified modules
using the one-step network construction function of the
WGCNA R package. As shown in Figure 4, 18 coexpressed
gene modules were identified by the WGCNA method, and
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Figure 2: DEMs and DEGs of cancer patients and normal groups screened in GEO and TCGA databases. All upregulated (red) and
downregulated (blue) DEMs screened from GEO and TCGA databases (a), and all upregulated (red) and downregulated (blue) DEGs
screened from GEO and TCGA databases (b).
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each module was color-coded. Gray default genes cannot be
classified into any modules. When there are too many genes
in the grey module, previous gene screening expression
matrix procedures may not be suitable (Figure 4(b)).
MEgray contains genes that do not belong to any module,
and it is the largest module. We analyzed the connectivity of
eigengenes (eigen- + gene: a matrix of genes and samples).
Intrinsic genes provide information about the relationship
between the pairs of gene coexpression modules. (e
clustering of eigengenes indicated that these 18 modules
could be divided into two groups (Figure 4(e)). In the
module, MEred was significantly positively correlated with
MEblack and MEmidnightblue, while MEred was negatively
correlated with MEturquoise and MEgreen (Figure 4(c)). As
shown in Figure 5(b), 15 coexpressed gene modules were
identified by the WGCNA method, and each module was
color-coded. MEturquoise is the largest module. (e clus-
tering of eigengenes indicated that these 15 modules could
be divided into two groups (Figure 5(e)). Among modules,
MEpurple was significantly positively correlated with
MEpink and MEyellow, while MEblack was negatively

correlated with MEpurple, MEblue, and MEyellow
(Figure 5(c)).

Since ME can recapitulate gene expression profiles, the
correlation between ME and TNM stage was calculated,
called module-trait relationship analysis. To identify the
module-trait relationships of gene modules, we assigned
genes into corresponding modules with reference to the
initially constructed modules. (e correlation of each
module with clinical parameters was calculated using
a function of the WGCNA module eigengenes [12]. In
addition, p≤ 0.05 was statistically significant. As shown in
Figure 4(d), MEpink was negatively correlated with the N
phase of LUAD (r� −0.093, p � 0.04). MElightcyan was
positively correlated with M phase with LUAD (r� −0.093,
p � 0.04). MEsalmon was positively correlated with the total
stage of LUAD (r� 0.12, p � 0.007). As shown in
Figure 5(d), MEbrown was negatively correlated with the T
phase and the total Stage of LUAD (r� −0.11, p � 0.02).
MEred was negatively correlated with the stage with LUAD
(r� −0.096, p � 0.04). MEpink was positively correlated
with the total stage of LUAD (r� 0.11, p � 0.01).
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Figure 3: DEMs and DEGs analysis of GO and KEGG. DEMs analysis of GO and KEGG, GO terms, (a) and KEGG enrichment analysis
(b). DEGs analysis of GO and KEGG and GO terms, (c) and KEGG enrichment analysis (d). BP (biological process) is represented by circles,
CC (cellular component) is represented by triangles, andMF (molecular function) is represented by squares.(e size of the graph represents
the number of enrichments, the color represents the degree of significant difference, and the color of the p-value changes from green to red
from large to small.
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MEturquoise was positively correlated with the total stage of
LUAD (r� 0.13, p � 0.006).

3.4. A Map of the Targeting Network between LUAD miRNA
and mRNA. (e target mRNAs of miRNAs were searched
from miRTarBase, miRDB, and TargetSsan databases to
construct a targeting network consisting of differentially

upregulated and downregulated miRNA-mRNAs, and the
analysis was visualized using Cytoscape software.

One miRNA in M-phase targets 159 mRNAs
(Figure 6(a)), of which 91 are upregulated and 68 are
downregulated, and one hubmiRNAs is as follows: hsa-miR-
6860. Four miRNAs in N-phase target 136 mRNAs
(Figure 6(b)), of which 77 are upregulated and 59 are
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Figure 4: DEMs weighted gene correlation network analysis. WGCNA scale-free network distribution (a). Hierarchical clustering tree
(b). Module-feature relationships validatedWGCNA for correlation analysis betweenmodules and TNM stages (d). Each row in the table in
(d) corresponds to an ME, and each column corresponds to a TNM staging index. (e numbers in each cell indicate the corresponding
correlation and p-value. Cells are colored according to correlation and color legend.(e strength and direction of the correlation are shown
in the heatmap in the right panel (red for positive correlation and blue for negative correlation). ME :modular eigengenes.
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downregulated, and four hub miRNAs are as follows: Hsa-
miR-2682-3p, hsa-miR-2682-5p, hsa-miR-503-5p, and hsa-
miR-503-3p. 2 miRNAs in stage phase targeted and regu-
lated 145 mRNAs (Figure 6(c)), of which 77 were

upregulated and 68 were downregulated, and the 2 hub
miRNAs were as follows: hsa-miR-216b-3p and hsa-miR-
216b-5p. 15 miRNAs in T-phase targeted to regulate 91
mRNAs (Figure 6(d)), of which 75 were upregulated and 16
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Figure 5: DEGs weighted gene correlation network analysis. WGCNA scale-free network distribution (a). Hierarchical clustering tree
(b). Heat map of correlation analysis between clustered modules and modules (c). Validation of WGCNA with module-feature relationship
for correlation analysis between modules and TNM staging (d). Each row in the table of (d) corresponds to an ME and each column
corresponds to a TNM staging indicator. (e number in each cell indicates the corresponding correlation and p-value. Cells are colored
according to the correlation and color legend. (e strength and direction of the correlation are shown in the heat map in the right-hand
panel (red indicates positive correlation and blue indicates negative correlation). ME: module characteristic genes.
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were downregulated. 15 hub miRNAs were as follows: hsa-
miR-939-5p, hsa-miR-1247-5p, hsa-miR-939- 3p, hsa-miR-
6726-5p, hsa-miR-6510-5p, hsa-miR-326, hsa-miR-3615,
hsa-miR-6892-3p, hsa-miR-3677-3p, hsa-miR-1247-3p, hsa-
miR-99b-3p, hsa-miR -3677-5p, hsa-miR-4664-5p, hsa-
miR-4736, and hsa-miR-6892-5p.

Four targeting networks consisting of 22 miRNAs and
531 mRNAs were constructed.

3.5. Key Gene Screening. To identify key genes, the DEGs of
several modules with significant module-trait relationships
were analyzed. Using Cytoscape’s cytohubba plugin, key
genes were screened out by the degree algorithm. (ree key

genes were obtained in the MEgrey60 module, which are as
follows: CDCA8, KIF23, and CDT1 (Figure 7(a)). (e key
genes of the MElightcyan module are KIF23, CDCA8, and
CCNB2 (Figure 7(b)). (e key genes of the MEsalmon
module include CDH1, CDH13, DAPK1, and ITGB3
(Figure 7(c)). (e key genes of the MEyellow module are
CDC45, KIF2C, and NCAPG (Figure 7(d)).

3.6. Overall Survival. (e key genes of LUAD’s overall
survival analysis samples were divided into high expression
group and low expression group. Compared with the me-
dian value of key genes, the expression survival analysis
showed that ITGB3, DAPK1, CDH13, and CDH1 had no

(a) (b)

(c) (d)

Figure 6: Targeting network of LUADmiRNAs in relation to mRNAs. MiRNAs in M-phase in relation to mRNAs (a). MiRNAs in N-phase
in relation to mRNAs (b). MiRNAs in Stage in relation to mRNAs (c). MiRNAs in T-phase in relation to mRNAs (d). Red is up, and blue
is down.

8 Journal of Oncology



significant difference in the OS rate with patients (p> 0.05,
Figure 8). KIF23, CDT1, CDCA8, CCNB2, NCAPG, KIF2C,
and CDC45 were negatively correlated with the OS rate of
patients (p< 0.05, Figure 8).

4. Discussion

With the popularity of high-resolution CT scans and the
improvement of patients’ health awareness, the detection
rate of pulmonary nodules continues to increase. However,
distinguishing benign from malignant pulmonary nodules
and identifying different subtypes of NSCLC remain major
challenges for clinicians. Some miRNA-mRNA regulatory
changes occur at different stages of carcinogenesis. In the
early diagnosis of cancer, the detection of new miRNA
changes may serve as a new prognostic tumor marker
method for LUAD. With advances in high-throughput se-
quencing technologies, the amount of transcriptome data in
public databases has grown exponentially, providing ample
data for screening ideal diagnostic biomarkers and evalu-
ating their performance. In the present study, we system-
atically analyzed the transcriptome data of LUAD in the
TCGA and GEO databases. Twenty-two miRNAs were
identified and validated as possible LUAD-specific prog-
nostic diagnostic biomarkers. Compared with previous
studies, the data patient sample size in our study reached
more than 1000. (erefore, our advantage lies in a wider
range of candidate miRNA-mRNAs. (erefore, it is of great
significance for the prognosis and treatment of LUAD to
elucidate the occurrence and development mechanism of

LUAD and find biomarkers that can be used for early clinical
diagnosis and prognosis.

(is study employed a systems biology approach,
WGCNA, to identify genemodules associated with DEG and
TNM staging of LUAD. A total of 1575 DEMs and module-
trait relationships were identified. As shown in Figure 3(d),
among the differentially expressed miRNAs, MEpink was
negatively correlated with the N-phase of LUAD.
MElightcyan is positively correlated with the M phase of
LUAD. MEsalmon is positively correlated with the total
stage of LUAD. Among the differentially expressed mRNAs,
MEbrown was negatively correlated with the T phase of
LUAD. Mered and MEbrown were negatively correlated
with the stage phase of LUAD. MEpink and MEturquoise
were positively correlated with the total stage of LUAD. It is
suggested that these modular signature genes play an im-
portant role in the occurrence and development of LUAD.

In addition, GO and KEGG pathway enrichment anal-
ysis was performed on the module eigengenes. GO analysis
showed that the differentially expressed miRNAs in lung
adenocarcinoma were mainly enriched in biological pro-
cesses and molecular functions. Biological process BP is
mainly enriched in extracellular structural tissue, external
encapsulated structural tissue, and extracellular matrix tis-
sue. Molecular function MF is mainly enriched in channel
activity, passive transmembrane transporter activity, and
gated channel activity. (e cellular components CC were
mainly enriched in the following: transmembrane trans-
porter complexes and extracellular matrix containing col-
lagen. In the KEGG pathway analysis, we found that the
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Figure 7: Screening of key genes. Cytoscape analysis of DEGs inMEgrey60 module (a). Cytoscape analysis of DEGs inMElightcyan module
(b). Cytoscape analysis of DEGs in MEsalmon module (c). DEGs in MEyellow module Cytoscape analysis (d).
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Figure 8: Continued.
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signaling pathway was mainly enriched in neuroactive
ligand-receptor interactions.

Previous studies have shown that the biological pro-
cesses of lung adenocarcinoma and glioma are mainly
enriched in extracellular structural tissue, external encap-
sulated structural tissue, and extracellular matrix tissue
[22, 23]. Molecular functions in bladder cancer studies have
been mainly concentrated in channel activity, passive
transmembrane transporter activity, and gated channel
activity [24]. Transmembrane transporter complexes and
collagen-containing extracellular matrix are associated with
colon cancer [25]. A neuroactive ligand-receptor interaction,
a Gprotein-coupledreceptor-mediated signaling pathway,
has been implicated in the progression of cancers, such as
bladder and pancreatic cancer [26–28]. It regulates the axis
LOC134466/hsa-miR-196a-5p/TAC1, which activates neu-
roactive ligand-receptor interactions by activating TACR3 in
endometrial cancer (EC) [29]. In our study, it was found that
the neuroactive ligand-receptor interaction signaling path-
way may also have a significant relationship with the oc-
currence and development of lung adenocarcinoma.

After identifying the GO and KEGG enrichment analysis
of LUAD-related module eigengenes, a gene network was
constructed based on WGCNA to analyze the correlation
between module eigengenes. Meanwhile, core miRNAs were
identified using the Cytohubb package, and they are as
follows: hsa-miR-6860, hsa-miR-2682-3p, hsa-miR-2682-5p,
hsa-miR-503-5p, hsa-miR-503-3p, hubhsa-miR-216b-3p,
hsa-miR-216b-5p, hsa-miR-939-5p, hsa-miR-1247-5p, hsa-
miR-939-3p, hsa-miR-6726-5p, hsa-miR-6510-5p, hsa-miR-
326, hsa-miR-3615, hsa-miR-6892-3p, hsa-miR-3677-3p,
hsa-miR-1247-3p, hsa-miR-99b-3p, hsa-miR-3677-5p, hsa-
miR-4664-5p, hsa-miR-4736, and hsa-miR-6892-5p. (ey
may be potential biomarkers to predict the prognosis of
LUAD patients. In addition, potential target gene

transcriptions were validated in databases, in which some
target gene mRNAs were significantly downregulated/
upregulated in lung adenocarcinoma tissues. (ese findings
may provide the fundamental evidence for the future
identification of potential biomarkers or anticancer targets.

Gene modules of these central genes were identified as
primarily associated with the clinical metastasis of lung
adenocarcinoma. Previous literature suggested that the
MIR2682 locus is associated with perineural invasion in
head and neck cancer [30]. MiR-2682-5p/HOXB8 promotes
cell proliferation and migration in pancreatic cancer cell
carcinoma [31]. (e miR-2682-5p feedback loop promotes
bladder cancer cell growth [32]. Ultrasonic microbubble-
mediated downregulation of miR-503-5p inhibits CRC
progression in vitro by promoting SALL1 expression [33].
Hsa_circ_0072387 inhibits the proliferation, metastasis, and
glycolysis of oral squamous cell carcinoma cells by down-
regulating miR-503-5p [34]. LncRNADLGAP1-AS2 regu-
lates miR-503/cyclinD1 to promote nonsmall cell lung
cancer cell proliferation [35]. MiRNA-216b expression was
negatively correlated with 18F-FDG uptake in NSCLC [36].
(e overexpression of microRNA-939-5p contributes to cell
proliferation and is associated with poor prognosis in glioma
[37]. MicroRNA-939-5p directly targets IGF-1R and sup-
presses the aggressive phenotype of osteosarcoma by inac-
tivating the PI3K/Akt pathway [38].(e knockdown of miR-
939 may inhibit cell proliferation and invasion by regulating
the expression of TIMP2 in NSCLC cells, and miR-939 may
be a potential target for the treatment of NSCLC, although it
requires further study [39]. MiR-1247-5p exerts a tumor
suppressor effect in human astroglioma cells by targeting
CDC14B [40]. Tumor-derived exosomal miR-1247-3p in-
duces cancer-associated fibroblast activation to promote the
lung metastasis of liver cancer [41]. MiR-3615 expression
level in HCC patients was negatively correlated with the
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Figure 8: OS analysis of 11 key genes in LUAD (based on TCGA data in GEPIA).(e expression levels of (a) KIF23, (b) CDT1, (c) CDCA8,
(d) CCNB2, (e) ITGB3, (f ) DAPK1, (g) CDH13, (h) CDH1, (i) NCAPG, (j) KIF2C, and (k) CDC45 were highly correlated with the OS rate of
LUAD patients.
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overall survival time, and it is positively correlated with high
TNM stage, serum Ki-67 expression level, and serum alpha-
fetoprotein level [42]. MiR-3677-3p promotes hepatocellular
carcinoma progression by inhibiting GSK3β [43]. Hypoxia-
induced miR-3677-3p promotes the proliferation, migra-
tion, and invasion of hepatoma cells by inhibiting SIRT5
[44]. MiR-4736 is in a region with high levels of genomic
amplification in breast cancer [45]. (ese miRNAs may be
promising novel biomarkers and prognostic factors.

It is worth mentioning that the key roles of these 22 hub
miRNAs in LUAD are only predicted based on theWGCNA
theory, and if verified, our findings may provide evidence for
the study of anticancer targets in LUAD patients.

5. Conclusion

In conclusion, we identified gene modules and hub genes
associated with the TNM rank using theWGCNA approach.
A total of 516 differentially expressed miRNAs and 5464
differentially expressed mRNAs were identified in LUAD.
GSEA enrichment analysis showed that miRNAs and
mRNAs were mainly enriched in extracellular structure
organization, external encapsulating structure organization,
extracellular matrix organization, and gated channel activity,
and it is mainly involved in the neuroactive ligand-receptor
interaction signaling pathway. It was found that miRNAs
and mRNAs in some clustering modules were associated
with the prognosis of LUAD, and 4 targeting networks
consisting of 22 miRNAs and 531 mRNAs were constructed.
Mechanistically, these molecular genes may contribute to
the development of changes in lung adenocarcinoma by
regulating the pathways.
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